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ABSTRACT:  In this thesis, a new method for 

implementing cryptographic hash functions is proposed. 

This method seeks to improve the speed of the hash 

function particularly when a large set of messages with 

similar blocks such as documents with common Headers 

are to be hashed. The method utilizes the peculiar run-time 

configurability Feature of FPGA. Essentially, when a block 

of message that is commonly hashed is identified, the hash 

value is stored in memory so that in subsequent occurrences 

of The message block, the hash value does not need to be 

recomputed; rather it is Simply retrieved from memory, thus 

giving a significant increase in speed. The System is self-

learning and able to dynamically build on its knowledge of 

frequently Occurring message blocks without intervention 

from the user. The specific hash Function to which this 

technique was applied is blake, one of the SHA-3 finalists. 
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I. INTRODUCTION 

1.1 Cryptographic hash functions 

There is no doubt about the fact that electronic 

communication has revolutionized our world. The world has 

progressed from communication with mainly letters written 

on paper and sent through the post office to instant 

communication via email, chat and social networking 

websites like Facebook and Google+. Many communication 

activities that were traditionally done via post are now done 

through electronic means. These activities include 

transferring documents, images, audio and video. A 

cryptographic hash function is one which converts an input 

data of arbitrary length into a fixed-length output. 

Cryptographic hash functions are somewhat different from 

ordinary hash functions used in computer programs; 

however, for simplicity cryptographic hash functions will 

simply be referred to as hash functions throughout the rest of 

this thesis. The output of a hash function must have certain 

properties; these are: pre-image resistance, second pre-image 

resistance and collision resistance. These properties ensure 

that the hash function is secure. The properties stem from the 

ways in which hash functions have been attacked. Pre-image 

resistance implies that the hash function is a one-way 

function. That is, it should be infeasible for an attacker to 

determine the original data (or message) from a given hash 

code or digest (the digest is another name for the hash code 

or hash value). Second pre-image resistance guarantees that 

even the slightest change in a message will change the digest. 

That is, if an attacker is given a message, it should be 

infeasible for the attacker to manipulate the message and still 

obtain the same digest as the original message digest. 

Collision resistance gives the general analogy of fingerprint 

with respect to the message digests. That is, every message is  

 

expected to have a unique hash code and it should be 

generally difficult for an attacker to find two messages with 

the same hash code. 

Mathematically, a hash function (H) is defined as follows: 

H: {0, 1}* → {0, 1}n 

In this notation, {0, 1}* refers to the set of binary elements 

of any length including the empty string while {0, 1}n refers 

to the set of binary elements of length n. Thus, the hash 

function maps a set of binary elements of arbitrary length to 

a set of binary elements of fixed length. Similarly, the 

properties of a hash function are defined as follows: 

x {0, 1}*; y {0,1}n 

Pre-image resistance: given y= H(x), it should be difficult to 

find x.  

Second pre-image resistance: given x, it should be difficult to 

find x‘ such that H(x) = H(x‘) (where x x‘).  

Collision resistance: it should be hard to find any pair of x 

and x‘ (with x x‘) such that H(x) = H(x‘)  

 

The properties of second pre-image resistance and collision 

resistance may seem similar but the difference is that in the 

case of second pre-image resistance, the attacker is given a 

message (x) to start with, but for collision resistance no 

message is given; it is simply up to the attacker to find any 

two messages that yield the same hash value. The word 

―difficult‖ or the phrase ―hard to find‖ in this context implies 

that it will take a long time (many years) and a huge amount 

of memory for a computer to perform the computation. That 

is, for example, it will take many years and a lot of memory 

for a computer with today‘s technology standards to compute 

a message from its digest value; thus, the computation is 

regarded as infeasible. It is interesting to note that as 

processing power of computers have increased over the 

decades, some hash functions that were previously 

considered secure (possessing all the properties of pre-image, 

second pre-image and collision resistance) are now 

considered ―broken‖. Also, if an attacker is able to prove that 

the time it will take to ‗break‘ a hash function, though not 

small has been significantly reduced, that hash function will 

be considered weak. As computational power increased and 

cryptanalysis of hash functions were performed, certain hash 

function standards have also been revised because they were 

found to be weak. It is desirable to have a hash function that 

is secure and computationally efficient. 

