
International Journal For Technological Research In Engineering

Volume 4, Issue 8, April-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 1425

KNOWLEDGE DISCOVERY IN SOFTWARE PROCESS

IMPROVEMENTS

Ms.Aarti
1
, Mrs Anjali NamDev

2

M.Tech Student, Assistant Professor, Departments of Computer Science and Engineering

MDU University Rohtak (Haryana)

Abstract: We present a Knowledge Discovery in Software

Process Improvement method which is based on exceeds

budget and deliver products with poor quality are abundant

in the literature. The role of knowledge components and a

knowledge driven model (KDM) are assessed by a

measurement model. Insights from the field of knowledge

management are therefore potentially used in SPI efforts to

facilitate the creation, modification, sharing of software

process in any organization. Software Process Improvement

setting: Mentoring, RUP, Process Workshops and Post

Mortem Analysis. The impact of KDM on the end-product

and its real effect on SPI is measured by quantifying the

productivity of the projects, eventually the organization.

Software is described by its capabilities . The capabilities

relate, the features it provides and the facilities it offers.

Software written for sales-orders processing would have

different functions to process different types of sales order

from different market segments. The software is developed

keeping in mind certain hardware and operating system

considerations known as platform . A major challenge is to

create strategies and mechanism for managing relevant and

updated knowledge about Software development and

maintenance .

Keywords: SPI, RUP, Mentoring, Workshop and PMA.

I. INTRODUCTION

Software is a set of instructions to acquire inputs and to

manipulate them to produce the desired output in terms of

functions and performance as determined by the user of the

software. Software process improvement is that improving

the process will lead to improvements in the final product.

SPI is an applied academic field drawing on its roots in both

the software engineering and information systems disciplines.

The field takes a managerial approach rather than dealing

directly with the techniques used to write code, and it deals

primarily with

managing software firms to improve their practice. It states

that if the general expectation within software engineering is

that software will not work properly and a crisis-filled

environment are reasonable indications, then software

engineering is indeed a profession in a continuing state of

crisis.

1.2 Levels of software

 Machine Micro logic

 Supervisor or Executive

 Operating System

 Language Translators

 Utility Programs

 Inquiry, File, and Database Software

 Programming and Assembly Languages and

programs

 4GL Language and User Programs such as SPSS,

dbase and SQL, etc.

1.3 Types of Software

There are many different types of software. One of the most

important distinction is between Custom software, generic

software and embedded software.

Custom software is developed to meet the specific needs of a

particular customer and tends to be of little use to others.

Much custom software is developed in-house with in the

same organization that uses it. Examples of Custom software

include web sites, air-traffic control systems and software for

managing the specialized finances of large organization.

Generic Software, on the other hand , is designed to be sold

on the open market , to perform functions that many people

need, and to run on general-purpose computers. Generic

software is often Commercial Off-The-Self software

(COTS), and it is sometimes also called shrink-wrapped

software since it is commonly sold in packages wrapped in

plastic. Examples of generic software include word

processors, operating systems, computer games and

accounting packages for small businesses.

Embedded software runs specific hardware devices, which

are typically sold, on the open market. Such devices include

washing machines, DVD players.

 Custom Generic Embedded

Number of

copies in use

Low Medium High

Total

processing

power

devoted to

running this

type of

software

Low High Medium

Worldwide

annual

development

effort

High Medium Medium

Table2.2 summarizes some of the important characteristics

of custom, generic and embedded software.

II. LITERATURE REVIEW

How can Knowledge Management be applied to Software

Engineering in order to faster Software Process

Improvement?

Given our setting where company strategies frequently

changed, it proved invaluable to have the overall focus of

International Journal For Technological Research In Engineering

Volume 4, Issue 8, April-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 1426

looking at software process improvement efforts from the

perspective of the knowledge management. In cooperation

with the participating companies, we agreed on concrete

methods and settings.

Application of the knowledge management to improve the

software process through codification of knowledge.

This theme concerns the codification strategy. In order to

investigate this strategy, we chose two companies that

wanted to improve their software process through different

codification of initiatives. As researchers we had some

influence in what methods they used to define their process,

but in the end it was the companies’ decision on what they

wanted to spend their time and resources on. The following

concrete research questions were answered in the studies

which relates to codification. In order to improve codification

it was interesting to know what artifacts the developers

themselves found useful. This information was considered

useful irrespective of which method was used to codify it.

