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Abstract: In this paper, hardware implemented a entropy 

encoder using Rice PSI 1,k encoding scheme. The design 

can calculate the value of k in real time and then selects the 

number of pass through bits. The adder used in this design 

is serial adder, this reduces the resource usage and also 

reduces the power consumption of the design. The target 

device to implement the design is Virtex 5 FPGA. Xilinx 

XST is used to synthesize the design and it is coded in 

VHDL.        
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I. INTRODUCTION 

Although field programmable gate arrays (FPGA) were 

introduced a decade ago, they have only recently become 

more popular. This is not only due to the fact that 

programmable logic saves development cost and time over 

increasingly complex ASIC designs, but also because the 

gates count per FPGA chip has reached numbers that allow 

for the implementation of more complex applications. Many 

present day applications utilize a processor and other logic on 

two or more separate chips. However, with the anticipated 

ability to build chips with over ten million transistors, it will 

become possible to implement a processor within a sea of 

programmable logic, all on one chip. Such a design approach 

would allow a great degree of programmability freedom, both 

in hardware and in software: CAD tools could decide which 

parts of a source code program are actually to be executed in 

software and which other parts are to be implemented with 

hardware.  

 

The hardware may be needed for application interfacing 

reasons or may simply represent a coprocessor used to 

improve execution time. Most computationally complex 

applications spend 90% of their execution time in only 10% 

of their code [1 thesis4]. The basic instructions executed in 

this 10% of the code of a given program naturally differ from 

application to application. These observations make the idea 

of a fast, yet general purpose CPU seems inconsistent. The 

custom compute machine (CCM), which can be customized 

on a per application basis, appears to be the solution to the 

contradiction of general purpose computing and high 

performance processing. 

 

II. COUNTER CODE ALGORITHM 

FPGAs have evolved significantly over recent years. From 

simple, regular arrangements of configurable logic blocks 

and routing, modern devices now boast increased complexity, 

in terms of both size, and the variety and capability of 

primitives offered. Much of this improvement has inevitably 

been driven by market segments where FPGAs are  

 

particularly popular, such as communications and signal 

processing. This is due to the ease with which such 

algorithms can be parallelized on FPGAs and the availability 

of high-level programming techniques that simplify the 

design process. Hence, it is not surprising to find that FPGAs 

have evolved to better suit such applications. The Virtex II 

brought with it embedded multipliers.  

 

A large number of signal processing algorithms make use of 

multiplications. By embedding hard multipliers into the 

silicon, it becomes possible to optimize them for 

performance while saving the remaining resources for other 

uses. These later evolved into DSP Blocks: multiply-

accumulation units that support the full requirements of a 

DSP filter tap. Recently, FPGAs have moved beyond 

implementation of accelerators for complex algorithms, now 

housing full systems.  

 

Processors are useful when dealing with non-streaming data, 

in systems with multiple heterogeneous hardware tasks, and 

for managing complex interfacing. Vendors did previously 

introduce devices with embedded hard processors such as the 

PowerPC 405 in the Virtex II Pro, and the PowerPC 440 in 

the Virtex 4 FX. While these high-end FPGA devices did 

find an audience, they were out of the budget of many, and 

so, “soft" processors, implemented using logic resources, 

have continued to dominate. In this research, we connect 

these two threads. DSP Blocks are indeed highly capable 

primitives, yet leveraging them outside the DSP domain is 

extremely difficult, as they were primarily designed to suit 

such applications. This research investigates the feasibility of 

building custom soft-core processors that can allow DSP 

Blocks to be leveraged beyond their typical target 

applications, and in a manner accessible to those with 

minimal FPGA architecture knowledge.  

 

The Xilinx DSP48E1 cores included in the most recent 

Xilinx devices are highly customizable. We aim to build a 

lean processor around the DSP48E1, with as little extra logic 

as possible that supports a full set of standard machine 

instructions. The prospects are even more exciting when one 

considers that modern FPGAs have very many of these 

blocks; a large Virtex-6 device contains hundreds of such 

DSP Slices. Hence, such processors could be used to build 

massively parallel many-core systems. In this research, we 

investigate the design of a lean single processor based on the 

DSP48E1 primitive. 
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III. INSTRUCTION SET 

