
International Journal For Technological Research In Engineering

Volume 4, Issue 7, March-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 973

IMPLEMENTATION OF 32 BIT RISC PROCESSOR ON FPGA

Payal Sakre
1
, Nitesh Dodkey

2
, Siddarth Singh Parihar

3

1
M.Tech Scholar,

2
HOD ECE,

3
Assistant Professor

Department of Electronics & Communication Engineering, Surabhi Group of Institutions, Bhopal (M.P)

Abstract: In this paper, hardware implemented a entropy

encoder using Rice PSI 1,k encoding scheme. The design

can calculate the value of k in real time and then selects the

number of pass through bits. The adder used in this design

is serial adder, this reduces the resource usage and also

reduces the power consumption of the design. The target

device to implement the design is Virtex 5 FPGA. Xilinx

XST is used to synthesize the design and it is coded in

VHDL.

Keywords: Rice algorithm, PSI1,k, Entropy Encoding,

FPGA

I. INTRODUCTION

Although field programmable gate arrays (FPGA) were

introduced a decade ago, they have only recently become

more popular. This is not only due to the fact that

programmable logic saves development cost and time over

increasingly complex ASIC designs, but also because the

gates count per FPGA chip has reached numbers that allow

for the implementation of more complex applications. Many

present day applications utilize a processor and other logic on

two or more separate chips. However, with the anticipated

ability to build chips with over ten million transistors, it will

become possible to implement a processor within a sea of

programmable logic, all on one chip. Such a design approach

would allow a great degree of programmability freedom, both

in hardware and in software: CAD tools could decide which

parts of a source code program are actually to be executed in

software and which other parts are to be implemented with

hardware.

The hardware may be needed for application interfacing

reasons or may simply represent a coprocessor used to

improve execution time. Most computationally complex

applications spend 90% of their execution time in only 10%

of their code [1 thesis4]. The basic instructions executed in

this 10% of the code of a given program naturally differ from

application to application. These observations make the idea

of a fast, yet general purpose CPU seems inconsistent. The

custom compute machine (CCM), which can be customized

on a per application basis, appears to be the solution to the

contradiction of general purpose computing and high

performance processing.

II. COUNTER CODE ALGORITHM

FPGAs have evolved significantly over recent years. From

simple, regular arrangements of configurable logic blocks

and routing, modern devices now boast increased complexity,

in terms of both size, and the variety and capability of

primitives offered. Much of this improvement has inevitably

been driven by market segments where FPGAs are

particularly popular, such as communications and signal

processing. This is due to the ease with which such

algorithms can be parallelized on FPGAs and the availability

of high-level programming techniques that simplify the

design process. Hence, it is not surprising to find that FPGAs

have evolved to better suit such applications. The Virtex II

brought with it embedded multipliers.

A large number of signal processing algorithms make use of

multiplications. By embedding hard multipliers into the

silicon, it becomes possible to optimize them for

performance while saving the remaining resources for other

uses. These later evolved into DSP Blocks: multiply-

accumulation units that support the full requirements of a

DSP filter tap. Recently, FPGAs have moved beyond

implementation of accelerators for complex algorithms, now

housing full systems.

Processors are useful when dealing with non-streaming data,

in systems with multiple heterogeneous hardware tasks, and

for managing complex interfacing. Vendors did previously

introduce devices with embedded hard processors such as the

PowerPC 405 in the Virtex II Pro, and the PowerPC 440 in

the Virtex 4 FX. While these high-end FPGA devices did

find an audience, they were out of the budget of many, and

so, “soft" processors, implemented using logic resources,

have continued to dominate. In this research, we connect

these two threads. DSP Blocks are indeed highly capable

primitives, yet leveraging them outside the DSP domain is

extremely difficult, as they were primarily designed to suit

such applications. This research investigates the feasibility of

building custom soft-core processors that can allow DSP

Blocks to be leveraged beyond their typical target

applications, and in a manner accessible to those with

minimal FPGA architecture knowledge.

