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Abstract: We address the problem of decoding non binary 

low-density parity-check (LDPC) codes over finite fields GF 

(q), with reasonable complexity and good performance. A 

one minimum only decoder for Trellis-EMS (OMO T-EMS) 

and for Trellis-Min-max (OMO T-MM) is projected in this 

paper. during this novel approach, we tend to avoid 

computing the second minimum in messages of the check 

node processor, and propose efficient estimators to infer the 

second minimum worth. By doing so, we greatly scale back 

the quality and at a similar time improve latency and 

turnout of the derived architectures compared to the 

prevailing implementations of EMS and Min-max decoders. 

This resolution has been applied to numerous NB-LDPC 

codes constructed over totally different Galois fields and 

with different degree distributions showing altogether cases 

negligible performance loss compared to the best EMS and 

Min-max algorithms.. By choosing appropriate correction 

factors or offsets, we show that the EMS decoder 

performance is quite good, and in some cases better than 

the regular BP decoder. The optimal values of the factor 

and offset correction are obtained asymptotically with 

simulated density evolution. Our simulations on ultra-

sparse codes over very-high-order fields show that non 

binary LDPC codes are promising for applications which 

require low frame-error rates for small or moderate 

codeword lengths. The EMS decoder is a good candidate 

for practical hardware implementations of such codes.  

 

I. INTRODUCTION 

Low density parity check (LDPC) codes designed over GF 

(q) (also referred to as GF(q)-LDPC codes) have been shown 

to approach Shannon limit performance for q = 2 and very 

long code lengths [1, 2, 4, 5]. On the other hand, for 

moderate code lengths, the error performance can be 

improved by increasing q [6, 7]. However this improvement 

is achieved at the expense of increased decoding complexity. 

A straightforward implementation of the belief propagation 

(BP) algorithm to decode GF (q)-LDPC codes has 

computational complexity dominated by O (q 2 ) operations 

for each check sum processing. As a result, no field of order 

larger than  q = 16 was initially considered. Extending the 

ideas presented, a more efficient approach using Fourier 

transforms over GF (2q) was presented. The description of 

this algorithm in the log-domain has been given. Note that 

the Fourier transform is easy to compute only when the 

Galois field is a binary extension field with order q = 2p. In 

that case, this approach allows to reduce the computational 

complexity of the BP algorithm to O (p2 p). Consequently, 

results for 2 p = 256 were reported with this method. The  

 

formulation of this algorithm was further elegantly and 

conveniently modified based on the introduction of a tensoral 

representation. With this representation, the generalization of 

BP decoding over GF (2) to any field of order q = 2p 

becomes very natural. We present in details the BP algorithm 

using tensoral notations in the first part of this paper. 

Simplified iterative decoding of GF (q)-LDPC codes have 

also been investigated. For q = 2, the min-sum (MS) 

algorithm with proper modification has been shown to result 

in negligible performance degradation (less than 0.1 dB for 

regular LDPC codes) while performing additions only, and 

becoming independent of  the channel conditions. Extension 

of this approach to any value q seems highly attractive.  

Unfortunately, such extensions are not straightforward as 

many simplifications cannot be realized in conjunction with 

Fourier transforms. Presents a log-domain BP decoder 

combined with a FFT at the check node input. However 

combining log-values and FFT requires a lot of exponential 

and logarithm computations, which may not be very 

practical. To overcome this issue, the authors propose the use 

of a look-up table (LUT) to perform the required operations. 

Although simple, this approach is of limited interest for 

codes over high order fields since the number of LUT 

accesses grows in q log2 (q) for a single message. As a 

result, for fields of high order, unless the LUT has a 

prohibitively large size, the performance loss induced by the 

LUT approximation is quite large. The MS algorithm is 

extended to any finite field of order q. Although only 

additions are performed and no channel information is 

necessary, its complexity remains O (q 2 ). As a result, only 

small values of q can be considered by this algorithm and for 

q = 8, a degradation of 0.5 dB over BP decoding is reported. 