 

1.2 Applications of hash functions 

As mentioned earlier, hash functions are used in certain 

information security schemes. These include: digital 

signatures, Message Authentication Codes (MACs) and 

digital image watermarking. There are also simple 

applications of hash functions such as password storage. In 
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password storage application, the password entered by a user 

at the first log-in is not stored in the computer system; rather 

the hash of the password is stored. To log into the system at 

subsequent times, the user needs to enter the password; the 

system hashes it and compares it with the stored hash. If 

there is a match, the user is granted access to the system 

otherwise the user is denied access. The advantage of this 

scheme lies in the fact that if an attacker manages to gain 

access to the system‘s storage devices, only the hash of the 

password can be retrieved and this cannot be used to recover 

the original password since the hash function is a one-way 

function. 

 

1.3 Problem statement 

Hash functions, as previously established, are very useful in 

information security schemes. Apart from the above 

mentioned applications (digital signatures, digital image 

watermarking and so on), hash functions are also utilized in 

generating pseudo random numbers which are in turn utilized 

in many cryptographic schemes. In most of these 

applications, particularly digitalsignatures, digital image 

watermarking and Message Authentication Codes, it is 

desirable to have the hash function operate as fast as possible 

especially when a huge traffic or load of messages are 

expected to be operated on. Consequently, a lot of research 

effort has been expended in the area of high speed 

implementation of standardized or widely used hash 

functions. The US National Institute of Standards and 

Technology (NIST) has organized a competition to select a 

new hash function standard that is expected to be atleast as 

secure as and significantly faster than the current hash 

function standard (SHA-2). This is in line with the objective 

of making the hash function run faster and increase overall 

performance when it is utilized along with other primitives in 

information security schemes. The goal of this thesis is to 

explore the high speed implementation of hash functions 

using Field Programmable Gate Arrays (FPGAs) and the 

Blake hash function (one of the final round candidates in the 

competition organized by NIST). 

 

II. LITERATURE SURVEY 

As previously mentioned, a significant amount of research 

effort has been expended in the area of high speed 

implementation of hash functions. The Blake hash function 

like many other hash functions was designed with the intent 

of making it capable of running at high speed. It has a 

relatively simple algorithm; its compression function is a 

modified ―double round‖ version of Bernstein‘s stream 

cipher ―chacha‖ which has been intensively analyzed and 

found to be of excellent performance and parallelizable [4]. 

Blake has been examined by researchers seeking ways of 

providing high speed operation. One of the techniques for 

speed optimization of Blake that is found in literature is 

parallelism [5]. Other speed optimization techniques that 

have been applied to Blake are pipelining (in an area of the 

algorithm where pipelining is feasible) [6] and the use of 

carry-save adders [6] in the compression function. These 

techniques focus on the main ‗core‘ of the hash function. 

Nowhere, to the best of our knowledge has any attempt been 

made to improve the speed of the hash function by looking at 

the iterative/ repetitive process of hashing. The hash 

functions in use today evolved from weaknesses found in 

previous hash functions. The first publicly known hash 

function was developed by Ronald Rivest in 1989 and it was 

known as Message-Digest Algorithm (MD2). In 1990, Rivest 

developed another hash algorithm named MD4. MD4 was 

based on the Merkle-Damgard construction [7]. In 1991, 

Rivest again developed another hash algorithm to replace 

MD4; this new algorithm was named MD5. Meanwhile the 

National Institute of Standards and Technology (NIST) was 

also working on a hash function standard. In 1993, NIST 

developed the Secure Hash Standard (SHA). This standard 

was published by NIST as a US Federal Information 

Processing Standard (FIPS). However, shortly after the 

publication, the algorithm was withdrawn due to an 

undisclosed "significant flaw". It was replaced by a revised 

version named SHA-1. SHA-1 has been widely used in 

information security schemes such as Transport Layer 

Security (TLS), Secure Sockets Layer (SSL), Internet 

Protocol Security (IPsec), Secure Shell (SSH) and Pretty 

Good Privacy (PGP). SHA-2, a set of hash functions (SHA-

224, SHA-256, SHA-384, and SHA-512) was designed by 

the National Security Agency (NSA) and published by NIST 

in 2001. These hash functions in SHA-2 are named 

according to the number of bits of their digest; SHA-256 for 

instance has 256 bits in its digest. SHA-2 was created as an 

update to the former standard (SHA-1). 

