
International Journal For Technological Research In Engineering

Volume 4, Issue 7, March-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 977

HARDWARE IMPLEMENTATION OF ENTROPY ENCODER USING

Ψ1,K ENCODING SCHEME ON RECONFIGURABLE LOGIC

Priyanka Pawar
1
, Nitesh Dodkey

2
, Siddharth Singh Parihar

3

1
M.Tech Scholar,

2
HOD ECE,

3
Assistant Professor

Department of Electronics and Communication Engineering, Surabhi Group of Institutions, Bhopal (M.P.) India

Abstract: In this paper, hardware implemented a entropy

encoder using Rice PSI 1,k encoding scheme. The design

can calculate the value of k in real time and then selects the

number of pass through bits. The adder used in this design

is serial adder, this reduces the resource usage and also

reduces the power consumption of the design. The target

device to implement the design is Virtex 5 FPGA

(XC5VLX20T-2FF232). Xilinx XST is used to synthesize

the design and it is coded in VHDL. The synthesis report

shows that 2% of slice registers, 5% of Slice LUTs and 8%

of slices were occupied by this design, this suggests area

requirement.

Keywords: Rice algorithm, PSI1,k, Entropy Encoding,

FPGA

I. INTRODUCTION

Real-time lossless compression hardware will be a part of

next generation computing chips (very large scale integrated

circuits, VLSI) to sustain higher data rates over on-board

limited channel and storage capacities. They include

processor, network, and storage chips. With a reduced

number of bits, limited capacity of transmission channels or

storage can be used effectively. Such a reduction has a direct

impact on complexity reductions, cost reductions, as well as

overall system reliability improvements [1]. Image

communication and storage are examples of applications that

benefit from image compression, because the compression

results in (i) faster (real–time) image transmission through

band limited channels and (ii) lower requirements for storage

space. Non compressed images require many data bits,

making it impossible for real–time transmission through band

limited channels—such as 48 kbit per second (kpbs) and 112

kbps integrated services digital network (ISDN), as well as

9.6 kbps voice–grade telephone or radio channels [1]. For

example, transmitting a 256×256 pixels grayscale still–image

over the voice–grade line would require at least 54.61 s.

Furthermore, one HDTV format needs 60 frames of

1280×720 pixels per second. Using 24 bpp colour pixels, this

HDTV format would require an impractical channel capacity

of 1,440 Mbps. For example, space explorations by National

Aeronautics and Space Administration (NASA) missions

generate huge science data, requiring real-time compression

[2]. Consequently, international bodies such as Committee

for Space Data Systems (CCDS) have defined compression

standards for real-time systems [3].

II. COUNTER CODE ALGORITHM

To design the architecture, we must first understand the

counter code algorithm and then use it as a design

requirement. A basic counter coder called Ψ1 (or sometimes

also called PSI–1) works as follows [2]:

Given a block of data samples (for j = 1, ..., J), coder Ψ1

assumes that each sample takes a symbol si , for i = 1, ...,

256, as shown in Table 1. Coder Ψ1 treats each sample

symbol Si having sample data di as a non-negative integer

number xi . The average length of sample data is R = 8 bits

per sample.

For every sample in the block (having a symbol si , thus

having sample data di), a Ψ1 encoder converts di into a

codeword wi of a length li = Xi + 1, consisting of xi

consecutive zero bits ‗0‘ followed by a closing one bit ‗1‘

(see again Table 1). For example, if a sample happens to be

di = 0000 0011, it must have xi = 3, and the Ψ1 then encodes

it using 4 bits, i.e., 3 zeros followed by a one. Hence, the

encoding algorithm (converting di into wi) is simply down

counting, which is summarized in Table 1.

The reconstruction is obviously simple counting too. Given a

codeword wi , a Ψ1 decoder just counts the number of zero

bits until a one appears. The counting result is the sample

value xi . Using Table 1, it determines that the codeword

belongs to a symbol si , hence it produces the sample data di

as its output.

We then propose to use the counter coder as an alternative

and more computationally efficient entropy coder. One basic

counter coder called Ψ1 (or PSI–1) works as follows [2].

Given a block of data samples (for j = 1, ..., J), Ψ1 replaces

every sample in the block with a number of consecutive zero

bits ‗0‘ followed by a closing one bit ‗1‘ (see Table 1). For

example, if a sample happens to have a value of 55, the Ψ1

encodes it using 56 bits, i.e., 55 zeros followed by a one.

