EMOTION RECOGNITION: A LITERATURE SURVEY

Shilpi Goyal¹, Nirupama Tiwari² RGPV Bhopal India

As one of the most prosperous applications of text analysis and understanding emotions(sentiments) and short messaging text apperception has recently received consequential attention especially during the past several years. This is corroborated by the emergence of Web 2.0, social networking services, micro blogging, blogs, chats, online reviews, forums, discussions and systematic evaluations of text analysis(emotion analysis) techniques. There are five major aspects for this trend: first is the wide range of commercial and social marketing applications, second is the understanding of one's feelings (sentiments), third humancomputer interaction, fourth text to speech generation and fifth the availability of natural language and machine learning approaches and technologies after 20 years of research. This paper provides an up-to-date critical survey of emotions, emoticons and short messaging text research.

• Information systems \rightarrow Information Retrieval \rightarrow Retrieval tasks and goals \rightarrow Sentiment analysis

I. INTRODUCTION

Emotions are now extensively studied in the area of psychology, computer sciences, neuro-science, and cognitive sciences as they play significant role in human nature. Most of the devotion of researchers in computer science is in the area of textual emotions, particularly in the field of recognition of emotions. Emotion reveals itself in the form of facial expressions, vocal expressions, writings, and in movements and actions. Subsequently, scientific research in emotion(sentiments) has been followed along multiple dimensions and has drawn upon research from several fields. Mainly used form of communication on social network is in textual form, contributed a platform for computer systems to behave more smartly based on the user's feelings. Enormous amounts of text data are available in the form of blogs, micro blogging sites like Facebook, Twitter, emails, SMS etc. This textual data is beneficial to generate better human interaction system which needs to be able to analyze the text and conclude the emotion of the user. Even though the system can discover the user's emotional states, intricacy of language makes it hard for researchers to distinguish emotional states from pure textual data.

Table 1 Typical applications of textual emotions.

Areas	Specific applications	Sources
Sentiment	Focus: Information	chats, web
Analysis /	retrieval & knowledge	forums,
Opinion Mining	discovery from text.	blogs,
	Goal: To make computer	discussion
	able to identify & express	groups,
	emotions.	tweets,
	Application: Companies	reviews
	are concerned about	

	T	
	consumer's opinion about	
	products and their	
	services, issues and events	
	to find the worth choices.	
Text – to –	Focus: classify the	Text,
Speech	emotional matching of	emotional
Generation	sentences in the storyline	state,
	text, for appropriate	emotions
	communicative	
	representation of Text- to-	
	Speech synthesis.	
	Goal: In spoken	
	communication,	
	spokespersons well	
	express emotions by	
	modifying mode of	
	speech or communication,	
	including intensity, pitch	
	& durational signals.	
	Application: A machine	
	can read for us as	
	human's read.	
Human	Focus: machine learning	Multi-
Computer	techniques, natural	Language
Interaction	language processing.	Text.
	Goal: artificial	
	intelligence, robotics,	
	psychology blogs, product	
	reviews, CRM and service	
	oriented companies,	
	customer emotion.	
	Applications: automatic	
	answering systems,	
	dialogue systems, and human like robots.	
Emoticons(Text
Emoticons(Emotion Icons)	Focus: Multilingual Sentiment Analysis.	
Emotion (CONS)	Goal: To find emotions in	containing symbols,
	foreign language text	punctuation
	Applications:as language	marks, etc
	is not understandable, still	marks, etc
	then we are able to fetch	
	the emotions behind that	
	text.	
Computer	Goal: The automated	Text on
Assisted	generation of evaluative	search
Creativity	expressions with a bias on	engine
	certain polarity	86
	orientation.	
	Application:automatic	
	personalized	
	advertisement and	
	persuasive	
	persuasive	

	communication.	
Recommendation	Focus: information	Feedback,
systems	retrieval and find the	comments,
	valence whether it is	reviews
	positive, negative or	
	neutral.	
	Goal: a system not	
	recommending items that	
	have an abundance of	
	negative feedback.	
	Application: recommend	
	items whether to purchase	
	or not.	
Short Messages	Focus: spelling correction	Chats,
	Goal: convert it to plain	reviews,
	text.	tweets
	Application: easy to apply	
	algorithms to find	
	emotions.	

A general statement of the problem can be formulated as follows: Given a line of text from any online source, identify emotions from that text using some standard algorithms. Available collateral information such as subjectivity, valence, granularity, context may be used to enhancing recognition. The solution to the problem involves transformation of short texts (if any) to plain text, tokenization, identification of emotion words using categorization, calculate the emotion of given message based on dictionary (lexicon, graph) using some classifier using in that context.

II. ISSUES RELEVANT TO EMOTION RECOGNITION *Difficulty and Intricacy of Language Use*

—Text Informality: Users write tweets, messages, chats in social media containing grammatical mistakes.

—Acronyms: social networking sites have a lot of abbreviations that are publicly popular and used by most social users. Unfortunately, they are increased day to day in text data, changing dramatically, make the automated system difficult.

—Combination of Languages: Hindi-English is a language used by Indians, to express their feelings or texts with their friends.

—Emotion Icons: Most of social networking users make use of graphical symbol that states specific emotion, ":)" and ":(" are examples of such icons.

—Applicability: Researchers still tackle with the problem of non related topic like advertisements etc.

—Negation and Repetition of terms: Certain terms like negations and modals impact emotion of the sentence, without having strong emotion relations. For example, was good, was not good, and may be good interprets same emotion and executed differently.

---Words used in different contexts convey different emotions.

-statement may carry more than one emotion (and to

varying degrees). There exist a gap between multiple object entities.

—statement express emotional mood of user without implicitly or explicitly present. Sense of text conveys negative or positive emotions without explicitly stated. For example: Again the Monday has come. shows frustration.

