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Abstract: In this paper, hardware implemented a entropy 

encoder using Rice PSI 1,k encoding scheme. The design 

can calculate the value of k in real time and then selects the 

number of pass through bits. The adder used in this design 

is serial adder, this reduces the resource usage and also 

reduces the power consumption of the design. The target 

device to implement the design is Virtex 5 FPGA 

(XC5VLX20T-2FF232). Xilinx XST is used to synthesize 

the design and it is coded in VHDL. The synthesis report 

shows that 2% of slice registers, 5% of Slice LUTs and 8% 

of slices were occupied by this design, this suggests area 

requirement.        

Keywords: Rice algorithm, PSI1,k, Entropy Encoding, 

FPGA  

 

I. INTRODUCTION 

Real-time lossless compression hardware will be a part of 

next generation computing chips (very large scale integrated 

circuits, VLSI) to sustain higher data rates over on-board 

limited channel and storage capacities. They include 

processor, network, and storage chips. With a reduced 

number of bits, limited capacity of transmission channels or 

storage can be used effectively. Such a reduction has a direct 

impact on complexity reductions, cost reductions, as well as 

overall system reliability improvements [1]. Image 

communication and storage are examples of applications that 

benefit from image compression, because the compression 

results in (i) faster (real–time) image transmission through 

band limited channels and (ii) lower requirements for storage 

space. Non compressed images require many data bits, 

making it impossible for real–time transmission through band 

limited channels—such as 48 kbit per second (kpbs) and 112 

kbps integrated services digital network (ISDN), as well as 

9.6 kbps voice–grade telephone or radio channels [1]. For 

example, transmitting a 256×256 pixels grayscale still–image 

over the voice–grade line would require at least 54.61 s. 

Furthermore, one HDTV format needs 60 frames of 

1280×720 pixels per second. Using 24 bpp colour pixels, this 

HDTV format would require an impractical channel capacity 

of 1,440 Mbps. For example, space explorations by National 

Aeronautics and Space Administration (NASA) missions 

generate huge science data, requiring real-time compression 

[2]. Consequently, international bodies such as Committee 

for Space Data Systems (CCDS) have defined compression 

standards for real-time systems [3]. 

 

II. COUNTER CODE ALGORITHM 

To design the architecture, we must first understand the 

counter code algorithm and then use it as a design  

 

requirement. A basic counter coder called Ψ1 (or sometimes 

also called PSI–1) works as follows [2]: 

Given a block of data samples (for j = 1, ..., J), coder Ψ1 

assumes that each sample takes a symbol si , for i = 1, ..., 

256, as shown in Table 1. Coder Ψ1 treats each sample 

symbol Si having sample data di as a non-negative integer 

number xi . The average length of sample data is R = 8 bits 

per sample. 

 

For every sample in the block (having a symbol si , thus 

having sample data di ), a Ψ1 encoder converts di into a 

codeword wi of a length li = Xi + 1, consisting of xi 

consecutive zero bits ‗0‘ followed by a closing one bit ‗1‘ 

(see again Table 1). For example, if a sample happens to be 

di = 0000 0011, it must have xi = 3, and the Ψ1 then encodes 

it using 4 bits, i.e., 3 zeros followed by a one. Hence, the 

encoding algorithm (converting di into wi ) is simply down 

counting, which is summarized in Table 1. 

 

The reconstruction is obviously simple counting too. Given a 

codeword wi , a Ψ1 decoder just counts the number of zero 

bits until a one appears. The counting result is the sample 

value xi . Using Table 1, it determines that the codeword 

belongs to a symbol si , hence it produces the sample data di 

as its output. 

We then propose to use the counter coder as an alternative 

and more computationally efficient entropy coder. One basic 

counter coder called Ψ1 (or PSI–1) works as follows [2]. 

Given a block of data samples (for j = 1, ..., J), Ψ1 replaces 

every sample in the block with a number of consecutive zero 

bits ‗0‘ followed by a closing one bit ‗1‘ (see Table 1). For 

example, if a sample happens to have a value of 55, the Ψ1 

encodes it using 56 bits, i.e., 55 zeros followed by a one. 