 

III. PREVIOUS WORKS (HIGH-SPEED 

IMPLEMENTATION OF BLAKE) 

Certain techniques have been applied to hardware 

implementations of Blake in an attempt to optimize the speed 

of the hash function. These techniques are: parallelism, 

pipelining and the use of fast adders. In the following 

sections we shall examine each of these techniques. 

3.1 Parallelism 

Parallelism is one of the methods that have been applied for 

the speed optimization of Blake. The main task that 

consumes time in the hash function‘s algorithm is the state 

update. The initialization is a process that simply depends on 

a few XOR gates and combinational logic; this doesn‘t 

consume time. Similarly, the finalization is a process that 

depends on XOR gates and utilizes only combinational logic; 

it consumes a relatively small amount of time. However, for 

the state update; first of all it utilizes the g-functions which 

have addition, rotation operations; these can consume some 

time. Secondly, the full state update takes 14 rounds of 

similar g-function operations. Thus, if the speed of the hash 

function is to be increased, one of the main areas to consider 

would be the state update. The update of the state columns 

and diagonals can be done sequentially; that is, one column 

(or diagonal) updated at a time or it could be done with all 4 

columns updated simultaneously. However, all the columns 

must be updated before the diagonals are updated because 

the diagonal update makes use of the new state variable 

values obtained from the column update. Parallelism is 

applied to Blake by updating all the columns of the state 

simultaneously and then similarly updating all the diagonals 
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of the state simultaneously.  

 

3.2 Pipelining 

In the g-function, some of the operations performed could 

take a relatively long period of time. The g-function is a 

modified ‗double‘ round of the stream cipher chacha. The 

fact that it is a double round implies that the outputs of some 

operations in the g-function are inputs to some other 

operations in the same g-function. In particular, computations 

involving the XOR of message and constant words, one of 

which is given below: 

vx1 = vx1+ vx2 + (mσr (2i) ^ Cσr (2i+ 1)) 

consume a longer time because there are three major 

operations involved. Thus, these operations constitute the 

critical path of the g-function (the path with the longest 

delay).The critical path influences the speed (throughput) of 

the overall computation. A long critical path delay requires a 

long the clock period and hence the speed of the hash 

function is reduced. However, a pipeline stage may be used 

to improve the speed. Since there are 14 rounds of repeated 

g-function computations, if a pipeline register is inserted into 

the critical path of the g-function; thereby creating a two 

stage pipeline, then the first stage of the pipeline for the next 

round can be executed while the second stage of the pipeline 

for the current round is executing. The net effect is an 

increase in the clock rate and consequently an increase in 

speed (throughput) of the hash function. This pipeline 

technique was applied in [6]. Figure 5 illustrates the method. 

 
Figure 3.1 Pipelining applied to Blake 

As seen in figure 5, when pipelining is applied, 3 g-function 

computations were accomplished within a time period of t2; 

whereas without pipelining only 2 g-functions were 

accomplished within the same time period. 

 

3.3 Fast adders 

The third technique that has been applied for speed 

optimization in Blake is the use of carry-save and carry-look 

ahead adders in the g-function. These are fast adders. The 

technique was applied in [6]. Carries are a major source of 

delay in additions when ripple adders are used because a 

carry needs to propagate to the last full adder before the sum 

can be considered valid. The additions in the g-function of 

Blake are 32-bit additions; thus if ripple adders are used, then 

the time it takes for a carry to propagate from the full adder 

(FA) at the least significant bit (LSB) position to the full 

adder at the most significant bit position (MSB) can be 

significant. To overcome this source of delay, 2 carry-save 

adders (CSA) are used when three numbers are to be added, 

with a carry -lookahead adder (CLA) performing the final 

stage of the addition. This is shown in figure 6 for a 2 bit 

number. The CSA is a FA connected in such a way that it 

adds corresponding bits of the 3 numbers directly similar to 

the way we add numbers on paper. This saves a significant 

amount of time since the few carries generated are added 

with a CLA. The arrangement can be easily extended to 32 

bits. 

