POSITION TRACKING SYSTEM TO FIND SHORTEST PATH TO OBJECT USING ARTIFICIAL INTELLIGENCE & FUZZY LOGIC: A REVIEW

Faiz Ahmad¹, Arun Kumar Bag²
M.Tech1 (Ece), HOD2 (ECE)
Bengal Inbstitute Of Technology & Management, Santiniketan

ABSTRACT: To find the shortest distance always suffers struggle and more complexity rather than simple and easy path. Here we are finding the position & shortest path to an object from image taken from camera or any visual sensing device by making use of fuzzy logic & Artificial Intelligence[8]. First we take image of the desired area then take out the desired place where we want to reach as quick and by proper way [6]. By Artificial Intelligence we can find the best way out of all possible good ways to reach. Shortest path not always depends upon the shortest path it may lead the rush, large number of traffic signals, worst condition of road which may cause for delay [7]. So we take All into account to make our modify model for shortest path. Here our model provides the user with more than one way/path to go to the destination.

I. INTRODUCTION

Position tracking system is to find the shortest path by means to save time. Earlier model give the shortest path on the basis of shortest distance, it does not include the time factor where our model include the factors that affect the time to reach the destination earlier than the previous shortest path. Here, we are making use of AI & Fuzzy-Logic to track the position to the object & then finding the shortest path from source to destination. Shortest path is the best path to reach from source to destination & it will make use of AI that helps in decision making power.

II. FUZZY LOGIC

Fuzzy logic expert systems often improve performance by allowing knowledge to generalize without requiring the knowledge engineer to anticipate all possible situations. Thus, for many types of applications, “soft computing” such as Fuzzy logic can incur lower overhead in terms of representing and engineering task knowledge. My project uses the application of fuzzy expert systems to position tracking.

III. ARTIFICIAL INTELLIGENCE

Artificial intelligence (AI) is the intelligence exhibited by machines or software, and the branch of computer science that develops machines and software with human-like intelligence. The use of AI research include reasoning, knowledge, planning, learning, natural language processing (communication), perception and the ability to move and manipulate objects. General intelligence is still among the field’s long term goals. There are an enormous number of tools used in AI, including versions of search and mathematical optimization, logic, methods based on probability and economics, and many others.

IV. BACKGROUND

Previous research showed that there are various other algorithms being used to find the shortest distance such as Bellman Ford in 1957 gave the Bellman Ford algorithm that solves the single source problem if edges weights may be negative. Dijkstra’s in 1959 gave the Dijkstra’s algorithm that solves the single source shortest path problems. Roy–Warshall and Robert Floyd in 1962 gave the Floyd–Warshall algorithms that solves all pair shortest path. Andrew Viterbi in 1967 gave the Viterbialgorithm that solves the shortest stochastic problem with an additional probabilistic weight on each node. Peter Hart, Nils Nilssons and Bertram Raphael in 1968 gave the A* search algorithm that solves for single pair shortest path using heuristic to try to speed up the search. Donald B. Johnson in 1977 gave the Johnson’s algorithm that solves all pair shortest path and may be faster than Floyd-Warshall on sparse graphs. Dijkstra’s algorithm is one of the best algorithms that is being used. All the above previous researches discussed on the shortest path algorithms are purely based on the distance factor. Previous research showed that Fuzzy Logic can be used to track the motion of a brightly colored object against a dark background, with relatively low development and run-time costs.

V. PROPOSED CORE CONCEPT

Position Tracking System to find shortest path to object focusses to track the position to object and then find the shortest path to objects from source to destination where, the shortest path problem is the problem of finding the best path between two objects.

We are using grid value algorithms which is as follow:

Inputs: (#) Size of the N x N Grid. (N); (#) No. of Paths: Z; (#) Source and Destination Coordinates of each of the individual Z paths.

Given: (#) Each path comprises of the cells which are ADJACENT to each other and NOT diagonal. (#) Time taken to cross each cell is EQUAL and is an unit time. (#) Travelling starts from the respective source coordinates of each path in the grid SIMULTANEOUSLY. (#) Paths may intersect, BUT after say ‘x’th unit time no two paths must intersect in one particular cell at a time. If such case arises, then one of the paths need to bypass into a new path taking alternate
adjacent cell just before the clashing cell.

Output: Z no. of paths which are SHORTEST possible without clash.

[Say there are two paths (Z=2), say X to Y and W to Z. While travelling, both X and W start simultaneously from their respective source coordinates, going to their respective destinations Y and Z such that they should take the SHORTEST possible path, AND after x'th unit time, they must not CLASH (when both the paths have traveled exactly (x-1) no. of cells and clashing into the x'th cell) into one single cell. If that happens, one of the path needs to be bypassed towards its destination keeping in mind without clash, shortest possible path. And this has to be implemented for Z no. of lines starting simultaneously in the grid.]

For position tracking we provide Grid value of both source and destination and finding it coordinate and match its referential points. We are adding various factors such as jamming, damage of road, no. of traffic signals and highway dimension in real time to enhance our above algorithm so that the user can find the destination in the short time.

VI. ADVANTAGES OF NEW ALGORITHM
New algorithm including every factors that we face in our daily life. It give user more ways to choose and provide shortest path in term of very less time as compare to previous model.

VII. CONCLUSION
This inclusion give us more dynamic model and these real time situation provides it a best model for future. This enhancement brings us more closer to real situations. So real life implication of this model give us more real parameter to the world and real time scenario for path travelling. This save time for travelers.

REFERENCES
[2] Fuzzy condensed algorithm applied to control a robotic head for visual tracking by
[5] Dense, Robust, and Accurate Motion Field Estimation, Clemens Rabe, Thomas Müller, Andreas Wedel, and Uwe Franke Daimler Research, Sindelfingen 2012.