Table 1 shows the instruction supported along with the 

hardware used and latency to execute the instruction, the 

average latency of all the instructions is approximately 4 

Table 1: Instruction Set 

S.No Instruction Operation Latency Hardware Used 

1 MVI 
MVI RmH,#16 Bit data 

MVI RmL,#16 Bit data 
1 Register array 

2 MOV MOV Rd, Rs 3 Register array 

3 ADD 
ADD Rm, Rn, Rd 

Rd <= Rm + Rn 
3 

Register array, 

ALU 

4 SUB 
SUB Rm, Rn, Rd 

Rd <= Rm - Rn 
3 

Register array, 

ALU 

5 AND 
AND Rm, Rn, Rd 

Rd <= Rm AND Rn 
3 

Register array, 

ALU 

6 OR 
OR Rm, Rn, Rd 

Rd <= Rm OR Rn 
3 

Register array, 

ALU 

7 XOR 
XOR Rm, Rn, Rd 

Rd <= Rm XOR Rn 
3 

Register array, 

ALU 

8 XNOR 
XNOR Rm, Rn, Rd 

Rd <= Rm XNOR Rn 
3 

Register array, 

ALU 

9 NOR 
NOR Rm, Rn, Rd 

Rd <= Rm NOR Rn 
3 

Register array, 

ALU 

10 NAND 
NAND Rm, Rn, Rd 

Rd <= Rm NAND Rn 
3 

Register array, 

ALU 

11 MUL 
MUL Rm, Rn, Rd 

Rd <= Rm MUL Rn 
3 

Register array, 

ALU 

12 
COMPAEQ

B 

COMPAEQB Rm, Rn, 

#9_bit_Offset 

If Rm = Rn then jump to 9 bit 

offser 

3 
Register array, 

Comparator 

13 COMPAGB 
COMPAGB Rm, Rn, 

#9_bit_Offset 

If Rm > Rn then jump to 9 bit 

offser 

3 
Register array, 

Comparator 

14 
COMPAGE

QB 

COMPAGEQB Rm, Rn, 

#9_bit_Offset 

If Rm > =  Rn then jump to 9 bit 

offser 

3 
Register array, 

Comparator 

15 COMPALB 
COMPALB Rm, Rn, 

#9_bit_Offset 

If Rm <  Rn then jump to 9 bit 

offser 

3 
Register array, 

Comparator 

16 
COMPALE

QB 

COMPALEQB Rm, Rn, 

#9_bit_Offset 

If Rm < =  Rn then jump to 9 bit 

offser 

3 
Register array, 

Comparator 

17 
COMPANE

QB 

COMPANEQB Rm, Rn, 

#9_bit_Offset 

If Rm !=  Rn then jump to 9 bit 

offser 

3 
Register array, 

Comparator 

18 LSL 
LSL Rd, Rs 

Left shift logical Rs and then 

store to Rd 

2 
Register array, 

Shifter 

19 RSL 
RSL Rd, Rs 

Right shift logical Rs and then 

store to Rd 

2 
Register array, 

Shifter 

20 RSA 
RSA Rd, Rs 

Right shift arithmetic Rs and 

then store to Rd 

2 
Register array, 

Shifter 

21 RL 
RL Rd, Rs 

Rotate Left Rs and then store to 

Rd 

2 
Register array, 

Shifter 

22 RR 
RR Rd, Rs 

Rotate Right Rs and then store 

to Rd 

2 
Register array, 

Shifter 

23 MULADD 
MULADD Rm,Rn,Ro,Rp 

Ro <= (Rm * Rm) + Rp 
5 

Register array, 

ALU 

24 MULSUB 
MULSUB Rm,Rn,Ro,Rp 

Ro <= (Rm * Rm) - Rp 
5 

Register array, 

ALU 

25 MULACC 
MULACC Rm,Rn,Ro,Rp 

Ro <= (Rm * Rm) – 

#immediate 

4 
Register array, 

ALU 

including the instruction fetch cycle. The instruction set 

covers instruction for data transfer, arithmetic, logical, 

shifting, conditional branching and BCD operations. 

 

IV. PROPOSED 32 BIT RISC PROCESSOR 

In this work hardware implementation Soft Processor is 

presented. The data operand size of designs available is only 

16 bit. This section shows the hardware implementation of 32 

bit RISC processor. Figure 1 shows the high level block 

diagram of processor, there are six major units namely: 

register set, program memory, ALU, comparator, shifter and 

timing and control unit. 

 
Figure 1: High Level block diagram of 32 bit RISC processor 

 

A. Program Memory 

The program memory is used to store the program or code. 

The program or the code memory in this processor is 512 

bytes, this is implemented using block RAM (BRAM). The 

size of the code memory can be extended easily by changing 

the size of the BRAM and making minor changes in coding. 

CLK is used to provide clock signal, WE is used to read and 

write data, a is the 9 bit address input, Data_in is the 32 bit 

data input to write programs, SPO is the data out port to read 

programs from this memory. 

 
B. Register Set 

In this design we have used 32 internal registers, the data 

word width is 32 bit and the depth is also 32. CLK is used to 

provide clock signal, Reg_WE is used to read and write data 

from registers, Reg_a is the 9 bit address input to select 

register from R0 to R31, only 5 bits are in use, Reg_Data_in 

is the 32 bit data input to write data on selected register, 

Reg_SPO is the data out port to read data from selected 

register. 