Hence, the encoding algorithm is simple. The reconstruction 

is obviously simple too. A Ψ1 decoder just counts the number 

of zero bits until a one appears. The counting result is the 

sample value. 

Define now a function i(j) such that a particular data block 

consists of symbols {Si(1), Si(2), …….., Si(j)}. The total number 

of bits required to encode a data block is (for index j and 

block size J) 

 

  L = J+  𝑋𝑖(𝑗 )
𝑗
𝑗=1  ………………………………….(1) 

 

Notice that this code basically allocates more codeword bits 

to data samples with higher sample values, i.e. Xi ≥ Xj 


 li ≥ 

lj. This means Ψ1 code is optimal if the statistical distribution 

of data samples is monotonically decreasing, i.e., Xi ≥ Xj 


 

P(Si) ≥ P(Sj). The average codeword length of Ψ1 code is: 
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𝑅 =   (𝑃(𝑠𝑖)𝑖
𝑞
𝑖=1  ……………………………….(2) 

 

It has been studied elsewhere [3] that this code is optimal for 

a (monotonically decreasing distribution) source with a first-

order entropy around 1, i.e., 1.5 < H < 2.5 . It should be clear 

that in a monotonically decreasing distribution, the 

probability of a sample has a large value is low. As a result, 

the probability of long codeword length Eq. (11) is low. Thus 

it is optimal. We say that range is the natural entropy range of 

Ψ1. For sources with entropies outside that range, there are 

several variations of Ψ1. 

 

For example, if H > 2.5, it is safe to assume that the LSBs of 

sample data di( j) are completely random. In this case there is 

no need to perform any compression on those LSBs. We can 

then split di(j) into two portions: k LSBs and (8-k) MSBs. 

The MSBs are coded using Ψ1 code before being sent to 

bitstream, while the LSBs are sent uncoded. A decoder first 

recovers the MSBs using Ψ1 decoder, and then concatenates 

the results with the uncoded LSBs, resulting in the desired 

di(j). It can be shown that this approach has a natural entropy 

range 1.5 + k < H <  2.5 + k . This code is called Ψ1,k. 

Table 1: Code Word of input data 

i Symbol 

Si 

Sample 

Xi 

Sample 

Data di 

Codewo

rd Wi 

Length 

Li 

1 S1 0 0000 0000 1 1 

2 S2 1 0000 0001 01 2 

3 S3 2 0000 0010 001 3 

4 S4 3 0000 0011 0001 4 

.. … … … … … 

25

6 

S256 255 1111 1111 0000…

01 

256 

For 0.75 < H < 1.5 range, we can first use the Ψ1, resulting in 

a bitstream with many ‗1‘ bits. To exploit this, we can 

cascade it using another simple code. The simple code first 

complements the results of Ψ1 (i.e., converting ‗0‘ into ‗1‘ 

and vice versa), and group the resulting bit into binary 3-

tuples. It finally codes each binary 3-tuples in a way that a 

tuple with many ‗0‘ bits will use short codewords. This code 

is called Ψ0. 

For sources with entropy H < 0.75 , we can cascade the coder 

with another coder, such as ZRL coder described above. A 

ZRL encoder processes samples, and provides its outputs to a 

counter coder. In effect the ZRL coder brings the data 

entropy into counter code natural range. 

Figure 1 shows the flow chart of PSI-1,k encoder. 

 

III. HARDWARE IMPLEMENTATION 

A. Data Path Structure 

It has been studied elsewhere that the PSI- 1 code discussed 

in chapter 1 is optimal for monotonically decreasing 

distribution source with first order entropies outside this, 

Rice introduced a concept of word splitting. If H > 2.5, it is 

safe to assume that the LSBs of the sample data di(j) are 

completely random. In this case there is no need to perform 

compression on those LSBs. An encoder can split data di(j) 

into two parts: k LSBs and 8-k MSBs as shown in figure 2. 

 

 
The MSBs are encoded using PSI - 1 coder before being sent 

to output bit stream. While the LSBs are sent un-coded (or 

said to encoded using PSI – 3). At the receiver the decoder 

concatenates the data received.  

This counter compression of word splitting is called PSI – 

1,k, the entropy range of this enhanced encoder is 1.5 + k < 

H < 2.5 + k. The PSI – 1,k encoder is shown in figure 4.2. 