The Xilinx DSP48E1 cores included in the most recent

Xilinx devices are highly customizable. We aim to build a

lean processor around the DSP48E1, with as little extra logic

as possible that supports a full set of standard machine

instructions. The prospects are even more exciting when one

considers that modern FPGAs have very many of these

blocks; a large Virtex-6 device contains hundreds of such

DSP Slices. Hence, such processors could be used to build

massively parallel many-core systems. In this research, we

investigate the design of a lean single processor based on the

DSP48E1 primitive.

International Journal For Technological Research In Engineering

Volume 4, Issue 7, March-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 974

III. INSTRUCTION SET

Table 1 shows the instruction supported along with the

hardware used and latency to execute the instruction, the

average latency of all the instructions is approximately 4

Table 1: Instruction Set

S.No Instruction Operation Latency Hardware Used

1 MVI
MVI RmH,#16 Bit data

MVI RmL,#16 Bit data
1 Register array

2 MOV MOV Rd, Rs 3 Register array

3 ADD
ADD Rm, Rn, Rd

Rd <= Rm + Rn
3

Register array,

ALU

4 SUB
SUB Rm, Rn, Rd

Rd <= Rm - Rn
3

Register array,

ALU

5 AND
AND Rm, Rn, Rd

Rd <= Rm AND Rn
3

Register array,

ALU

6 OR
OR Rm, Rn, Rd

Rd <= Rm OR Rn
3

Register array,

ALU

7 XOR
XOR Rm, Rn, Rd

Rd <= Rm XOR Rn
3

Register array,

ALU

8 XNOR
XNOR Rm, Rn, Rd

Rd <= Rm XNOR Rn
3

Register array,

ALU

9 NOR
NOR Rm, Rn, Rd

Rd <= Rm NOR Rn
3

Register array,

ALU

10 NAND
NAND Rm, Rn, Rd

Rd <= Rm NAND Rn
3

Register array,

ALU

11 MUL
MUL Rm, Rn, Rd

Rd <= Rm MUL Rn
3

Register array,

ALU

12
COMPAEQ

B

COMPAEQB Rm, Rn,

#9_bit_Offset

If Rm = Rn then jump to 9 bit

offser

3
Register array,

Comparator

13 COMPAGB
COMPAGB Rm, Rn,

#9_bit_Offset

If Rm > Rn then jump to 9 bit

offser

3
Register array,

Comparator

14
COMPAGE

QB

COMPAGEQB Rm, Rn,

#9_bit_Offset

If Rm > = Rn then jump to 9 bit

offser

3
Register array,

Comparator

15 COMPALB
COMPALB Rm, Rn,

#9_bit_Offset

If Rm < Rn then jump to 9 bit

offser

3
Register array,

Comparator

16
COMPALE

QB

COMPALEQB Rm, Rn,

#9_bit_Offset

If Rm < = Rn then jump to 9 bit

offser

3
Register array,

Comparator

17
COMPANE

QB

COMPANEQB Rm, Rn,

#9_bit_Offset

If Rm != Rn then jump to 9 bit

offser

3
Register array,

Comparator

18 LSL
LSL Rd, Rs

Left shift logical Rs and then

store to Rd

2
Register array,

Shifter

19 RSL
RSL Rd, Rs

Right shift logical Rs and then

store to Rd

2
Register array,

Shifter

20 RSA
RSA Rd, Rs

Right shift arithmetic Rs and

then store to Rd

2
Register array,

Shifter

21 RL
RL Rd, Rs

Rotate Left Rs and then store to

Rd

2
Register array,

Shifter

22 RR
RR Rd, Rs

Rotate Right Rs and then store

to Rd

2
Register array,

Shifter

23 MULADD
MULADD Rm,Rn,Ro,Rp

Ro <= (Rm * Rm) + Rp
5

Register array,

ALU

24 MULSUB
MULSUB Rm,Rn,Ro,Rp

Ro <= (Rm * Rm) - Rp
5

Register array,

ALU

25 MULACC
MULACC Rm,Rn,Ro,Rp

Ro <= (Rm * Rm) –

#immediate

4
Register array,

ALU

including the instruction fetch cycle. The instruction set

covers instruction for data transfer, arithmetic, logical,

shifting, conditional branching and BCD operations.

