MANUFACTURE OF BRICK BY USING PARTIAL REPLACEMENT OF SOIL WITH SAW DUST

Mr.B.Balaji¹, J.Raman², N.Manigandan³, P.Santhosh⁴, A.Sathriyan⁵ ¹Assistant Professor, ^{2,3,4,5}Final Year Civil Students. Department of Civil Engineering, The Kavery Engineering College. Salem, India

Abstract: Soil is a very serious problem to construct the building and industrial establishment and seeks due to soil deficiency in environmental condition. Management of soil is a burning issue due to soil deficiency. The Project emphasizes the sawdust brick is the composition of clay and sawdust .The main objective of this research work was to study the suitability of utilizing sawdust in the manufacture of bricks. The sawdust low cost construction material to the public. The characteristics of sawdust were analyses to study its feasibility in achieving the objective .Brick earth and sawdust in different proportions . The manufactured brick were then tested for crushing strength, water absorption, soundness, drop test, presence of soluble salts, etc. And results were compared with those of ordinary brick.

Keywords Saw dust, Soil, Brick

I. INTRODUCTION

Bricks are masonry units composed of inorganic non-metallic material and are widely used as building components all over the world. The bricks could be sun-dried or burnt. Burnt are usually stronger than sun-dried bricks, especially if they are made of clay material. This is because the burnt bricks, as a result of the heat to which they are usually subjected (about 800-1180oc), become homogeneous, harder and stronger from the ceramic bond produced through the fusion of the silica and alumina clay constituent. It has been ascertained that soils having a clay fraction of between 30 to 40% are considered satisfactory for brick production, with the absence of processing defects after drying and firing such as cracks, fracture, deformation and volume change. The organic matter of admixture such as sawdust, which burnt out when the bricks undergo firing. This category of admixture serves the purposes as they burn out they leaven pores in the product. This permits the control of the bulk density of brick products and help in producing lighter and more porous bricks.

II. MATERIAL USED

Red soil Saw dust Water Weight balance5. Brick mould

III. EXPERIMENTAL INVESTIGATION 1. SPECIFIC GRAVITYOF SOIL

SAM	PLE-1	

DESCRIPT	FION	TRAIL-1	TRAIL2	TRAIL3	
Mass of pycn	ometer	688	655	667	

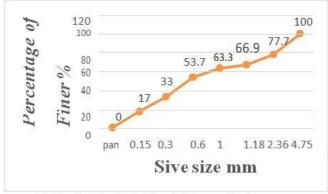
1617	1492	1610
2029	1975	2079
1492	1507	1511
2.36	2.26	2.51
	2029 1492	2029 1975 1492 1507

Result : Average specific gravity, G = 2.4

SAM PLE-2

DESCRIPTION	TRAIL-1	TRAIL-2	TRAIL-3
Mass of pycnometer (M1) gm	688	655	667
Mass of pycnometer and soil (M2) gm	1498	1492	1495
Mass of pycnometer with soil and water (M3) gm	1954	1950	1979
Mass of pycnometer and water (M4) gm	1502	1512	1511
specific gravity G	2.26	2.09	2.30

Result : Average specific gravity, G = 2.2


SPECIFIC GRAVITY BAR CHART 2. GRAIN SIZE ANALYSIS

SAM PLE-1	SAM	I PLE-	-1
-----------	-----	--------	----

•	Sieve size in mm	Weight of soil retaine d (gm)	Percent age Weight Retaine d (%)	Cumul ative Percen tage Retain ed (%)	Percent age of Finer (%)
1	4.75mm	0.103	10.3	-	100

2	2.36mm	0.120	12	22.3	77.7
3	1.18mm	0.108	10.8	33.1	66.9
4	1mm	0.036	3.6	36.70	63.3
5	0.600mm	0.096	9.6	46.3	53.70
6	0.300mm	0.207	20.7	67	33
7	0.150mm	0.160	16	83	17
8	pan	0.170	17	100	0

Result: Fineness modulus = 3.885

Grain size Analysis Graph for sample-1

SAMPLE-2

Sl. No	Sieve size in mm	Weight of soil retained (gm)	Percenta ge Weight Retaine %	Cumul ative Percent age%	Percenta ge of Finer (%)
1	4.75mm	0.213	21.3	-	100
2	2.36mm	0.131	13.1	34.4	65.6
3	1.18mm	0.098	9.8	44.2	55.80
4	1mm	0.028	2.8	47	53
5	0.600m m	0.081	8.1	55.1	44.9
6	0.300m m	0.148	14.8	69.9	30.1
7	0.150m m	0.165	16.5	86.4	13.6
8	Pan	0.136	13.6	100	0