Simplifications of BP decoding of GF (q)-LDPC codes have 

also been considered for non binary signaling. In this paper, 

we develop a generalization of the MS algorithm which not 

only performs additions without the need of channel 

estimation, but also with the two following objectives: (i) a 

complexity much lower than O(q 2 ) so that finite fields of 

large order can be considered; and (ii) a small performance 

degradation compared with BP decoding. The first objective 

is achieved by introducing configuration sets, which allow to 

keep only a small number of meaningful values at the check 

node processing (note that while the check node processing 

is O (q 2 ), that of the variable node processing is only O 

(q)). The second objective is achieved by applying at the 

variable node processing the correction techniques of to the 

proposed algorithm.  
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II. LITERATURE SURVEY 

Min-Max decoding for non binary LDPC codes 

Iterative decoding of non-binary LDPC codes is currently 

performed using either the Sum-Product or the Min- Sum 

algorithms or slightly different versions of them. Several 

low-complexity quasi-optimal iterative algorithms are 

proposed for decoding non-binary codes. The Min-Max 

algorithm is one of them and it has the benefit of two 

possible LLR domain implementations: a standard 

implementation, whose complexity scales as the square of the 

Galois field’s cardinality and a reduced complexity 

implementation called selective implementation, which 

makes the Min-Max decoding very attractive for practical 

purposes.  

 

Simplified Trellis Min-Max Decoder Architecture for Non-

Binary Low-Density Parity-Check Codes 

Non-binary Low-Density Parity-Check (NB-LDPC) codes 

have become an efficient alternative to their binary 

counterparts in different scenarios such as: moderate 

codeword lengths, high order modulations and burst error 

correction. Unfortunately, the complexity of NB-LDPC 

decoders is still too high, especially for the check node 

processing, which limits the maximum throughput 

achievable. Although a great effort has been expended to 

overcome this disadvantage, the decoders presented in 

literature are still away from high speed implementations for 

high order fields. In this paper a simplified Trellis Min-Max 

(TMM) algorithm is proposed, where the check node 

messages are computed in a parallel way using only the most 

reliable information. The proposed check node algorithm is 

implemented using an horizontal layered schedule. The 

complete decoder architecture has been implemented in a 90 

nm CMOS process for the (837,726) NB-LDPC code over 

GF (32), achieving a throughput of 660 Mbps at 9 iterations 

based on post layout results. This decoder increases hardware 

efficiency in 110% compared to the existing solutions for the 

same code.   

 

III. EXISTING WORK 

Notations related to the Galois field: • GF(q) = {0, 1, . . ., 

q−1}, the Galois field with q elements , where q is a power of 

a prime number. Its elements will be called symbols, in order 

to be distinguished from ordinary integers. • a, s, x will be 

used to denote GF ( q )-symbols. • a , s , x will be used to 

denote vectors of GF ( q )-symbols. For instance, a = ( a 1, . . 

. , a I ) ∈ GF ( q ) I , etc. Notations related to LDPC codes: • 

H ∈ MM,N (GF(q)), the q-ary check matrix of the code. • C , 

set of codewords of the LDPC code. • Cn(a), set of 

codewords with the n th coordinate equal to a; for given 1 ≤ n 

≤ N and a ∈ GF ( q ) . • x = ( x 1, x 2, . . . , x N ) a q-ary 

codeword transmitted over the channel. The Tanner graph 

associated with an LDPC code consists of N variable nodes 

and M check nodes representing the N columns and the M 

lines of the matrix H. A variable node and a check node are 

connected by an edge if the corresponding element of matrix 

H is not zero. Each edge of the graph is labeled by the 

corresponding non zero element of H. Notations related to 

the Tanner graph: • H, the Tanner graph of the code. • n ∈ {1, 

2, . . ., N} a variable node of H . • m ∈ { 1 , 2, . . ., M } a 

check node of H . • H ( n ), set of neighbor check nodes of 

the variable node n . • H ( m ), set of neighbor variable nodes 

of the check node m . • L ( m ), set of local configurations 

verifying the check node m ; i.e. the set of sequences of GF ( 

q )-symbols a = ( a n ) n∈H ( m ) , verifying the linear 

constraint: Xn∈H(m) hm,n an = 0 • L ( m | a n = a ), set of 

local configurations a verifying m , such that a n = a; for 

given n ∈ H ( m ) and a ∈ GF ( q ) . 2 An iterative decoding 

algorithm consists of an initialization step followed by an 

iterative exchange of messages between variable and check 

nodes connected in the Tanner graph. Notations related to an 

iterative decoding algorithm: • γn(a), the a priori information 

of the variable node n concerning the symbol a. • γ˜n(a), the 

a posteriori information of the variable node n concerning 

the symbol a. • αm,n(a), the message from the check node m 

to the variable node n concerning the symbol a. • βm,n(a), 

the message from the variable node n to the check node m 

concerning the symbol a.  

 

REALIZATIONS OF THE MIN-SUM DECODING FOR 

NON BINARY LDPC CODES  

A. Min-Sum decoding  

The Min-Sum decoding is generally implemented in the log 

probability domain and it performs the following operations: 

Initialization • A priori information: γn(a) = − ln (Pr(xn = a | 

channel)) • Variable node messages: αm,n(a) = γn(a) 

Iterations • Check node processing  

 
Variable node processing 

    
A posteriori information 

 
For practical purposes, messages _m,n (a) and _m,n (a). 