Hence, the encoding algorithm is simple. The reconstruction

is obviously simple too. A Ψ1 decoder just counts the number

of zero bits until a one appears. The counting result is the

sample value.

Define now a function i(j) such that a particular data block

consists of symbols {Si(1), Si(2), …….., Si(j)}. The total number

of bits required to encode a data block is (for index j and

block size J)

 L = J+ 𝑋𝑖(𝑗)
𝑗
𝑗=1 ………………………………….(1)

Notice that this code basically allocates more codeword bits

to data samples with higher sample values, i.e. Xi ≥ Xj


 li ≥

lj. This means Ψ1 code is optimal if the statistical distribution

of data samples is monotonically decreasing, i.e., Xi ≥ Xj


P(Si) ≥ P(Sj). The average codeword length of Ψ1 code is:

International Journal For Technological Research In Engineering

Volume 4, Issue 7, March-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 978

𝑅 = (𝑃(𝑠𝑖)𝑖
𝑞
𝑖=1 ……………………………….(2)

It has been studied elsewhere [3] that this code is optimal for

a (monotonically decreasing distribution) source with a first-

order entropy around 1, i.e., 1.5 < H < 2.5 . It should be clear

that in a monotonically decreasing distribution, the

probability of a sample has a large value is low. As a result,

the probability of long codeword length Eq. (11) is low. Thus

it is optimal. We say that range is the natural entropy range of

Ψ1. For sources with entropies outside that range, there are

several variations of Ψ1.

For example, if H > 2.5, it is safe to assume that the LSBs of

sample data di(j) are completely random. In this case there is

no need to perform any compression on those LSBs. We can

then split di(j) into two portions: k LSBs and (8-k) MSBs.

The MSBs are coded using Ψ1 code before being sent to

bitstream, while the LSBs are sent uncoded. A decoder first

recovers the MSBs using Ψ1 decoder, and then concatenates

the results with the uncoded LSBs, resulting in the desired

di(j). It can be shown that this approach has a natural entropy

range 1.5 + k < H < 2.5 + k . This code is called Ψ1,k.

Table 1: Code Word of input data

i Symbol

Si

Sample

Xi

Sample

Data di

Codewo

rd Wi

Length

Li

1 S1 0 0000 0000 1 1

2 S2 1 0000 0001 01 2

3 S3 2 0000 0010 001 3

4 S4 3 0000 0011 0001 4

.. … … … … …

25

6

S256 255 1111 1111 0000…

01

256

For 0.75 < H < 1.5 range, we can first use the Ψ1, resulting in

a bitstream with many ‗1‘ bits. To exploit this, we can

cascade it using another simple code. The simple code first

complements the results of Ψ1 (i.e., converting ‗0‘ into ‗1‘

and vice versa), and group the resulting bit into binary 3-

tuples. It finally codes each binary 3-tuples in a way that a

tuple with many ‗0‘ bits will use short codewords. This code

is called Ψ0.

For sources with entropy H < 0.75 , we can cascade the coder

with another coder, such as ZRL coder described above. A

ZRL encoder processes samples, and provides its outputs to a

counter coder. In effect the ZRL coder brings the data

entropy into counter code natural range.

Figure 1 shows the flow chart of PSI-1,k encoder.

III. HARDWARE IMPLEMENTATION

A. Data Path Structure

It has been studied elsewhere that the PSI- 1 code discussed

in chapter 1 is optimal for monotonically decreasing

distribution source with first order entropies outside this,

Rice introduced a concept of word splitting. If H > 2.5, it is

safe to assume that the LSBs of the sample data di(j) are

completely random. In this case there is no need to perform

compression on those LSBs. An encoder can split data di(j)

into two parts: k LSBs and 8-k MSBs as shown in figure 2.

The MSBs are encoded using PSI - 1 coder before being sent

to output bit stream. While the LSBs are sent un-coded (or

said to encoded using PSI – 3). At the receiver the decoder

concatenates the data received.

This counter compression of word splitting is called PSI –

1,k, the entropy range of this enhanced encoder is 1.5 + k <

H < 2.5 + k. The PSI – 1,k encoder is shown in figure 4.2.

Now a mechanism of appropriate word splitting is needed at

the encoder side.