Creative and Non-Standard Language Uses

—It is difficult to interpret creative uses of language for Automatic natural language systems such as sarcasm, paradox, funniness, and simile. However, these are common in language use.

— Texts in Social media are mundane with terms not present in dictionaries like misspellings (gud), jargon of letters (sooooo), emoticons, abbreviations (143), hashtagged words (#TeenChoice), etc. Most of them convey emotions.

Lack of Massive Amounts of tagged Data

—Machine learning algorithms for sentiment analysis involves significant amounts of training data. There are numerous set of emotions that humans can recognize and express. So to recognize emotions we have to use limited resources of some valence categories and pre defined set of emotions.

Subjective and Multicultural Differences

— Recognize emotions in text can be hard even for humans as humans perspicacity is circumscribed to some languages, gestures etc. Most of the research elaborate that the amount of acquiescent between taggers is lower to identify valence or emotions, as compared to tasks such as identifying partof-verbalization and identifying entities.

— There can be major dissimilarities in emotions associated with events and demeanors across different cultures. For example, imbibing may be considered as more negative in some components of the world than in others.

A complete review of relevant studies in the field of Emotion Recognition on social networking sites is illustrated using a timeline from late 1990's to till now.

III. TIMELINE OF EMOTION RECOGNITION

Timeline from early 90's to 1992: Researcher developed systems that are capable of manually excerpt sentiments from the text. They gave various universal models to identify the emotions on the basis of different dimensions and valence. This is the time where emoticons are recognized in digital world.

1966	General	[Stone et.	first milestone for				
	Inquirer	al.]	extracting textual emotion.				
	system		Input texts are matched				
	-		with manual database to				
			recognizegnize their class				
			such as positive, pstv,				
			negative, feel, vigorous,				
			puissance, impotent,				
			pleasure				
1970	set of	[Ekman]	[Ekman] defined six				
	emotions		rudimentary emotions: joy,				
			sadness, anger, fear,				

			disgust and surprise.					ment, Relief,Sat
1975	set of emotions	[Osgood et. al.]	understanding emotion expression in text, used multidimensional scaling				isfaction, S , and Sham	ensory, pleasure le.
			to visualize the affective words to compute kindred attribute ratings. The dimensions were "evaluation", "potency" and "activity".	are n orienta docum	nostly devel ation. Resea	op. It main archers man art-of-speech	nly focuses wally anno structure us	where lexicons on semantic tate the text sing adjectives,
1979	Russells circumpl ex model	[Russell]	which utilizes the dimensions of arousal and valence to identify 150 affective labels.	1990	WordNet		er et. al.]	[Miller et. al.] engendered a lexicon
1980	set of emotions	[Pluchik]	Eight basic emotions: anger, sadness, disgust, fear, surprise, anticipation, joy and trust.					dictionary kenned as semantic lexicon
1982	first Emoticon	[Fahlman et. al.]	Emoticons are apperceived in the digital era and [Fahlman et al.] proposed to utilize :¬) and :¬(to differentiate jests from more earnest posts.					where words are accumulated into sets of synonyms (called
1987	Hand Crafted Models	[Dyer]	[Dyer] use models to understand particular text deeply in order to mine for emotions. These systems are involute and their results are arduous to simplify to other texts.	1992		[Hea	rst]	"synsets") [Hearst] proposed a sentence interpretation model that endeavors to
1987	set of emotions	[Shaver et. al.]	shows how the prototype approach is useful to investigate the processing of information about emotional events, cross- cultural differences in emotion concepts, and the development of emotion	1994			1	answer queries predicated on the argumentativ e structure of the document.
1888	set of emotions	[Frijda]	knowledge. Define emotions based on some laws.	1994		[Tag	ger j	[Brill Tagger] represented the semantic
1990	set of emotions	[Ortony et, al.]	OCC specifies about 22 emotion categories and consists of five processes that define the complete system.					orientation for verbs, adverb, entity and adjective.
1992	set of emotions	[Ekman]	study of emotions and their relation to more than 10,000 facial expressions and expand the list of basic emotions, The newly included emotio ns are: Amusement, Embarrassme nt, Excitement, Guilt, Pride	1994		[Wie	be]	subjectivity analysis is the apperception of opinion- oriented language in order to distinguish it from

			objective						and
			language						objective.
1997	sentiment-based classification	[Hatzivassiloglou et.al.]	developed an algorithm for automatically apperceiving the semantic orientation of adjectives and relegating the semantic orientation of individual words or phrases, utilizing linguistic heuristics, a pre-culled set	2000			[Hatzivass and Wieb		examined the effects of adjective orientation and gradability on sentence subjectivity. The goal was to tell whether a given sentence is subjective or not judging from the adjectives appearing in that sentence.
			of seed words, or by human labeling.	autom	atically on	the ba	sis of po	larity, su	alyse the text bjectivity and
1999		[Berland et al.]	describes a procedure that aims at extracting part-of features, utilizing possessive constructions	 objectivity. They mainly works on extracting polarity (orientation), positive, negative, neutral, scale rating(Rating scores are ordinal, this problem is tackled by regression.). Many papers published in 2002 and the subsequent years together explain the popularity of analysis of sentiments focused on natural language processing. These are the years, when social networking sites are filled with unstructured, informal text so there is a need of emotion mining techniques that work on these unstructured text. 					
1999	ANEW	[Bradley and	and prepositional phrases, from news corpus. developed	2001		[Das a Chen]		evaluativ tracking predictiv	ve judgments
1777	lexicon(manual lexicon)	Lang]	the Affective Norms of English	2002		[Corn	ey et.	sentimer	zing market nt. the list of an and low
			Words (ANEW) which lists emotional ratings for			al.]		structure standard commur network	ed language to nicate on social ing sites.
2000			1034 English words.	2002	PMI algorith m	[Turn	ey]	Mutual	m Point wise
2000		[Wiebe]	explained the concept of subjective adjectives in an information retrieval to explain two genres subjective					automate classific semantic i.e.,posite negative Thumbs Thumbs	ation of c polarity tive and c opinion, as