Should be normalized in order to avoid computational 

instability (otherwise they could “escape” to infinity). The 

check node processing, which dominates the decoding 

complexity, can be implemented using a forward – backward 

computation method.  

 

B. Equivalent iterative decoders 

The term of equivalent (iterative) decoders will be employed 

several times through this paper. We begin this section by 

providing its rigorous definition. Consider the a posteriori 

information available at a variable node n after the lth 

decoding iteration: it defines an order between the symbols 

of the Galois field, starting with the most likely symbol and 

ending with the least likely one. Note that the most likely 

symbol may correspond to the minimum or to the maximum 

of the a posteriori information, depending on the decoding 

algorithm. 
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IV. PROPOSED WORK 

Let us define the parity check matrix H with M rows and N 

columns. Each non-zero element hm, n of H belongs to the 

Galois field GF (q = 2 p). In this paper, we only consider 

regular NBLDPC codes with constant row weight dc and 

column weight dc. Let N (m) (M (n)) be the set of variable 

nodes (check nodes) connected to a check node (variable 

node) m (n). Let Qm,n (a) and Rm,n (a) be the messages 

from variable node to check node and from check node to 

variable node for each symbol a ∈ GF(q) respectively. Ln(a) 

denotes the channel information and Qn (a) the a posteriori 

information. Let c = c1, c2,··· , cN and y = y1, y2,··· , yN be 

the transmitted codeword and received symbol sequence 

respectively, with y = c+e and e is the error vector introduced 

by the communication channel.         The log-likelihood ratio 

(LLR) for each received symbol is obtained as Ln(a) = 

log[P(cn = zn|yn)/P(cn = a|yn)] where zn is the symbol 

associated to the highest reliability. The previous definition 

ensures that all messages Ln(a) are non-negative and that the 

smaller the value, the more reliable the message. Algorithm 1 

includes the T-EMS check node algorithm where the first 

step consists in the delta domain transformation of input 

messages. This transformation ensures that the most reliable 

messages are always in the first row of ∆Qm,n(ηj) and the 

rest of the symbols are reordered and considered as 

deviations of the most reliable one, according to step 1. Step 

2 involves the calculus of check node’s syndrome β using the 

most reliable symbol zn for each check node incoming 

message. 

 

A. Estimators for the Second Minimum Value 

A first natural solution for the estimation of min2 is to make 

use of a scaled version of the first minimum, min1 described 

in  

 

 
Fig. 1. Second minimum estimation based on a radix-2 one-

minimum finder. Example for an eight inputs tree. 

This approximation has been already proposed. However, by 

just applying the value of the minimum is usually Under 

estimated if we apply a value that mimics as much as 

possible the behavior of EMS or Min-max in the waterfall 

region. min1, where we draw the distributions of the true and 

their proposed estimators, the value of is on average smaller 

than the real, which leads to an important performance 

degradation in the error floor region. A second possible 

estimator makes advantage of a re-use of the hardware 

architecture. Using a radix-2 one-minimum finder is possible 

to determine an early estimation for the second minimum. 

A one-minimum tree finder is presented. We include an extra 

multiplexor in the last stage, that allows extracting the looser 

term, denoted. By doing so and just using an extra 

multiplexor, this term can be used as an early estimator of 

the second minimum, which represents an upper-bound on 

the true minimum value. If the true value is located in the 

other half part of the tree that (branches of the minimum tree 

finder not connected to), then we obtain. In the other cases. 

Hence, the resultant value corresponds to provable upper 

bound on the true. A systematic overestimation of the second 

minimum value could lead also to performance degradation 

of the complete decoder, and we propose to combine and in 

order to get an estimator with a better statistical behavior. 

 

 
  

 
Fig. 2. Check node top architecture for T-EMS algorithm (a). 

Proposed OMO T-EMS/OMO T-MM check node 

architecture (b). 

Decoding:  

As with other codes, optimally decoding an LDPC code on 

the binary symmetric channel is the NP-complete problem, 

although techniques based on iterative belief propagation 

used in practice lead to good approximations. In contrast, 

belief propagation on the binary erasure channel is usually 

simple where it consists of iterative constraint satisfaction. 

For example, consider that the valid code word, 101011, 

from the example, is transmitted across a binary erasure 

channel and received with first and fourth bit erased to yield. 

