
International Journal For Technological Research In Engineering

Volume 4, Issue 7, March-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 1037

DESIGN MULTI-PORT MEMORY FOR FPGA VIA BIST

Trupti Rangari
1
, Dr. Ashok Chandak

2

1
P.G.Student,

2
HOD

1,2
Department of Electronics & Telecommunication Engineering

1
Dhole Patil College of Engineering, Pune, India,

2
Cusrow Wadia College of Engineering, Pune, India

Abstract: Now a day’s many applications need multi-ported

memories to increase the process speed and allow write and

read memory banks from multiple ports at the same time.

Most FPGAs only support dual port RAM, and we must

build by ourselves multi-port RAM from available logic

elements and RAM building blocks of FPGAs when the

number of port exceeds 2. In this paper, the conventional

approaches for implementing multi-ported memory with

BIST. Which help to reduce the complexity, and thereby

decrease the cost and reduce reliance upon external

(pattern-programmed) test equipment. BIST reduces cost.

The area detail is also given to help the designer defining

which blocks affect significantly to the total area of design,

and to help designer deciding which blocks should be

optimized. This work also helps the multi-ported memory

designer choosing which approach is suitable for the

specific application. There is no need to perform wait

operation for conventional multi port operation.

Keywords: Xilinx, Multi-ported memory, FPGA, Live Value

Table, BIST

I. INTRODUCTION

Multi-ported memory is broadly used in modern designs on

FPGAs. However, the excessive demand on BRAMs to

implement multi-ported memory on FPGA would block the

usage of BRAMs for other parts of a design. This issue

becomes a serious concern especially for designs that require

huge internal storage capacity. This paper proposes a BRAM

efficient scheme on increasing read ports and write ports.

When compared with previous works, the proposed multi-

ported memory can reduce requirement on BRAMs with only

minor frequency degradation. Field programmable gate

arrays have been broadly used in fast prototyping of complex

digital systems. FPGAs contain programmable logic arrays,

usually referred to as slices. Slices can be configured into

different logic functions. The flexible routing channels can

support data transferring between logic slices. In addition to

implementing logic operations, if needed, the slices can also

be used as storage elements, such as flip-flops, register files,

or other memory modules. Due to the increasing complexity

of digital systems, there is a growing demand for in-system

memory modules. Synthesizing a large number of memory

modules would consume a significant amount of slices, and

would therefore result in an inefficient design. The excessive

usage of slices could also pose a limiting factor to the

maximum size of a system that can be prototyped on an

FPGA. To more efficiently support the in-system memory,

modern FPGAs deploy block RAMs (BRAMs) that are

hardcore memory blocks integrated within an FPGA to

support efficient memory usage in a design. Compared with

the storage module synthesized by slices, BRAMs are more

area and power efficient while at the same time achieving

higher operating frequencies.

II. LITERATURE REVIEW

Implementations for FPGA-based multi-ported memories

have only recently been formally described and studied; the

conventional approaches here. A straightforward approach is

to construct a multi-ported memory using logic elements—

for example Altera’s adaptive logic modules (ALMs)—

enjoying flexibility but at a heavy cost in area and

performance. Replication enables constructing a memory

with any number of external read ports, but can support only

a single external write port that must be connected to one of

the two ports of each replicated BRAM. Banking divides the

read and write ports across multiple separate BRAMs,

supporting concurrent read and writes but fragmenting and

isolating the data across banks. The Live Value Table (LVT)

approach ugments a banked approach with a table that uses

output multiplexers to steer reads to the most recently-

updated bank for each memory address. The LVT approach

improves significantly on the area and speed of comparable

designs built using ALMs, although the internal LVT table

itself scales somewhat poorly, can consume a lot of area, and

usually becomes the critical path. Finally, Multipumping can

be applied to any memory design to multiply its read and

write ports by operating that memory at a multiple of the

external clock frequency. Multipumping reduces the area

required for a memory with a certain number of ports, but

also reduces its maximum achievable external operating

frequency. To implement a multi ported memory on an

FPGA, two types of design techniques are required, namely

increasing read ports and increasing write ports. Table I lists

the techniques proposed by previous works for multi ported

memories on FPGAs. The approach of replication enables

multiple read ports by replicating the data on multiple

BRAMs. This technique uses low complexity of control

logic, but requires excessive usage of BRAMs. LVT, which

is implemented by synthesizing slices on FPGA, enables

multiple write ports by duplicating BRAMs and tracking

which BRAM stores the latest value of an address. The other

approach to increase write ports is referred to as XOR-based.