2002	Product	[Morinaga et.	extracts characteristic	2003	opinion	[Dave et al.]	a document level
2002	Reputati	al.]	words, co-occurrence	2003	mining,	[Dave et al.]	opinion classifier that
	on Miner	u1.]	words, and typical		ReviewS		uses mainly statistical
	on white		sentences for		eer		techniques and some
			individual target		001		POS tagging
			categories and				information for some
			identify positive or				of their text term
			negative opinions				selection algorithms. It
			based on a dictionary.				achieved high
2002		[Pang et. al.]	Build lexicon for				accuracy on review
			movie reviews as a				articles but
			dataset to indicate				performance degrades
			negative and positive				for the general web
			statements and well				documents.
			suited for other	2003	Latent	[Blei et al.]	is a machine learning
			machine learning		Dirichlet		method of topic
			approaches like		Allocatio		modeling and it's a
			Support Vector		n (LDA)		way of automatically
			Machine, Maximum				discovering topics that
			Entropy and Naive				sentences contain.
			Bayes. The	2003	An	[Liu et al.]	Predict accurate
			classification of		improve		emotions at sentence
			sentiments is done at		ment on		level by using multiple
			document level using		hand-		corpus-based linguistic
			syntactic approach of		crafted		analysis, an approach
			N-Grams and have a criticized view on the		models		for graphically
			use of POS-TAGS as				visualizing the affective structure of a
			they do not provide				text document, real
			valuable information				world knowledge to
			for the classification of				extract affect from
			polarity in Twitter.				sentences as it assumes
2003	Sentimen	[Yi et al.]	Extracting sentiments				that all individuals feel
2003	t	[II et ull]	about a given topic				the same way about a
	Analyzer		using natural language				certain life event.
	5		processing techniques.	2004	Probabili	[Wilson et al.]	This approach is based
2003		[Yu and	Naive Bayes classifier		stic		on a human annotated
	Separatin	Hatzivassilogl	on a corpus consisting		model on		text corpus that can
	g facts	ou]	of Wall Street Journal		machine		identify the attitude,
	from	_	articles give best		learning		sentiments from the
	opinions		results achieving high		algorith		text present on social
			accuracy(97%), where		ms		networking sites,
			the task is to				classification is done
			distinguish two				on the basis of strength
			different news articles				of the emotion and a
			about fact and				major limitation is the
2002			opinions.				difference in strength
2003		[Turney and	Proposed a less				annotations measures
		Littman]	influenced supervised	200.4	1	F.17	between annotators.
			algorithm that can	2004	identify	[Kamps et al.]	identify subjectivity of
			predict the tendency of		subjectiv		adjectives in WordNet,
			a word to go which		ity of		classified adjectives into classes and find
			direction, with a small set of positive seed		adjective s in		their relative distance
			words or with a small		s in Word		to another word
			set of negative seed		Net.		depending on the class.
			words.	2004	Bing Liu	[Hu and Liu]	Bing Liu's Lexicon
L		1	worus.	2004	Lexicon		gives a list of positive
					LEXICOII		and negative words
				L	l		and negative words

	-		
			manually tagged by
			user reviews.
2004	WordNet	[Strapparava	developed a manual
	-Affect	and Valitutti]	linguistic resource for
		_	lexical representation
			of affective knowledge
			named WordNet-
			Affect . It annotates
			the synsets that have
			an affective content.
			Emotion Classification
			is then done by
			mapping emotional
			keywords that exist in
			the input sentence to
			their corresponding
			WordNet-Affect
			concepts.
			ng this incipient stage of
		•	reviews, some of them
focus	on emotion	categorization o	f the entire documents,
which	are based	on the construction	on of discriminate-word

dictionaries manually or semi-manually.

r		
2005	[Aue and	Identification of subject
	Gamon]	is a context dependent
		and domain dependent
		problem which replaces
		the earlier parable of
		using sentiwordnet or
		subjectivity word list etc.
		as prior knowledge
		database
2005	[Alm et al.]	explored text-based
		emotion prediction using
		supervised learning
		approaches.
2005	[Read]	Read explore different
		problems in the area of
		sentiment classification
		like Time, Domain and
		Topic dependency of
		sentiment orientation and
		use emoticons such as ":-
)" and ":-(" and text-
		based emoticons to form a
		training set for the
		sentiment classification.
		The dataset was divided
		into "positive" and
		"negative" samples.
		Emoticons-trained
		classifiers: SVM and
		Naive Bayes, were able to
		obtain up to 70% of an
		accuracy on the test set.
2005	[Wiebe et	present a comprehensive
	al.]	survey of subjectivity