Since the transmitted message must have full fill the code 

constraints, the message can be organized by written the 

message on the top of the factor graph. In this example, the 

first bit cannot yet be recovered, because all of the 

constraints connected to it have more than one unknown bit. 

In order to proceed with decoding the message, this 

procedure is then iterated. The new value for the fourth bit 

can now be used in conjunction with the first constraint to 

recover the first bit as shown below. This means that the first 
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bit must be a 1 to satisfy the leftmost constraint. 

 
Thus, the message can be decoded iteratively. For next 

channel models, the messages passed inside the variable 

nodes and check nodes are real numbers, which express 

probabilities and likelihoods of belief. This result can be 

validated by multiplying the corrected code word by the 

parity-check matrix H:  

Because the outcome z (the syndrome) of this operation is the 

3 × 1 zero vector, the resulting code word is successfully 

validated. 

 
Encoder: 

Encoder uses generator matrix to encode the information bits 

in to the code word. Both generator and parity check matrix 

are interrelated, parity check matrix is given by 

 
and the generator matrix is given by 

 
Initially parity check matrix is generated; using that matrix 

generator matrix is created by Gaussian elimination method. 

There are two types of parity matrices in LDPC coding one is 

Regular matrix and another one is irregular matrix. Regular 

matrix is one in which column Wc is same for all columns 

and row weight is given by 

Wr = Wc(n/m) 

we are using regular matrix of 3X7 (or) (n,k)=(7,3) i.e., 

where n represents total bits and k represents message bits, n-

k=7-3=4 which represents check bits or parity bits. 

 

Regular Parity Matrix 

To transfer the above parity check matrix to standard form 

i.e H=[ PT | I ] Gaussian elimination method is applied to the 

above matrix. The matrix H is put into this form by applying 

elementary row operations which are interchanging two rows 

or adding one row to another modulo 2. The resulting parity 

matrix in its standard form H is as shown in the 

figure 

 
Standard Parity Matrix 

If G is the generated matrix for (n, k) code then H is the 

generator matrix for ( n, n-k) code. Therefore obtained parity 

matrix is translated to standard form generator matrix i.e., G 

=[ I | P] as shown in fig 

 

Generator Matrix 

Now the information message bits are encoded by 

multiplying it with above generator matrix i.e., C = [M][P] to 

obtain the codeword. Each structure labeled G{0,1,,,m-1},i 

are XOR structures performs modulo-2 operations on the 

incoming message bits and the resultant code words will be 

of N-bits. Let us consider an n-bit information message U = 

[101 ], and C is given by 

 
By multiplying message vector with generator matrix we 

obtain the codeword with parity (or) check bits C = [1 0 1 0 0 

1 1]. Coding for this encoder part is done on VHDL and 

encoding is tested for various information bits satisfactorily. 
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V. RESULTS 

Simulation results 

Decoder: 

 
Encoder; 

 
Synthesis results: 

Decoder: 

Design summary 

 
Timing Report: 

 
RTL schematic 

 
Encoder: 

Design summary: 

 
Timing Report: 

 
RTL Schematic: 

 
 

DECODER-CELL USAGE: 

The DECODER architecture presented in this paper achieves 

a high performance in terms of both area and delay. This not 

only reduces the latency but also is increases the throughput 

rate. Our simulations on ultra-sparse codes over very-high-

order fields show that non binary LDPC codes are promising 

for applications which require low frame-error rates for small 

or moderate codeword lengths. The EMS decoder is a good 

candidate for practical hardware implementations of such 
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codes.  

 
ENCODER-CELL USAGE 

The proposed LDPC encoder has better output performance 

in terms of area when compared to that of the decoder 

architecture. The device utilization summary evaluated from 

the synthesis results clearly prove that the encoder occupies 

less space. 

 
Comparison Table: 

 
 

VI. CONCLUSION 

In this paper a new method to estimate the second minimum 

value in message of the check node processor of NB-LDPC 

de-coders is proposed. This solution avoids the use of two-

minimum finders, greatly reducing the check node 

complexity. The outgoing check node messages are 

calculated in a parallel way using only the most reliable 

symbols, reducing the overhead of the CN by a factor of four 

compared to the TEMS decoder. Using the layered schedule 

with the proposed check node algorithm reduces the required 

maximum number of iterations to achieve a desired 

performance. On the other hand, since the proposed approach 

does not make approximations on the reliability values used 

for derive the check node messages, the performance of the 

algorithm does not show any performance degradation. The 

simplifications applied to the T-EMS and T-MM algorithms 

reduce latency and area with respect to the original proposal, 

without introducing any significant performance loss. 
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