Different from LVT, which uses a table to track the location

of the latest value, the XOR-based design duplicates BRAMs

and encodes the stored data with XOR operations. The target

data can be retrieved by applying the XOR again. In general,

the XOR-based approach can achieve a higher operating

frequency, but requires more BRAMs than the LVT

International Journal For Technological Research In Engineering

Volume 4, Issue 7, March-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 1038

approach. Note that this paper focuses on architectural

solutions to achieve multiple accesses for a general memory

that takes requests at the current cycle and returns results in

the next cycle. Users of the multiported memory can be

completely ignorant of the details of memory designs. There

are other works focusing on enabling multiple accesses for

specific types of storage elements, such as register files .

They enable concurrent reads with an approach similar to

replication, but avoid write conflicts by renaming the

registers with software approaches, such as compiler or

assembler. These approaches, which tackle specific storage

functions and involve effort of users, are not in the scope of

this paper. The following sections will provide more in-depth

discussions about implementations and design concerns of

these techniques. To facilitate a more general discussion, the

following paragraphs use a memory bank to refer to a

standalone memory module used as a building block to

implement a memory system. A memory system usually

consists of multiple banks. The memory space, also referred

to as memory depth, is distributed across the banks. When

designing a memory system on FPGAs, a BRAM can be used

to support the complete memory space. BRAMs can also be

deployed as banks to enable larger memory space or higher

access bandwidth.

III. METHODOLOGY

Efficient design of multi ported memory using HBDX

(Hierarchical Bank Division with XOR) and BDRT (Bank

Division with Remap Table). This project first introduces a

brand new perspective and a more efficient way of using a

conventional two reads one write (2R1W) memory as a

2R1W/4R memory. By exploiting the 2R1W/4R as the

building block, this project introduces a hierarchical design

of 4R1W memory that requires fewer BRAMs than the

previous approach of duplicating the 2R1W module.

Memories with more read/write ports can be extended from

the proposed 2R1W/4R memory and the hierarchical 4R1W

memory. Compared with previous xor-based and live value

table-based approaches, the proposed designs can,

respectively, reduce the BRAM usage for 4R2W memory

designs with 8K-depth. A brand new perspective and a more

efficient way of using a conventional two reads one write

(2R1W) memory as a 2R1W/4R memory is introduced. A

new architecture hierarchical bank division with XOR

(HBDX) is introduced to increase read ports. A new

architecture bank division with remap table (BDRT) is

introduced to increase write ports. HBDX and BDRT are

integrated to design a multi ported memory.

Fig.1 Block Diagram Design Multi-Port Memory for FPGA

Via BIST

Here Bolck Diagram of Design Multi-Port Memory For

FPGA Via BIST implies multiport input ouput operation

using different techniques like technique used for

write/read/read-write with achievements. In these paper

rmain approach is to achieve multiple operations with BIST

analysis . The integrated multi ported memory design can

provide higher throughput than the time-multiplexing (TMX)

based designs. The throughput of different designs for 4R2W

memory. XOR-based (4R2W) is the XOR-based 4R2W

design proposed in this project. TMX(2R1W) uses the

replication-based 2R1W design and applies the time

multiplexing scheme to achieve 4R2W. Here we assume the

time-multiplexing scheme induces zero latency overhead and

can run at the same clock frequency as the original 2R1W

design. Therefore, for TMX(2R1W), it takes two cycles to

serve four reads and two writes. The XOR-based designs run

at slower clock rates than the TMX(2R1W) designs.

However, XOR-based designs can achieve higher total

throughput than the time-multiplexing designs. To attain the

most benefit, users need to properly choose between designs

that support multiple reads with and without mapping tables.