One way to improve the software process is to codify it in a

process model. A practical framework for codifying such a

process that has gained widespread use in industry is the

Rational Unified Process. Despite its popularity there was not

much published material on the challenges of adapting such a

comprehensive framework to a small or medium sized

setting.

How can knowledge transfer through a mentor program be

improved?

One way to transfer knowledge from person to person is the

mentoring approach. We wanted to know how it functioned

in the context of a medium sized software company, and if

we could improve it using theories from the research field.

How can sharing of project experience through project

retrospectives be improved?

A way of transferring experience from person to person is

project retrospectives. We proposed changes to the

brainstorming in the root cause analysis phase of one such

method and wanted to test if this was an improvement on the

method and if so, what that improvement consisted of.

2.1 Research Process

The research process for this thesis has been iterative and a

lot of projects have happened in parallel, mutually

influencing each other. The work can roughly be divided into

three main directions:

Three industrial case studies

 Study1: A study of mentoring for transfer of

knowledge

 Study2: A study on codifying the software process

through an adaptation of RUP

 Study3: A study on reaching an agreement on and

codifying the software process through the process

workshop

 Study4: A study on using and improving the post

mortem analysis to elicit experience from a finished

project.

 Study5: A literature study (using systematic review).

Study 1: Mentoring Our reason for looking closer at this

company was that they expressed an interest in "improving

internal knowledge management through revised work

processes and internal training of employees in new

processes". Particular for this company, was that they were

very interested in the human aspects of knowledge sharing,

not just codifying the knowledge.

Study 2: RUP The company utilizes their high competence in

RUP and most projects are more or less inspired by RUP,

however, the company’s management saw a need and a

possibility to improve their use of RUP by adapting and

codifying their development process to the RUP framework.

The company wanted to adapt the rational unified process to

their projects. Our first intervention was to help the company

define their project types. We then held several workshops

trying to adapt RUP from a top down perspective but it was

soon evident that we had to rethink this strategy. The

company then held a series of smaller workshops where the

researchers were just observers, and more people of the

company were involved.

Study 3: Process Workshops Their main activities are hiring

out consultants as developers, developing complete solutions

for customers, and hiring out consultants and project

managers as advisors for selecting technology, strategy or

process. Typically, no more than four to five consultants are

at any time working for the same customer. One of the

identified stumbling blocks for experience sharing and reuse

was the lack of a common process and a common set of

document templates. In order to remove, or at least reduce

this problem, the company wanted to define, document and

implement a framework that could be used for development,

consultancy and operation.

Study 4: Controlled Experiment on PMA

This study began quite informally. In our studies of

companies in SPIKE, we sometimes used a method for

retrospective analysis, called the post mortem analysis. The

method is Research Plan 39 designed to extract important

positive and negative experiences from finished projects, or

projects at phase transitions and analyze the key causes of

these experiences in order to improve future projects.

Study 5: Systematic Literature Review

The major reason for choosing systematic review over a

regular literature review was the desire to get results that was

replicable and the possibility to assess the completeness of

the search. In order to meet deadlines and keep the workload

manageable we needed to limit our search somewhat. We

were also unable to find any good survey papers that

properly covered the field and that was up to date. We

therefore decided to make a systematic review on knowledge

management in software engineering.

III. IMPLEMENTATION PROBLEMS

The observations given below identify some common

barriers to implementation of software process improvement

methods experienced by the case study sites, and some of the

techniques used to overcome these barriers.

 Getting started: Some of the organizations had

difficulty getting started with software process

improvement and the methods they selected. We

International Journal For Technological Research In Engineering

Volume 4, Issue 8, April-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 1427

encouraged these organizations to undergo

assessment as a proven technique for helping to

identify their priorities and get buy-in across the

organization for process improvement activities.

 Staff turnover: Some of the organizations have been

involved in downsizing (layoff) activities which

affected software engineering staff turnover. We

have also observed that within any organization,

certain champions and advocates of software

process improvement exist. If these individuals are

affected or their priorities change as a result of

downsizing, then introduction of new software

process improvement methods is slower and more

difficult.

 Dedicated resources: Some of the organizations

utilized part-time resources, usually line managers

or improvement teams, to implement software

process improvement methods. Although this issue

is greatly dependent on the size of the organization

and the specific skills and influence of the

individuals involved, part-time effort on process

improvement is usually not as effective as when

full-time dedicated resources are used.