			recognition using
			different clues and
			features.
2005	Lexical	[Ma et al.]	WordNet and WordNet-
	Affinit		Affect are used to
	у		recognize whole sense in
	5		different context and the
			number of emotional
			senses to find suitable
			lexical affinity.
2005	MDOA	[Wilson et	The MPQA Subjectivity
2003	MPQA	-	
	subject	al.]	Lexicon contains words
	ivity		assigned with their prior
	(Lexic		polarity and a discrete
	on		strength of evaluative
	based		intensity
	method		
)		
2005		[Gammon	Uses Machine Learning
		et al.]	Techniques with input of
			some seed words. This
			classifier is based on
			assumption that the words
			with same polarity co-
			occur in one sentence but
			words with different
			polarity cannot.
2005		[Niu et al.]	determine the polarity of
2005			outcomes (improvement
			vs. death, say) described
2007		FX7 (1)	in medical texts.
2006	sentim	[Yi et al.]	introduced sentiment
	ent		analyzer for world wide
	analyze		web text documents.
2007	r	r	1 1 4 4
2006			apply bootstrapping
		Andreevskai	techniques to reduce the
		a et al.]	cost of building sentiment
			lexicons by adding words
			to an initial subset or
			seeds.
2006		[Mao et al.]	trained CRF classifier on
			sequential sentiments.
2006		[Wiebe and	find relations between
_000		[Wiebe and Mihalcea]	word sense
		initiateea j	disambiguation and
2007		[W/ + + 1 - 7	subjectivity.
2006		[Wu et al.]	proposed approach for
			sentence level emotion
			mining based on detecting
			predefined semantic
			labels and attributes of the
			sentence, then classify
			only one emotion
			"happy" based on
			psychological patterns of
			human emotions.
			niiman emotions

2001	1			r	r	1	· · · · · · ·
2006		[Wang and McCallum]	Explains emotions of latent topics as time goes on. It means it adds a factor of time to capture variance of topic with	2007		[Redondo et	Linguistic Inquiry and Word Count (LIWC) to classify emotions as positive or negative. adapted the ANEW into
2006	SentiW ordNet	[Esuli and Sebastiani]	respect to time. It annotates the term with prior sentiments.			al.]	Spanish. This approach requires human
2006		[Bethard et. al.]	have introduced the automatic identification of opinions from the process of question answering session.	2007		[Var e et el	translators to ensure the quality of the localized resource and therefore is cost expensive and not scalable. examine the classification
2006		[Eguchi and Lavrenko]	Use sentiment classification in categorization, regression, and ranking to point out that the polarity . This assigned may be used for summarizing the content of opinionated text units on a topic, whether they be positive or negative, or for only retrieving items of a given sentiment	2007	supervi sed emotio n classifi cation Upar7,	[Yang et al.]	examine the classification of emotion of blogs using machine learning techniques. CRF classifier executes better than the SVM classifier at the sentence level and at the document level, the tactic of picking the last sentence's emotion as the answer outperforms all other strategies. developed a linguistic
2007		[Yang et al.]	orientation. used Yahoo! Kimo Blog as corpora to build emotion lexicons. In their studies, emoticons were used to identify emotions associated with textual keywords.		knowle dge based system for headlin e sentim	Chaumartin]	rule-based system UPAR7,by combining WordNet, SentiWordNet and WordNet- Affect lexical resources. This uses dependency graph taken from the Stanford POS tagger. It is
2007	SemEv al	[Strapparava et al.]	Tells all words can potentially convey affective meaning, even		ent tagging		important to note that the classification is based on synsets, not on words
			neutral also, can evoke pleasant or painful experiences because of their semantic relation with emotional concepts	2007		[Mei et al.]	Proposed Topic Sentiment Mixture model for analysis of sentiment(emotion) on the topic level.
			or categories. SemEval explains "affective text", aiming to tag short headline texts with a predefined list of	2008	emotio n predicti on	[Gill et al.]	explored the emotion rating activities of 65 judges from short blog texts
			emotions and polarity orientation, the Emotion- Term model is based on Naive Bayes, estimate term-emotion associations	2008		[Tokuhisa et al.]	proposed a two step model for emotion classification using emotion-provoking event instances extracted from the web.
2007		[Hancock et al.]	using their co-occurrence counts. Explain that +ve and –ve emotions are expressed using exclamation and affective words, using content analysis	2008		[Titov et al.]	described a new statistical model called the Multiaspect Sentiment model (MAS), which consisted of two independent components. Differently, the model

			proposed in this paper unifies the process of			cost expensive and not scalable.
			generating topics and associating emotions with texts.	2009	[Bao et al.]	1. The emotion-term method was formulated
2008	Latent Semant ic	[Strapparava and	developed a system that used several variations of Latent Semantic Analysis			by improving the Naive Bayes classifier . Different from traditional
	Analys is(LSI)	Mihalcea]	and evaluated several knowledge-based and corpus-based methods for the automatic identification of six emotions in text when no affective words exist. However their approach achieved a low accuracy because it is not context sensitive and lacks the			Naïve Bayes, the method takes into account emotional ratings when calculating the probability of a category and the probability of a term given an emotion label.2.As a joint emotion-topic model for social emotion mining, the Emotion-Topic Model (ETM) introduced an
			semantic analysis of the sentence.			intermediate layer into LDA, in which a topic
2008		[Zhao et al.]	uses Support Vector Machine (SVM), Conditional Random Field(CRF) algorithms to cluster opinions of same type.			acts as an important component of an emotion. Infor-mative and coherent topics are extracted and grouped under different
2008	Statisti cal Models	[Pang et al.]	semantic information is highly considered as features. These models require annotated corpus, which is often limited for online texts.	2009	[Go et al.]	emotions. For the first time, Go et al. investigated tweet sentiment in which they utilized emoticons to annotate tweet with sentiment label and the
2008		[Ganesan et al.]	presents a system for adding the graphical emoticons to text as an illustration of the written emotions.			presumption in the construction of the corpus is that the query ":)" returns tweets with
2008	Opinio n spam	[Jindal and Liu]	malicious users expressing offensive			positive smileys, and the query ":(" retrieves negative emotions.
	and analysi s		opinions, using their comments for the purpose of advertising, or even spreading rumors and	2009	[Denecke]	introduced uses of SentiWordNet in terms of prior polarity scores. The
2000			fraudulent reviews. Considering this issue, Opinion Spam Detection is essential to detect and filter out irrelevant information in reviews, which is an important subtask when performing sentiment analysis.			author proposed two methods: rule-based and machine learning based. Accuracy of rule-based is 74% which is less than 82% accuracy of machine learning based. Finally, it is concluded that there need more sophisticated techniques of NLP, for
2009		[Vo et al.]	adapted the ANEW into German. This approach requires human translators to ensure the quality of the localized resource and therefore is	2009	[Das and Bandyopadh yay]	better accuracy explained the techniques for subjectivity based on Rule-based, Machine learning and Hybrid