IV. PROPOSED 32 BIT RISC PROCESSOR

In this work hardware implementation Soft Processor is

presented. The data operand size of designs available is only

16 bit. This section shows the hardware implementation of 32

bit RISC processor. Figure 1 shows the high level block

diagram of processor, there are six major units namely:

register set, program memory, ALU, comparator, shifter and

timing and control unit.

Figure 1: High Level block diagram of 32 bit RISC processor

A. Program Memory

The program memory is used to store the program or code.

The program or the code memory in this processor is 512

bytes, this is implemented using block RAM (BRAM). The

size of the code memory can be extended easily by changing

the size of the BRAM and making minor changes in coding.

CLK is used to provide clock signal, WE is used to read and

write data, a is the 9 bit address input, Data_in is the 32 bit

data input to write programs, SPO is the data out port to read

programs from this memory.

B. Register Set

In this design we have used 32 internal registers, the data

word width is 32 bit and the depth is also 32. CLK is used to

provide clock signal, Reg_WE is used to read and write data

from registers, Reg_a is the 9 bit address input to select

register from R0 to R31, only 5 bits are in use, Reg_Data_in

is the 32 bit data input to write data on selected register,

Reg_SPO is the data out port to read data from selected

register.

C. Arithmetic and Logic Unit

The arithmetic and logic unit is the core of the processor, it

performs the eight arithmetic and logic operations as listed in

table 2. Addition, subtraction, multiplication operations are

performed using inbuilt Xilinx DSP blocks. The block

diagram of ALU is shown in figure 4, the input to the ALU

unit is 32 bit input ALU_A and ALU_B, the operation to be

commenced is selected via ALU_SEL, the output is obtained

from ALU_OUT.

International Journal For Technological Research In Engineering

Volume 4, Issue 7, March-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 975

Table 2: ALU Operations

S.No ALU_SEL [4:0] Operation

1 00000 Addition

2 00001 Subtraction

3 00010 Logical AND

4 00011 OR

5 00100 XOR

6 00101 XNOR

7 00110 NOR

8 00111 NAND

9 01000 MUL

D. Comparator

The comparator unit is used to perform the 6 comparison

operations mentioned in table 3. Whenever any condition is

matched then the comparison flag COMP_FLAG is set else it

is reset. Xilinx inbuilt comparator is used to perform the task.

Table 3: Comparator Operation

S.No COMP_SEL Operation

1 000 A = B

2 001 A > B

3 010 A > = B

4 011 A < B

5 100 A < = B

6 101 A / = B

E. Shifter

The shifter block performs five operations namely: left shift

logical, right shift logical, right shift arithmetic, rotate left

and rotate right. Flip flops are used to implement this unit.

The shifter unit is used to perform the shifting operations

listed in table 4.

Table 4: Shifter Operation

S.No SHIFTER_SEL Operation

1 000 LSL: Left Shift Logical

2 001 RSL: Right Shift Logical

3 010 RSA: Right Shift Arithmetic

4 011 RL: Rotate Left

5 100 RR: Rotate Right

F. Timing & Control Unit

The timing and control unit controls all the units discussed so

far. This unit generates all the internal control signal to

control all units. This block is a designed with a state

machine, this state machine, which works on the instruction

to be executed. The block diagram of timing and control unit

is shown in figure 6.

V. SYNTHESIS

This section discusses the analysis of proposed processor on

the basis of resource usage and maximum operating

frequency. Table 5 shows the comparison of proposed

processor with the two other designs available in literature.

As depicted in table 5.1 the number of instructions supported

by design in [1] is only 20 and in [2] is 22, the proposed

processor supports 25 instructions. So the resource used by

our design is slightly greater than [1] and [2]. The maximum

operating frequency of proposed processor is lower than [1]

but greater than [2], hence proposed design works faster than

[2] design. The prime focus of this work is to reduce the

latency without changing the delay. The average latency of

proposed design is 4 clock cycles including the instruction

fetch cycle. The latency of [1] is six clock cycles and that of

[2] is 9 clock cycles. So the time to execute one instruction

by design [1] is 12.72ns, design [2] takes 22.05ns and

proposed design takes only 9.496ns, figure 5.12 shows the

bar graph of time to execute one instruction.