B. Splitter

Given a block of data samples (for j = 1, ..., J), the Ψ1,k

coder must then have a mechanism to estimate the entropy of

the block to ensure it uses the optimal k. Rice has come with

an estimation rule of thumb based on sum of xi values in the

block [2]. Since we assume that the data samples has a

source according to Table 1 with statistics of a

monotonically decreasing distribution, xi with low values are

likely to occur. The lower the entropy, the more the

distribution is skewed toward lower value xi (i.e., lower L).

As a result, a block with lower entropy will have a smaller

sum of xi values in the block. In other words, average

entropy in a block can be estimated from L / J . This rule of

thumb is shown in Table 2. A small value of L / J is reflected

in a smaller sum of xi, corresponding to a low entropy value,

International Journal For Technological Research In Engineering

Volume 4, Issue 7, March-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 979

hence a small selected k. As mentioned before if the samples

do not have such a characteristic, i.e., a nonnegative and

monotonically decreasing distribution, there are several

simple preprocessing schemes available to preprocess the

samples to comply with the characteristics.

Table 2: A rule of thumb to estimate block entropy for J = 8

and n = 8 for 8 options of coders (adapted from [2])

C. Proposed Accumulator

It is observed form the base paper adder design that the adder

is not in use for most of the duration, so we can replace the 7

RCA structure by a single RCA structure shown in figure 3.

The proposed adder uses a single RCA, in the first clock

cycle the data byte 8 and data byte 7 are added and the result

is stored in 8 bit register. In the next clock cycle the data byte

6 is added with the value stored in 8 bit register and so on.

This will reduce the area and power consumption of the

design.

D. Selection Logic

The selection logic splits the input data bytes into two halves,

k LSB bits and n-k MSBs. The proposed architecture of

selection logic is shown in figure 4. The comparator shown in

figure 4 compares the value of the sum evaluated from the

adder shown in figure 3 with internal reference value

mentioned in table 2 in this chapter. Then the appropriate

value of k is found out, then the input data byte is divided

into two halves using a multiplexer.

E. MSB Encoder

The n-k MSBs encoder is implemented using a simple down

counter shown in figure 5.

The remaining n-k bits are encoded using the down counter

shown in figure 5. The counter has n bit of input lines, in our

case the value of n is 8, so the input data line is 8 bit wide.

The n-k bit data is appended with k zeros and the integer

value is loaded in the down counter, now at every rising

clock pulse the down counter is decremented by one and the

output line ‖out‖ is kept at zero, when the down counter

reaches zero, the output line ―out‖ is made 1. This

implements the PSI – 1 encoder in the PSI – 1,k rice

algorithm.

F. Output Multiplexer

The output multiplexer connects the encoder with serial bit

oriented channel. Figure 6 shows the output multiplexer.

IV. RESULTS

Figure 7 shows the simulation of PSI – 1,k encoder with the

transmission value of 4,3,3,3,2,2,2,2.

International Journal For Technological Research In Engineering

Volume 4, Issue 7, March-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 980

Table 3 shows the resource usage of proposed design of PSI

– 1,k encoder. We have implemented the design on Virtex 5

FPGA device.

Table 3: Resource Usage Summary

S.no Resources Quantity

% use

Proposed

Design

1 Number of Slice Registers 305 2%

2 Number of Slice LUTs 660 5%

3 Number of occupied Slices 277 8%

Table 4 shows the power consumption summary of proposed

PSI – 1,k encoder, Figure 8 shows the characteristics of

power consumption with respect to operating frequency.

Table 4: Power Consumption Summary

S.no
Frequency

(Mhz)

Static Power

Consumption

(mW)

Dynamic

Power

Consumption

(mW)

Total Power

Consumption

(mW)

1 30 321 11 332

2 50 321 14 335

3 80 321 19 340

4 100 321 22 343

5 150 321 30 350

6 200 321 37 358

7 247 (MOF) 321 43 365

Figure 8: Power Consumption characteristics with frequency

REFERENCES

[1] Armein Z. R. Langi ―An FPGA Implementation of a

Simple Lossless Data Compression Coprocessor‖

2015 International Conference on Electrical

Engineering and Informatics 17-19 July 2015,

Bandung, Indonesia.

[2] Moussalli, Roger, et al. "A high throughput no-stall

golomb-rice hardware decoder." Field-

Programmable Custom Computing Machines

(FCCM), 2013 IEEE 21st Annual International

Symposium on. IEEE, 2013.