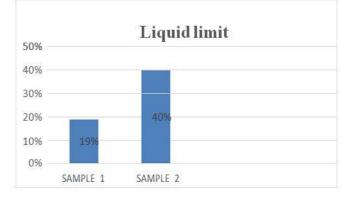
Result: Fineness modulus = 4.37

Grain size Analysis Graph for sample-2

3. LIQUID LIMIT OF SOIL:

SAMPLE-1

SI · N O	No.of blows	Empty Container Weight (M1)gm	Empty Container Weight+Wet Soil(M2)gm	Empty Container Weight+dry Soil(M3)gm	Water Content %
1	75	0.016	0.029	0.027	19
2	56	0.015	0.032	0.030	13
3	35	0.015	0.033	0.030	20
4	29	0.016	0.031	0.029	15.38
5	16	0.015	0.034	0.030	27


Result; Liquid limit of soil Sample, W_L =19%

Sample: 2

SI N O	No.of blows	Empty Container Weight (M1)gm	Empty Container Weight+Wet Soil(M2)gm	Empty Container Weight+D ry Soil(M3)g m	Water Content %
1	63	0.014	0.024	0.023	11.11
2	55	0.014	0.024	0.023	11.11
3	35	0.015	0.033	0.030	20
4	29	0.016	0.091	0.029	15.38
5	16	0.015	0.036	0.032	23.52

Result: Liquid limit of soil Sample, W_L =11.11%

6

LIQUID LIMIT BAR CHART

4. PLASTIC LIMIT OF SOIL SAMPL F-1

S	EMPTY	EMPTY	EMPTY	WATER
Ι	CONTAINER	CONTAINER	CONTAINER	CONT
	WEIGH	WEIGHT+WET	WEIGHT+DR	%
Ν	M1	SOIL(M2)	Y SOIL(M3)	
0	8	88-1 B) ()	19. 16. - 1	
1	0.015	0.019	0.017	50
2	0.014	0.018	0.017	25
3	0.016	0.021	0.019	40
4	0.015	0.019	0.017	50
5	0.013	0.017	0.017	33.33

Result: Plastic limit of soil Sample, Wp=50%

SAMPLE-2

S	EMPTY	EMPTY	EMPTY	WATER
I	CONTAINER	CONTAINER	CONTAINER	CONT
	WEIGHT	WEIGHT+WET	WEIGHT+DR	%
Ν	(M1)	SOIL(M2)	Y SOIL(M3)	
0				
1	0.016	0.203	0.021	97
2	0.015	0.018	0.016	67
3	0.013	0.017	0.014	75
4	0.015	0.202	0.020	97
5	0.014	0.019	0.016	60

Result: Plastic limit of soil Sample, W_p= 60%

PLASTIC LIMIT BAR CHART

IV. SOIL CLASSIFICATION

SAMPLE-1: (IS: 1498-1970) Plasticity index Ip = WL ~ WP = 19 ~ 50 Ip= 31% Liquid limit= 19% (above A-line) So, Liquid limit value less than 35% Sample-1 (Type of soil) = CL (gravel clays, sandy clays, silt clays)

SAMPLE-2: (IS: 1498-1970)

Plasticity index Ip = WL ~ WP = 12.4 ~ 60Ip =47.6 % Liquid limit = 12.4% (above A-line) So, Liquid limit value less than 35% Sample-2 (Type of soil) = CL (gravel clays, sandy clays,silt clays)

V.	DESIGN OF BRIKS
1. WEIGHT OF H	BRICKS:

Mode of brick	Weight	Weight of	Weight of	Average
	ofbric kg)	brick(Kg)	brick Kg	weight of
	Trail-1	Trail-2	Trail-3	brick Kg
10% sawdust Added brick	2.892	2.902	2.890	2.891
20% sawdust Added brick	2.506	2.512	2.507	2.508

2. COMPRESSIVE STRENGTH TEST ON BRICK:

Mode	Maxu	Max	Max	Avera	CompSt
ofbrick	loade of	loade of	loade of	gMax	rength
	brick	brick	brick	load	ofbrick
	(KN)	(kN)	(KN)	of	N/mm2
	Trail-1	Trail-2	Trail-3	brick	
10% sawdust	85	78	80	81	3.16
20% sawdust	63	57	65	61.667	2.41