As demonstrated previously, multiport designs with mapping

tables can more efficiently utilize the BRAMs, but would

suffer from lower operating frequencies due to more

complex routing. The timing issue is further aggravated

when the size and complexity of the multiport design

approaches the capacity of the target FPGA. Therefore, users

would prefer designs with mapping tables when the target

FPGA contains abundant slices and relatively scarce

BRAMs. If the number of slices becomes a design constraint,

users should favor designs without mapping tables in order

to avoid the possible performance degradation due to

insufficient slices and congested connections. A proper bank-

organization can enable further performance enhancement. A

different bank organizations results in disparate performance.

Refining the bank organization would attain performance

enhancement and worth further exploration. The current

designs still require table-lookups to support multiple writes.

A design with mapping tables would limit the maximum

operating frequency. We are currently developing a

technique to support multiple writes without mapping tables.

This technique would avoid the issue of congested routing

and potentially enhance the overall performance of the

multiport designs.

IV. CONCLUSION

XOR-based and LVT-based approaches, the proposed

designs can reduce BRAM usage for 4R2W memory designs

with 8K-depth. For complex multi ported designs, the

proposed BRAM-efficient approaches can achieve higher

clock frequencies by alleviating the complex routing in an

FPGA. For 4R3W memory with8K-depth, the proposed

design can save no. of BRAMs while at the same time

enhance the operating frequency. This report also

demonstrates the importance of applying an appropriate bank

organization in a memory design. It is shown that a multi

ported design with proper bank organization could achieve a

BRAM reduction, a higher frequency, and lower slice

International Journal For Technological Research In Engineering

Volume 4, Issue 7, March-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 1039

utilization. The results present great potential of future design

refinement that could be achieved by optimizing the bank

organizations.

REFERANCES

[1] Xilinx. 7 Series FPGAs Configurable Logic Block

User Guide, accessed on May 30, 2016.

[Online].Available:http://www.xilinx.com/support/d

ocumentation/user_guides/ug474_7Series_CLB.pdf

[2] Xilinx. Zynq-7000 All Programmable SoC

Overview, accessed on May 30, 2016. [Online].

Available:

http://www.xilinx.com/support/documentation/data_

sheets/ds190-Zynq-7000-Overview.pdf

[3] J.-L. Lin and B.-C. C. Lai, ―BRAM efficient multi-

ported memory onFPGA,‖ in Proc. Int. Symp. VLSI

Design, Autom. Test (VLSI-DAT),Apr. 2015, pp.

1–4.

[4] G. A. Malazgirt, H. E. Yantir, A. Yurdakul, and S.

Niar, ―Application specific multi-port memory

customization in FPGAs,‖ in Proc. IEEE Int.Conf.

Field Program. Logic Appl. (FPL), Sep. 2014, pp.

1–4.

[5] C. E. Laforest, Z. Li, T. O’Rourke, M. G. Liu, and J.

G. Steffan, ―Composing multi-ported memories on

FPGAs,‖ ACM Trans. Reconfigurable Technol.

Syst., vol. 7, no. 3, Aug. 2014, Art. no. 16.

[6] H. E. Yantir and A. Yurdakul, ―An efficient

heterogeneous register file implementation for

FPGAs,‖ in Proc. IEEE Int. Parallel Distrib.

Process.Symp. Workshops (IPDPSW), May 2014,

pp. 293–298.

[7] H. E. Yantir, S. Bayar, and A. Yurdakul, ―Efficient

implementations of multi-pumped multi-port

register files in FPGAs,‖ in Proc. Euromicro Conf.

Digit. Syst. Design (DSD), Sep. 2013, pp. 185–192.

[8] C. E. LaForest, M. G. Liu, E. Rapati, and J. G.

Steffan, ―Multi-ported memories for FPGAs via

XOR,‖ in Proc. 20th Annu. ACM/SIGDA

Int.Symp.Field Program. Gate Arrays (FPGA),

2012, pp. 209–218

[9] C. E. LaForest and J. G. Steffan, ―Efficient multi-

ported memories for FPGAs,‖ in Proc. 18th Annu.

ACM/SIGDA Int. Symp.Field Program.Gate

Arrays, 2010, pp. 41–50.

http://www.xilinx.com/
http://www.xilinx.com/