 
C. Arithmetic and Logic Unit 

The arithmetic and logic unit is the core of the processor, it 

performs the eight arithmetic and logic operations as listed in 

table 2. Addition, subtraction, multiplication operations are 

performed using inbuilt Xilinx DSP blocks. The block 

diagram of ALU is shown in figure 4, the input to the ALU 

unit is 32 bit input ALU_A and ALU_B, the operation to be 

commenced is selected via ALU_SEL, the output is obtained 

from ALU_OUT. 
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Table 2: ALU Operations 

S.No ALU_SEL [4:0] Operation 

1 00000 Addition 

2 00001 Subtraction 

3 00010 Logical AND 

4 00011 OR 

5 00100 XOR 

6 00101 XNOR 

7 00110 NOR 

8 00111 NAND 

9 01000 MUL 

D. Comparator 

The comparator unit is used to perform the 6 comparison 

operations mentioned in table 3. Whenever any condition is 

matched then the comparison flag COMP_FLAG is set else it 

is reset. Xilinx inbuilt comparator is used to perform the task. 

Table 3: Comparator Operation 

S.No COMP_SEL Operation 

1 000 A = B 

2 001 A > B 

3 010 A > = B 

4 011 A < B 

5 100 A < = B 

6 101 A / = B 

 

 

E. Shifter 

The shifter block performs five operations namely: left shift 

logical, right shift logical, right shift arithmetic, rotate left 

and rotate right. Flip flops are used to implement this unit. 

The shifter unit is used to perform the shifting operations 

listed in table 4. 

Table 4: Shifter Operation 

S.No SHIFTER_SEL Operation 

1 000 LSL: Left Shift Logical 

2 001 RSL: Right Shift Logical 

3 010 RSA: Right Shift Arithmetic 

4 011 RL: Rotate Left 

5 100 RR: Rotate Right 

F. Timing & Control Unit 

The timing and control unit controls all the units discussed so 

far. This unit generates all the internal control signal to 

control all units. This block is a designed with a state 

machine, this state machine, which works on the instruction 

to be executed. The block diagram of timing and control unit 

is shown in figure 6. 

 
 

V. SYNTHESIS 

This section discusses the analysis of proposed processor on 

the basis of resource usage and maximum operating 

frequency. Table 5 shows the comparison of proposed 

processor with the two other designs available in literature. 

As depicted in table 5.1 the number of instructions supported 

by design in [1] is only 20 and in [2] is 22, the proposed 

processor supports 25 instructions. So the resource used by 

our design is slightly greater than [1] and [2]. The maximum 

operating frequency of proposed processor is lower than [1] 

but greater than [2], hence proposed design works faster than 

[2] design. The prime focus of this work is to reduce the 

latency without changing the delay. The average latency of 

proposed design is 4 clock cycles including the instruction 

fetch cycle. The latency of [1] is six clock cycles and that of 

[2] is 9 clock cycles. So the time to execute one instruction 

by design [1] is 12.72ns, design [2] takes 22.05ns and 

proposed design takes only 9.496ns, figure 5.12 shows the 

bar graph of time to execute one instruction. 
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Table 5: Synthesis Summary 

S.no Parameter Processor[1] Processor[2] Proposed 

1 Slice Registers 238 404 398 

2 Slice LUTs 190 335 557 

3 BRAM 1 2 1 

4 DSPs 1 1 1 

5 Max Operating Freq. 470Mhz 407Mhz 421Mhz 

6 Delay (ns) 2.12ns 2.45ns 2.374ns 

7 Latency 6 9 4 

8 
Time Taken to 

execute 
12.72ns 22.05ns 9.496ns 

9 
Numbers of 

instructions 

supported 

20 22 25 

 

VI. CONCLUSION 

In this work a 32 bit RISC soft processor is developed. The 

proposed processor architecture supports 25 instructions 

which includes instruction to transfer data like MVI, MOV, 

arithmetic instructions like ADD, SUB and MUL, Logical 

instructions like AND, OR etc., Rotate and Shift instructions 

like RR, LSL etc, conditional branching instructions like 

COMPAGB, COMPALB etc. The proposed soft processor 

design is targeted for FPGA which uses the inbuilt DSP 

blocks to implement various functions. The inbuilt DSP 

block has adder, subtractor and multiplier blocks. The 

designs available in literature supports less instructions and 

has high latency, the prime focus of this work is to reduce 

latency of the instructions without changing the delay, the 

proposed design has almost the same delay (slightly higher) 

as compared to other designs available in literature. The 

latency of proposed design is 4 clock cycles as compared to 6 

clock cycles of design [1] and 9 clock cycles of design [2], 

the total time to execute one instruction at maximum 

operating frequency is 12.72ns for design [1], 22.05 for 

design [2] and 9.49ns for proposed design. The percentage 

change to execute one instruction is 25% as compared to 

design [1] and 56% as compared to design [2]. 
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