Result

Average compressive strength of bricks = 2.785 N/mm2 3. WATER ABSOPTION TEST ON BRICKS

BEFORE WATER ABSORPTION OF BRICKS

Samples	Before water	Before	Before water
	absorption	water	absorption
	weight	absorption	weight (Kg)
	(Kg)	weight kg	Trail-3
	Trail-1	Trail-2	
10% sawdust	2.856	2.785	2.756
Added brick			
20% sawdust	2.580	2.341	2.601
Added brick			

AFTER WATER ABSORPTION OF BRICKS (24hrs)

Samples	After water	After water	After water
	absorption	absorption	absorption
	weight	weight (Kg)	weight (Kg)
	(Kg)	Trail-2	Trail-3
	Trail-1		
10% sawdust Added brick	3.260	3.189	3.160
20% sawdust Added brick	3.051	2.812	3.072

WATER ABSORPTION OF BRICKS:

Samples	After water absorption of brick % Trail-1	After water absorption of brick % Trail-2	After water absorpt ion of Brick Trail-3	Average Water Absorptio n of bricks%
10% sawdust	14.15	14.51	14.65	14.44
20% sawdust	18.26	20.11	18.11	18.83

Result:

Water absorption of the given bricks =14.95%

4. SOUNDNESS

The bricks were tested for soundness in weight batching by striking with each other. The bricks gave a clear ringing sound up to 20% replacement in weight batching.

5. HARDNESS

No nail impression was made on bricks when scratched up to replacement of 20% sawdust.

It provided to sufficiently hard.

6. DROP TEST

The bricks were dropped flat from a height of 1M on a hard ground. The bricks compared with those of first class bricks.

COMPARISON FIRST CLASS BRICKS:

PARAMETER	FIRST CLASS BRICK	SAWDUST :SOIL	VALUES
Water absorption	20	10:90	14.44
%		20:80	18.83
Compressive	3.5	10:90	3.16
strength N/mm ²		20:80	2.41

COMPARISON OF SECOND CLASS BRICKS:

PARAMETER	SECOND	SAWDUST :SOIL	VALUES
	CLASS		
	BRICK		
Water	22	10:90	14.44
absorption %		20:80	18.83
Compressive	2.7	10:90	3.16
strength N/mm ²		20:80	2.41

VI. CONCLUSION

The following conclusion are drawn on the basis of test results and comparison with first with the first class brick and second class brick.

- It is inferred that bricks manufactured on the basis of Weight batching in proportion of 10% sawdust and 90% clay closely resembles the first class bricks in compressive strength and water absorption could be employed for construction activities.
- It is inferred the bricks manufactured on the basis of weight batching in proportion of 20% sawdust and 80% clay closely resembles the second class bricks

in compressive strength and water absorption could be employed construction activities.

- Weight of brick is low comparing to conventional bricks.
- So self-weight of wall also reduced.
- Bricks are easy to transport
- Water absorption of brick also reduced comparing to conventional brick.

REFERENCES

- [1] Dr.B.C.Punmia, Ashok Kumar Jain, Arun Kumar Jain., soil mechanics and foundation.
- [2] S.K.Khanna, C.E.G.Justo., highway engineering.
- [3] S.C.Rangwala highway engineering.
- [4] IS: 2720 (Part III/sec-1)1980 Specific gravity of soil.
- [5] IS: 2720 (Part 4) -1985 Grain size analysis.
- [6] IS: 2720 (Part 5) -1985 Liquid limit and plastic limit of soil.
- [7] IS: 1498-1970 -soil classification.
- [8] "Limestone dust and wood sawdust as brick material" (Paki Turgut, Halil Murat Algin)
- [9] "Masonry concrete block strength compound with sawdust according to residue treatment" (Ana Betania Silva Moreira, AlcebladesNegraoMacedo and Paulo Sergio Lima Souza)
- [10] "Production of composite bricks from sawdust using PORTLAND CEMENT as a binder" (A.Zziwa1, S. Kizito, A.Y.Banana, J.R.S.Kaboggoza, R. K. Kambugu and O. E.Sseremba)
- [11] Effect of Adding Sawdust on Mechanical-Physical Properties of Ceramic Bricks to Obtain Light weight Building Material"(BachirChemani, and Halima ChemaniA.U.Elinwa, YA Mahmood.)