[3] Kim, Hong-Sik, et al. "A lossless color image

compression architecture using a parallel Golomb-

Rice hardware CODEC." IEEE transactions on

circuits and systems for video Technology 21.11

(2011): 1581-1587.

[4] Sukhwani, Bharat, et al. "High-throughput, lossless

data compresion on FPGAs." Field-Programmable

Custom Computing Machines (FCCM), 2011 IEEE

19th Annual International Symposium on. IEEE,

2011.

[5] Meira, M., J. Lima, and L. Batista. "An FPGA

implementation of a lossless electrocardiogram

compressor based on prediction and Golomb-rice

coding." Proc. V Workshop de Informática Médica.

2005.

[6] Malvar, Henrique S. "Adaptive run-length/Golomb-

Rice encoding of quantized generalized Gaussian

sources with unknown statistics." Data Compression

Conference, 2006. DCC 2006. Proceedings. IEEE,

2006.

[7] Seroussi, G.; and Weinberg, m.j. ―On Adaptive

Strategies for an Extended Family of Golomb-type

Codes.‖ Proceedings of the Data Compression

Conference, Snowbird, p.131-140, March, 1997.

[8] Rice, Robert F. "Some practical universal noiseless

coding techniques, part 3, module PSl14, K+."

(1991).

[9] A. Langi, ―Review of data compression methods

and algorithms‖, Technical Report, DSP-RTG–

2010–9, InstitutTeknologi Bandung, Sep. 2010.

[10] Langi and W. Kinsner, ―Wavelet compression for

image transmission through bandlimited channels‖,

ARRL QEX Experimenters‘sEchange, (ISSN:

0886–8093, USPS 011–424), No. 151, pp. 12–21,

Sep. 1994.

[11] Langi, ―Lossless Compression Performance of a

Simple Counter-Based Entropy Coder‖, ITB Journal

of information and communication technology,

submitted Dec 2014.

[12] Langi, ―A VLSI Architecture of a Counter-Based

Entropy Coder‖, ITB Journal of Engineering

Science, submitted Feb 2013.

[13] Wang, Zhengrong, and Paul Steven Houle. "Data

compression using adaptive bit allocation and

hybrid lossless entropy encoding." U.S. Patent No.

6,049,630. 11 Apr. 2000.

[14] Wilkinson, James H. "Apparatus for compressing

image data employing entropy encoding of data

scanned from a plurality of spatial frequency

bands." U.S. Patent No. 5,537,493. 16 Jul. 1996.

[15] Ruttimann, Urs E., and Hubert V. Pipberger.

"Compression of the ECG by prediction or

interpolation and entropy encoding." IEEE

Transactions on Biomedical Engineering 11 (1979):

613-623.

[16] Acharya, Tinku. "MMX optimized data packing

methodology for zero run length and variable length

entropy encoding." U.S. Patent No. 6,195,026. 27

Feb. 2001.

[17] Belyaev, Evgeny, Karen Egiazarian, and Moncef

Gabbouj. "A low-complexity bit-plane entropy

coding and rate control for 3-D DWT based video

coding." IEEE Transactions on Multimedia 15.8

0

50

100

150

200

250

300

350

400

30 50 80 100 150 200 247

Static Power
Consumption

Dynamic
Power
Consumption

Total Power
Consumption

International Journal For Technological Research In Engineering

Volume 4, Issue 7, March-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 981

(2013): 1786-1799.

[18] Najmabadi, Seyyed Mahdi, et al. "High throughput

hardware architectures for asymmetric numeral

systems entropy coding." Image and Signal

Processing and Analysis (ISPA), 2015 9th

International Symposium on. IEEE, 2015.

[19] Hu, Nan, and En-Hui Yang. "Fast mode selection

for HEVC intra-frame coding with entropy coding

refinement based on a transparent composite

model." IEEE Transactions on Circuits and Systems

for Video Technology 25.9 (2015): 1521-1532.

[20] Rojals, Joel Sole, Rajan L. Joshi, and Marta

Karczewicz. "Entropy coding coefficients using a

joint context model." U.S. Patent No. 8,913,666. 16

Dec. 2014.

[21] Marpe, Detlev, et al. "Entropy encoding and

decoding scheme." U.S. Patent No. 9,252,806. 2

Feb. 2016.

[22] Kumar, BS Sunil, A. S. Manjunath, and S.

Christopher. "Improved entropy encoding for high

efficient video coding standard." Alexandria

Engineering Journal (2016).