			method.				emotions on two scales:
2009		[Mohammad et al.]	to increase the scope of sentiment lexicon, it includes the identification of individual words as well as multi-word expressions with the support of a thesaurus and a list of affixes.It can be implemented by two				the valence of the emotion indicating if the feeling is positive or negative and the arousal level indicating the energy level associated with the emotion and consider also variation of emotion of the gender.
			methods: antonymy generation and Thesaurus based. Hand-crafted rules are used for antonymy generation. Thesaurus method is based on the seed word list which means if a paragraph has more negative seed words than the positive ones, then paragraph is marked as negative.	2010	Develo p Lexico ns for unstruc tured langua ge like emotic ons, social Acrony	[Yassine and Hajj]	The purpose was to make out whether the writer articulate his emotions and thoughts in his writings. The processed data was then used to spot the strength between two persons based on the subjectivity of the texts they share online. The main challenge for the model proposed is the
2009	sentim ent 140	[Go et al.]	use classifiers built from machine learning algorithms to avoid the problems of simpler keyword-based approach, which may have higher precision, but lower recall. They classify individual tweets.		ms,etc		free language of online social networks; in this perspective, we developed new lexicons that cover common expressions used by online users, including emoticons, social acronyms, Arabic expressions transliterated
2010	build sentim ent classifi er using multin omial Naïve bayes classifi er	[Pak and Paroubek]	Present a method for an automatic collection of corpus(Twitter) that can be used to train a sentiment classifier using syntactic structures. They use TreeTagger for POS Tagging as POS Tags are strong indicators of emotional text	2010	EmoHe art	[Neviarouska ya et al.]	into English, etc Developed EmoHeart, a lexical rule-based system that identify emotions from text and envision the emotion expressions in a virtual environment. The system starts by looking for emotional abbreviations and emoticons. If not found, it processes the sentence on
2010	SentiSt rength	[Thelwall et al.]	proposed SentiStrength, a lexicon-based method for sentiment exposure on the Social Web. SentiStrength overcomes the problem of ill-formed language by applying several lexical rules, such as the existence of emoticons, intensifiers, negation and booster words like extremely, to compute the average sentiment strength of an				different levels to generate an emotional vector of the sentence, where each element in the vector represents an emotional class strength. At word level, each word in the sentence is mapped to its emotional vector, where they manually build a dataset of emotional vectors for many words. At the phrase and sentence

			emotional vectors collected from the words by either performing summation or maximization among the vectors. The emotion of the sentence is the maximum strength of the vector. They achieved an average accuracy of 75% when tested on a				the change in the society before and after implementation of his scheme. So, a sentiment analysis system should be understand and identify the aspectual sentiments present in the text. For this problem, Das propose sentiment structurization technique which is based
2010	SentiW	ſ	manually annotated dataset.				on 5W (Why, Where, When, What, Who).The drawback of 5Ws is that it may lead to label bias
2010	ordNet 3.0 (Lexic on	Baccianella et al.]	construction by applying a random walk algorithm, based on the well known lexicon resource,	2010	multili	[Boyd-	problem which is solved by Maximum Entropy Model (MEMM) . give idea for multilingual
	based method)		WordNet. It provides additional information on synsets related to sentiment orientation and returns from every synset a set of three scores and their polarity.		ngual sentim ents	Graber et al.]	sentiment analysis is to translate languages into a well-studied language (e.g. English); hence traditional methods can be applied. Cross- language dictionaries
2010		[Batra and Rao]	use probabilistic representation measuring the sentiment of an entity as an combination of the sentiment of all tweets that are associated with that entity.	2010		[Davidov et al.]	work as bridges between different languages. Emoticons can also be exploited to extend the more common features used in text mining, such as sentimentcarrying
2010	NRC Emotio n Lexico n	[Mohammad and Turney]	The NRC Emotion Lexicon encompass many frequent languages like English, French, etc. annotated for eight emotions (joy, sadness, anger, fear, disgust, surprise, trust, and anticipation) as well as	2010			words. A small set of emoticons has already been used as additional features for polarity classification so emoticonlabeled sets are used to automatically train the sentiment classifiers.
2010		[Das et al.]	for positive and negative sentiment. Sentiment Analysis explained till now is not sufficient to satisfy the needs of end user,	2010		[Joshi et.al.]	used two lexical resources: English-Hindi Word Net Linking and English SentiWordNet and created H- SWN(Hindi- SentiWordNet)
			because a user is not interested in binary output in terms of positive or negative but interested in aspectual sentiment classification. Aspectual	extractin from se from en	ng emotion entence, re	ns as contextua educing the fea	This time mainly focuses on 1 and conceptual semantic tures, extracting emotions ultilingual corpora.
			can be explained as relative information. For example, a social worker may be interested to know	2011		l Kouloumpi s et al.]	use certain seed hashtag words such as #cute and #sucks as labels of positive and negative sentiment.