 
Figure 3.2: Fast adders 

 

IV. PROPOSED DESIGN 

The speed optimizations techniques discussed in the previous 

chapter essentially focus on the process of hashing one 

message block. These techniques are effective and aim at 

reducing the time spent in hashing each message block, 

thereby reducing the overall time spent in hashing a message 

which may contain many blocks. For example, if the time 

spent in hashing a message block has been reduced through 

the use of fast adders from 50ns to 45ns and there are 1000 

messages to be hashed, each containing 10 message blocks; 

the minimum time that would be spent in hashing these 

messages would be reduced from 0.5ms to 0.45ms. Thus, the 

speed has been improved. A similar analogy holds for the 

techniques of parallelism and pipelining. However, there is a 

particular situation in which the speed of the hash function 

can be potentially increased further but these techniques 

cannot bring about the improvement. This situation occurs 

when many messages which have some identical message 

blocks are to be hashed. For instance, if message blocks 1 

and 2 out of the 10 message blocks in the messages of our 

previous example are identical but message blocks 3 to 10 

are different, these messages will still give distinct hash 

codes. However, the chain values (intermediate hash values) 

obtained for message blocks 1 and 2 will be the same for all 

the messages. The implication of this, is that in computing 

the digests of the 1000 messages, the hash function will 

perform the same computation 2,000 times (the hash code of 

message block 1 will be computed 1000 times, the same goes 

for message block 2, so in total there will be 2,000 identical 

or repeated computations). If there was a way to bypass these 

repeated computations, this would certainly lead to a 

significant increase in speed; the time taken to compute the 

hash codes would be reduced by an additional 0.1ms. 

 

Our design takes the situation in which messages with 

common blocks are to be hashed into consideration and 

provides a way of bypassing the redundant computations that 

would otherwise have to be made; thus providing high speed 
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operation. The design allows the previously discussed 

techniques of parallelism, pipelining and fast adders to be 

applied to the Blake hash function but in addition it provides 

a method of avoiding redundant computations, thereby 

leading to a further increase in the speed of the hash function. 

The design is self-learning; that is, it builds up its knowledge 

of common message blocks without intervention from the 

user. The design incorporates three major components to 

facilitate these: 

Message preprocessor: This component independently 

identifies common message blocks in the messages that are 

being hashed, determines their initial values, counter values 

and computes their hash codes.  

 

Memory: A memory device is used to store the hash code of 

any common message block that has been identified by the 

message preprocessor.  

 

Decoder: This component is used to determine if an inputted 

message block is a common message block. If the inputted 

message block is a common message block, the decoder 

outputs the address of the memory location containing the 

hash code of the common message block. In addition, it also 

outputs a signal which indicates to the hash function unit that 

the hash code of the inputted message blocks is already 

available in memory and consequently, there is no need to 

compute it.  

 

In the following sections we shall discuss each of these 

components and how they interconnect to achieve the desired 

operation. 

 

4.1 Objective of Proposed Work 
Hash functions, as previously established, are very useful in 

information security schemes. Apart from the above 

mentioned applications (digital signatures, digital image 

watermarking and so on), hash functions are also utilized in 

generating pseudo random numbers which are in turn utilized 

in many cryptographic schemes. In most of these 

applications, particularly digital signatures, digital image 

watermarking and Message Authentication Codes, it is 

desirable to have the hash function operate as fast as possible 

especially when a huge traffic or load of messages are 

expected to be operated on. Consequently, a lot of research 

effort has been expended in the area of high speed 

implementation of standardized or widely used hash 

functions. This is in line with the objective of making the 

hash function run faster and increase overall performance 

when it is utilized along with other primitives in information 

security schemes. The goal of this thesis is to explore the 

Implementation of Cryptographic Hash Function through 

Integrated Simulation work. 
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