Now a mechanism of appropriate word splitting is needed at 

the encoder side. 

 
B. Splitter 

Given a block of data samples (for j = 1, ..., J), the Ψ1,k 

coder must then have a mechanism to estimate the entropy of 

the block to ensure it uses the optimal k. Rice has come with 

an estimation rule of thumb based on sum of xi values in the 

block [2]. Since we assume that the data samples has a 

source according to Table 1 with statistics of a 

monotonically decreasing distribution, xi with low values are 

likely to occur. The lower the entropy, the more the 

distribution is skewed toward lower value xi (i.e., lower L). 

As a result, a block with lower entropy will have a smaller 

sum of xi values in the block. In other words, average 

entropy in a block can be estimated from L / J . This rule of 

thumb is shown in Table 2. A small value of L / J is reflected 

in a smaller sum of xi, corresponding to a low entropy value, 
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hence a small selected k. As mentioned before if the samples 

do not have such a characteristic, i.e., a nonnegative and 

monotonically decreasing distribution, there are several 

simple preprocessing schemes available to preprocess the 

samples to comply with the characteristics. 

Table 2: A rule of thumb to estimate block entropy for J = 8 

and n = 8 for 8 options of coders (adapted from [2]) 

 
C. Proposed Accumulator 

It is observed form the base paper adder design that the adder 

is not in use for most of the duration, so we can replace the 7 

RCA structure by a single RCA structure shown in figure 3. 

 
The proposed adder uses a single RCA, in the first clock 

cycle the data byte 8 and data byte 7 are added and the result 

is stored in 8 bit register. In the next clock cycle the data byte 

6 is added with the value stored in 8 bit register and so on. 

This will reduce the area and power consumption of the 

design. 

D. Selection Logic 

The selection logic splits the input data bytes into two halves, 

k LSB bits and n-k MSBs. The proposed architecture of 

selection logic is shown in figure 4. The comparator shown in 

figure 4 compares the value of the sum evaluated from the 

adder shown in figure 3 with internal reference value 

mentioned in table 2 in this chapter. Then the appropriate 

value of k is found out, then the input data byte is divided 

into two halves using a multiplexer. 

 

E. MSB Encoder 

The n-k MSBs encoder is implemented using a simple down 

counter shown in figure 5. 

 
The remaining n-k bits are encoded using the down counter 

shown in figure 5. The counter has n bit of input lines, in our 

case the value of n is 8, so the input data line is 8 bit wide. 

The n-k bit data is appended with k zeros and the integer 

value is loaded in the down counter, now at every rising 

clock pulse the down counter is decremented by one and the 

output line ‖out‖ is kept at zero, when the down counter 

reaches zero, the output line ―out‖ is made 1. This 

implements the PSI – 1 encoder in the PSI – 1,k rice 

algorithm. 

F. Output Multiplexer 

The output multiplexer connects the encoder with serial bit 

oriented channel. Figure 6 shows the output multiplexer. 

 
IV. RESULTS 

Figure 7 shows the simulation of PSI – 1,k encoder with the 

transmission value of 4,3,3,3,2,2,2,2. 
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Table 3 shows the resource usage of proposed design of PSI 

– 1,k encoder. We have implemented the design on Virtex 5 

FPGA device. 

Table 3: Resource Usage Summary 

S.no Resources Quantity 

% use 

Proposed 

Design 

1 Number of Slice Registers 305 2% 

2 Number of Slice LUTs 660 5% 

3 Number of occupied Slices  277 8% 

Table 4 shows the power consumption summary of proposed 

PSI – 1,k encoder, Figure 8 shows the characteristics of 

power consumption with respect to operating frequency. 

Table 4: Power Consumption Summary 

S.no 
Frequency 

(Mhz) 

Static Power 

Consumption 

(mW) 

Dynamic 

Power 

Consumption 

(mW) 

Total Power 

Consumption 

(mW) 

1 30 321 11 332 

2 50 321 14 335 

3 80 321 19 340 

4 100 321 22 343 

5 150 321 30 350 

6 200 321 37 358 

7 247 (MOF) 321 43 365 

 

 
Figure 8: Power Consumption characteristics with frequency 
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