2011	Lexicon	[Taboada	focus on sentiment strength				texts to infer emotional
2011	based	et al.]	varies from -5 to $+5$				states over the web.
	method	-					
2011		[Jiang et	study the target-dependent				
		al.]	sentiment classification of				
			tweets by using SVM and	2011	Latent	[propose an unsupervised
			General Inquirer. They		Dirichlet	Hernandez	method of reducing
			classify the sentiments of		Allocatio	and Sallis]	features based on the
			the tweets as positive, negative or neutral		n (LDA)		Latent Dirichlet Allocation
			according to a given query.		methodol		(LDA) methodology. The method is evaluated with a
			Thus, the query serves as		ogy		corpus of 10,000 tweets in
			the target of the sentiments.				English on the iPad tablet.
			In addition, they also apply				They uses vector space
			a context-aware approach				model and using the TF-
			in order to incorporate the				IDF metric to weight the
			context of tweets into the				terms to reduce features.
2011	1 1	[[[7]]	classification.	2011		[Agarwal	used manually annotated
2011	hybrid mathad([Zhang et	They added hashtags to preprocessed data that			and Xie]	tweets with sentiment and
	method(problem	al.]	provides a subjective				perform unigram model to do classification.
	exist :		meaning, special rules	2011		[wang et	Utilized hashtag to perform
	lexicons		apply for the treatment of	2011		al].	graph-based classification.
	(low		comparative judgments, the	2011		[Burget et	proposed a framework that
	recall)		treatment of negation, and	2011		al.]	depends heavily on the pre-
	and		the treatment of				processing of the input data
	machine		expressions that can change				(Czech Newspaper
	learning		the orientation of a phrase.				Headlines) and labeling it
	techniqu		To identify a greater				using a classifier. The pre-
	es(depen d on		number of words indicative of subjective content, using				processing was done at the
	availabili		Chi-square test, with the				word and sentence levels,
	ty of		idea that if a term is more				by applying POS tagging, lemmatization and
	labeled		likely to appear in a				removing stop words. Term
	datasets)		positive or negative				Frequency – Inverse
)		judgment it is more likely				Document Frequency (TF-
			to be a subjective content				IDF) was used to calculate
			identifier.	_			the relevance between each
2011		[Das et al.	Genetic Algorithm				term and each emotion
]	achieved a good success				class. They achieved an
			for the subjectivity detection for Multiple				average accuracy of 80%
			Objective Optimization				for 1000 Czech news headlines using SVM with
2011	sentic	[Cambria	Concept Net, a semantic				10-fold cross validation.
	computin	et al.]	network was introduced				However their method was
	g	-	with approx 10000				not tested on English
	_		concepts and more than				dataset. Also it is not
			72000 features extracted				context sensitive as it only
			from Open mind corpus				considers emotional
			and developed Sentic				keywords as features.
			Computing. This research is based on a common	2011	multiling	[Cui et al.	analyzed the emoticon of
			sense and emotion		ual]	tweets with graph
			representation consisting of		twitter		propagation algorithm for
			four dimensions as basis to	2011	messages	[Kolya et	emoticon weighting. identified event and
			classify the affective states:	2011		al.	emotional expressions at
			Sensitivity, Attention,			u.]	word level from the
			Pleasantness and Aptitude.				sentences of TempEval-
			It have been used for short	1		•	

			2 010				
			2010 corpus, in which the				the sentence is followed by
			emotional expressions are				the system and determines
			also identified simply				the emotion of the text.
			based on the sentiment				
			lexicons, e.g., Subjectivity				
			Wordlist, WordNet-Affect				
	~		and SentiWordNet.	2012		ſ	developed a classifier to
2012	SenticNe	[Cambria	1. proposed an affective			Mohamma	detect emotions using
	t(concept	et al.]	categorisation model			d et al.]	tweets with emotion word
	based		primarily inspired by			1	hashtags (e.g., #anger,
	lexicon)		Plutchik's studies on				#surprise) as labeled data
			human emotions. Such				as they are good indicators
			model represents affective				that the tweet as a whole
			states both through labels				(even without the
			and through four				hashtagged emotion word)
			independent but				is expressing the same
			concomitant affective				emotion. 2. use the
			dimensions (Pleasantness,				pointwise mutual
			Attention, Sensitivity,	1			information to measure the
			Aptitude). In total, he				association between a word
			identified 24 emotion				and a given emotion. So he
			labels. 2.SenticNet was	1			builds a word emotion
			proved valuable for				association lexicons which
			sentiment detection in				are lists of words and
			conventional text (e.g.,				associated emotions. For
			product reviews) is a				example, the word victory
			concept-based lexicon for				may be associated with the
			sentiment analysis. It				emotions of joy and relief.
			contains 14k fine-grained concepts collected from the	2013		[Cambria]	the sentiment of a word is
			Open Mind corpus and				implicitly associated with
			coupled with their				the semantics of its context
			sentiment orientations.	2013	Random	[Montejo-	A new unsupervised
2012		[Shenghua	present two baseline	-	walk	Raez et al.	approach to the problem of
2012		et al.]	models: 1) emotion-term		analysis]	polarity classification in
		et ui.j	model that uses Naive		of the		Twitter posts is resolved
			Bayes to model social		concepts		by combining a random
			emotion and affective				walk algorithm that
			terms via their co-				weights synsets from the
			occurrences and 2) a LDA				text with polarity scores
			topic model which utilizes	1			provided by SentiWordNet,
			the term co-occurrence	1			it is possible to build a
			information within a				system comparable to a
			document and discovers the	1			SVM based supervised
			inherent topics within	1			approach in terms of
			affective text.				performance. They present
2012	using	[Dung et	make use the idea that	1			a new approach to the
	Hidden	al.]	emotions are related to	1			scoring of posts according
	Markov	_	human mental states which	1			to the positive or negative
	Model		are caused by some				degree of the opinions
			emotional events. This idea	0012		r	expressed in the text.
			is implemented using	2013		l Norozanan	worked on a fast and
			Hidden Markov Model	1		Narayanan	accurate sentiment
			where each sentence			et al.]	classification using an
			consists of many sub-ideas				Naive Bayes model by
			and each idea is treated an	1			combination of methods
			event that causes a	1			like effective negation
			transition to a certain state.				handling, word n grams
1		1	The sequence of events in				and feature selection by