Software Process Improvement is a long term incremental

activity. Process improvement involves process analysis,

standardization, measurement and change. We do process

improvement because we want to build better products

(cheaper, more dependable, quicker ...), We really don’t

know how to measure the product characteristics.

IV. CONCLUSION

 If the PWS approach is used to reach an agreement

on the current process, a good starting point is to

focus the discussion on artifacts, or what should be

produced, rather than how it should be produced.

 If the PWS approach is used to specify future

processes based on best practice, the discussions

should be focused towards activities, or how the

projects should be run.

 The PWS approach is a good tool for organizational

learning.

 Involvement in the workshops fosters ownership of

the resulting process, and as such it is a good way to

get the developers to actually use the process later.

 The process workshop is a lightweight approach to

defining a process for companies. As such it is well

suited to small and medium sized companies. It

does, however, require some resources to be truly

successful and therefore, management support is

important.

V. FUTURE WORK

We have investigated a mentor program in a small software

consulting company in order to identify issues that could be

improved. We found many different mentor schemes to be in

place in the company, found arguments in favor and against a

more formal approach to mentoring in the company. We also

made a clearer separation of roles, and suggested that

mentoring should have a greater availability in the company.

We believe that the new mentoring program will provide

better support for double loop learning through increased

reflection. The amount of reflection should increase when

the mentors pose more open questions during meetings.

Also, organizing mentoring in a group of protégés should

lead to more discussion, which should also lead to more

reflection on current work practices. The new mentoring

program has been introduced through a meeting with all

employees, and now that the work of restructuring the

mentor program is done, we switch to an observer role. We

will follow mentor and protégé pairs in new projects and

evaluate the changes brought on by redefining the mentor

program. The next challenge for the scientists will be to

come up with good methods for extracting most of the

experience of the employees in a way that is not too intrusive

to the regular work of the company, yet still captures the

most crucial knowledge.

REFERENCES

[1] Jacobson, I., G. Booch, and J. Rumbaugh, The

Unified Software Development Processed. A.W.

Longman. 1999, Reading: Addison Wesley

Longman. 463.

[2] Krutchen, P., The Rational Unified Process: An

Introduction 2nd 2000: Addison-Wesley. 298.

[3] Bergström, S., Råberg, L., Adopting the Rational

Unified Process. 2004,

[4] Addison-Wesley. p. 165-182.

[5] http://www.m-w.com/dictionary.htm

[6] Nonaka, I., Takeuchi, H., The Knowledge-Creating

Company. 1995:

[7] Avison, D., Action Research. Communications of

the ACM, 1999. 42(1): p. 94.

[8] T. Dybå, "Improvisation in Small Software

Organizations", IEEE Software.

[9] A.Wickert and R. Herschel, “Knowledge

management issues for smaller businesses", Journal

of Knowledge Management, no. 4, vol. 5, pp. 329-

337, 2001.

[10] M. Lindvall and I. Rus, “Knowledge Management

in Software Engineering”, IEEE Software, no. 3,

vol. 19, pp. 26-38, 2002.

[11] F. J. Armour and M. Gupta, “Mentoring for

Success”, IEEE IT Pro, no. May - June, pp. 64-66,

1999.

[12] K. E. Kram, Mentoring at work: Developmental

relationships in organizational life. Glenview, IL:

Scott Foresman, 1985, ISBN: 081916755X.

[13] B. R. Ragins, J. L. Cotton, and J. S. Miller,

“Marginal Mentoring: The Effects of Type of

Mentor, Quality of Relationship, and Program

Design on Work and Career Attitudes”, Academy of

Management Journal, no. 6, vol. 43, pp. 1177-

1194, 2000.

[14] Webster's, Encyclopedic Unabridged Dictionary of

the English Language. New York: Gramercy Books,

1989.

[15] F.F. Fajtak, Kick-off Workshops and Project

International Journal For Technological Research In Engineering

Volume 4, Issue 8, April-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 1428

Retrospectives: A good learning software

organization practice, Proceedings of the 7th

International Workshop on Learning Software

Organizations

[16] J.S. Edwards, Managing Software Engineers and

Their Knowledge, in: A. Aurum, et al. (Eds.),

Managing Software Engineering Knowledge,

Springer- Verlag, Berlin, 2003, pp. 5-27.