International Journal For Technological Research In Engineering

Volume 4, Issue 7, March-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 976

Table 5: Synthesis Summary

S.no Parameter Processor[1] Processor[2] Proposed

1 Slice Registers 238 404 398

2 Slice LUTs 190 335 557

3 BRAM 1 2 1

4 DSPs 1 1 1

5 Max Operating Freq. 470Mhz 407Mhz 421Mhz

6 Delay (ns) 2.12ns 2.45ns 2.374ns

7 Latency 6 9 4

8
Time Taken to

execute
12.72ns 22.05ns 9.496ns

9
Numbers of

instructions

supported

20 22 25

VI. CONCLUSION

In this work a 32 bit RISC soft processor is developed. The

proposed processor architecture supports 25 instructions

which includes instruction to transfer data like MVI, MOV,

arithmetic instructions like ADD, SUB and MUL, Logical

instructions like AND, OR etc., Rotate and Shift instructions

like RR, LSL etc, conditional branching instructions like

COMPAGB, COMPALB etc. The proposed soft processor

design is targeted for FPGA which uses the inbuilt DSP

blocks to implement various functions. The inbuilt DSP

block has adder, subtractor and multiplier blocks. The

designs available in literature supports less instructions and

has high latency, the prime focus of this work is to reduce

latency of the instructions without changing the delay, the

proposed design has almost the same delay (slightly higher)

as compared to other designs available in literature. The

latency of proposed design is 4 clock cycles as compared to 6

clock cycles of design [1] and 9 clock cycles of design [2],

the total time to execute one instruction at maximum

operating frequency is 12.72ns for design [1], 22.05 for

design [2] and 9.49ns for proposed design. The percentage

change to execute one instruction is 25% as compared to

design [1] and 56% as compared to design [2].

REFERENCES

[1] Cheah, Hui Yan, et al. "A lean FPGA soft processor

built using a DSP block." Proceedings of the

ACM/SIGDA international symposium on Field

Programmable Gate Arrays. ACM, 2015

[2] Cheah, Hui Yan, Suhaib A. Fahmy, and Douglas L.

Maskell. "iDEA: A DSP block based FPGA soft

processor." Field-Programmable Technology (FPT),

2012 International Conference on. IEEE, 2014.

[3] Cheah, Hui Yan, et al. "The iDEA DSP block-based

soft processor for FPGAs." ACM Transactions on

Reconfigurable Technology and Systems

(TRETS) 7.3 (2014): 19.

[4] Fort, Blair, et al. "A multithreaded soft processor for

SoPC area reduction." 2006 14th Annual IEEE

Symposium on Field-Programmable Custom

Computing Machines. IEEE, 2006.

[5] S. Chalamalasetti, S. Purohit, M. Margala, and W.

Vanderbauwhede. MORA - an architecture and

programming model for a resource ecient coarse

graine recongurable processor. In NASA/ESA

Conf. on Adaptive Hardware and Systems (AHS),

pages 389{396, 2009.

[6] X. Chu and J. McAllister. FPGA based soft-core

SIMD processing: A MIMO-OFDM xed-

complexity sphere decoder case study. In Proc. Int.

Conf. on Field Programmable Technology (FPT),

pages 479{484, 2010.

[7] X. Chu, J. McAllister, and R. Woods. A pipeline

interleaved heterogeneous SIMD soft processor

array architecture for MIMO-OFDM detection. In

Proc. Int. Symp. on Applied Recongurable

Computing (ARC), pages 133{144, 2011.

[8] M. Milford and J. McAllister. An ultra-ne processor

for FPGA DSP chip multiprocessors. In Asilomar

Conf. on Signals, Systems and Computers, pages

226 {230, 2009.

[9] Xilinx Inc. Virtex-6 FPGA DSP48E1 User Guide,

2011.

[10] P. Yiannacouras, J. Stean, and J. Rose. Application-

specic customization of soft processor

icroarchitecture. In Proc. ACM/SIGDA Int. Symp. n

Field Programmable Gate Arrays (FPGA), pages

201{210, Feb. 2006.