			mutual information and	1		distionary 2 Correct
			mutual information results in a significant			dictionary. 3. Compared with the existing emotional
			improvement in accuracy.			lexicons, the constructed
			improvement in accuracy.			emotional dictionary is
2013		[Petz et al.	researchers declare	-		language-independent,
2015			mathematical definition for			fine-grained, and can be
		1	opinion, they define an			updated constantly.
			opinion as a quintuple (ei,	2014	ſ	1. implemented a variety of
			aij, sijkl, hk, tl), when the	2014	l Kiritchenk	features based on surface
			opinion is expressed. An		o et al.]	form and lexical categories
			entity is the target object of		0 et al. j	by describing the process
			an opinion. The aspects			of creating the automatic,
			represent parts or attributes			tweet-specific lexicons and
			of an entity (part-of-			demonstrate their superior
			relation). The sentiment is			predictive power over
			positive, negative or			several manually and
			neutral or can be expressed			automatically created
			with intensity levels.			general-purpose lexicons
2013		[Ortega et	proposed a technique with			and high-coverage, tweet-
		al.]	three phases; pre-			specific lexicons that we
		_	processing, polarity			generated from tweets with
			identification and			sentiment-word hashtags
			classification. WordNet			and from tweets with
			and SentiWordNet based			emoticons. 2. created a
			approach is used for the			supervised statistical
			purpose of polarity			sentiment analysis system
			detection and rule-based			that detects the sentiment
			classification is performed.			of short informal textual
2013	multiling	[Cui et al.	Mainly focus on building			messages such as tweets
	ual]	emotion tokens, including			and SMS (message-level
	twitter		emotion symbols (e.g.			task) as well as the
	messages		emoticons), irregular forms			sentiment of a term (a word
			of words and combined			or a phrase) within a
			punctuations using emotion tokens are extracted	2014	 [Chahaan	message (term-level task).
			automatically from tweets,	2014	[Shaheen	Propose a approach for emotion classification in
			emotion tokens are helpful		et al.]	English sentences where
			for both English and non-			the emotions are treated as
			English Twitter sentiment			concepts extracted from the
			analysis, and are			sentence. Concepts can be
			independent with the			expressed as nouns,
			tweets in different time			adjectives, adverbs, and
			periods to build the lexicon			verbal phrases or as a
			with the help of a graph			combination of different
			propagation algorithm			phrases. For example,
2013	word-	[Mao et al.	1. Algorithms of building			consider the sentence "I
	level and	j	the word-level and topic-			found a solution to a
	topic-		level emotional dictionaries			problem". This sentence
	level		are proposed, which are			represents an emotional
	emotiona		totally automatic, and no	1		concept extracted from the
	1		human resource is			semantic relations between
	dictionar		needed.2. The approach is	1		its words. The sentence
	ies		compared with the state-of-	1		indicates the emotion
			the-art algorithms by the	1		"Happiness", as the
			means of social emotion	1		concept of solving a
			classification. In addition,			problem will trigger the
			qualitative investigation is			emotion "Happiness".
			conducted to analyze the	1		
			generated emotional			

2014	Concert	[Domin of	introduce conserve level	b014	TOM	[Vhan at	1 Introduces and
2014	Concept	[Poria et	introduce concept level	2014	ТОМ	[Khan et	1. Introduces and
	level	al.]	sentiment analysis,			al.]	implements a hybrid
	sentimen		common-sense computing,				approach for determining
	tal		and machine learning for				the sentiment of each
	Analysis:		improving the accuracy of				tweet.2.Demonstrates the
	EmoSent		tasks by the use of sentic				value of pre-possessing
	icSpace		patterns and dependency				data using detection and
			based rules	4			analysis of
2014	sentimen	[Rao et al.	propose two sentiment				slangs/abbreviations,
	t topic]	topic models to associate				lemmatization, correction
	models		latent topics with evoked				and stop words removal.
			emotions of readers. The				3.Resolves the data sparsity
			first model which is an				issue using domain
			extension of the existing				independent techniques.
			Supervised Topic Model,	2014		[Cambria	implemented the semantic
			generates a set of topics			et al.]	multidimensional scaling
			from words firstly,				for open domain
			followed by sampling				sentimental analysis. In this
			emotions from each topic.				work, the largest existing
			The second model				taxonomy of common
			generates topics from				knowledge is blended with
			social emotions directly.				a natural language based
			Both models can be applied				semantic network of
			to social emotion				common sense knowledge
			classification and generate				and multi dimensional
L			social emotion lexicons.	4			scaling is applied on the
2014	unifying	[Fraisse et	presents a logical				resulting knowledge base
	model	al.]	formalization of a set 20				for open domain opinion
			semantic categories related				mining and sentimental
			to opinion, emotion and				analysis.
			sentiment. Our	2015		[Koto et	propose POS sequence as
			formalization is based on			al.]	feature to investigate
			the BDI model (Belief,				pattern or word
			Desire and Intetion) and				combination of tweets in
			constitues a first step				two domains of Sentiment
			toward a unifying model				Analysis: subjectivity and
			for subjective information				polarity, utilize Information
			extraction.	4			Gain to extract POS
2014	twitter	[Fraisse et	presented a novel approach				sequence in three forms:
	multiling	al.]	based on Twitter as a				sequence of 2-tags, 3-tags,
	ual		comparable corpus to				and 5-tags. The results
	affective		extract automatically				reveal that there are some
	lexicons		affective lexicons in seven				tendencies of sentence
			langages (English, French,				pattern which distinguish
			German, Italian, Spanish,				between positive, negative,
			Portuguese and Russian),				subjective and objective
			this is motivated by the				tweets. This shows that
			fact, that non				feature of POS sequence
			englishspeaker's, usually,				can improve Sentiment
			use bilingual terms in their				Analysis accuracy.
			messages. So, this is based	2015			manually mapped the
			on the co-occurence			Amalanath	emoticons from Unicode
			between the English and			an and	8.0 to nine emotional
			the target affective terms to			Anouncia]	categories and performed
			generate multilingual				the sentiment classification
			affective lexicons.				of tweets, using both
							emoticons and bag-of
							words as features.

		1		-
2015	Emoji	[Novak et	Emoji Sentiment Ranking,	There are many domains in this field. The domain are
	Sentimen	al.]	the first emoji sentiment	categorized to content based such as SMS, chats, blogs, and
	t		lexicon of 751 emojis, is a	Wikipedia that are all introduced in 1980's to 1990's. then,
	Ranking		valuable resource for	media based came into existence in 2002 like virtual world
			helping humans during the	and sharing of videos. Then mapping based services like
			annotation process, or even	google maps, yahoo maps are introduced in 2008. In all these
			to automatically label the	we are lacking somewhere as if we need some answer from
			tweets with emojis for	machine like recommendation system or question-answering,
			sentiment. In a lexicon-	so here comes the context based where social search and
			based approach to	recommendations attract user's attention since 2009 based on
			sentiment analysis, the	extracting emotions from text.
			emoji lexicon can be used	
			in combination with a	V. EMOTION RECOGNITION FROM
			lexicon of sentiment-	STRUCTURED AND UNSTRUCTURED TEXT.
			bearing words.	In this section we survey the state of the art in emotion
			Alternatively, an emoji	recognition in the engineering literature.Defining the tasks
			with alreadyknown	that are useful in recognizing emotions are discussed in
			sentiment can act as a seed	Section 5.1. Extraction of features such as syntactic,
			to transfer the sentiment to	semantic and linguistic resources available in market are
			the words in proximity.	reviewed in Section 5.2. Sections 5.3 and 5.4 are detailed
			Such a corpusbased	reviews of recent work in emotion recognition, including
			approach can be used for	Lexicon based and machine learning approaches.
			an automated corpus	Emotion Tasks
			construction for feature	Sentiment Analysis is considered as a problem of
			generation, and then	classification. The first step is to extract and select text
			applied to train a sentiment	features. Some of the current features are:
			classifier.	Presence and frequency of terms: These features are
2016	SentiCirc	[Saif et al.	propose a semantic	individual words or word n-grams and their frequency
	les]	sentiment representation of	counts. It either gives the words binary weighting (zero if the
		1	words, called SentiCircle,	word appears, or one if otherwise) or uses term frequency
			which is able to assign	weights to indicate the relative importance of feature.
			context-specific sentiment	Parts of speech (POS): finding adjectives, as they are
			orientation to words at	important indicator of emotion.
			both entity-level and tweet-	Opinion words and phrases: these are words commonly
			level using different	used to express opinions including good or bad, like or hate.
			methods. SentiCircle	On the other hand, some phrases express opinions without
			representation effectively	using opinion words.
			updated the sentiment	-Negations: the appearance of negative words may change
			strength of many terms	the orientation of opinion strength like not good is equivalent
			dynamically based on their	to bad.For this purpose, need is to text normalization mainly
			contextual semantics in	to handle negation.
			tweets.	Classes
L	1	1		Emotion mining categorize the emotion on different basis

IV. NEED OF DEFINING EMOTIONS IN DIFFERENT DOMINIONS.

The social network on Internet provide a coherent medium through which people can interact and socialize. Almost every second person is a Internet user worldwide. In India also, over 30% people use Internet for their social need[source: Internet WordStats Usage and population Statistics]. The percentage increases exponentially day by day. All tasks performed online and people's are more comfortable to use this. This includes filling a form, comments, feedback, opinions, suggestions, reviews from user. Now this extends to chats, blogs, discussions, forums, promotion of products and services, Micro blogging sites like Twitter, Facebook. So here we are interested to recognize emotions of user's in all that sources. —On the basis of Subjective/Objective texts: subjective means users feeling towards particular thing while objective is a fact.

—On the basis of valence indication: valence should be positive and negative.

-On the basis of tolerance: tolerance means strength or intensity.

In order to confine emotion from text document we require the classification which intends to infer the emotion expressed by the documents based on predefined lists of emotion. Predefined list of emotion contains basic set of emotions as [Ekman] defined six basic emotion named as Joy, Anger, Fear, Disgust, Sad and Surprise.

These are mainly focused on two main tasks.

-The test data aka text document that is collected from corpora required to understand the emotions invoked by

words and phrases is huge. This is because a different word evokes different emotions learnt from our day to day experiences. For this purpose, need is to enhanced dictionary with emotion word from WordNet Affect, Sentic-Net, SentiCircles to improve in result.

—Since the scope of words is larger in the scenario, the usage of words and their inflected form is large too and negations are major emotion modifiers. So these problems need to be solved properly. For this purpose, need is to text normalization mainly to handle negation.

Polarity

The sentiment polarity detection means classifying the text document into semantic classes such as positive, negative or neutral. It can be defined in another classes of emotions like anger, sad, happy, surprise etc.. Polarity is assigned using dictionary such as SentiWordNet, WordNet, SenticNet, SentiFul and others.

Subjective/Objective

Sentiment analysis classify the text at subjective and objective nature. Subjective nature means the text having opinion content eg. "The car is uncomfortable" and objective nature means text having no opinion contain but contains some fact like "SBI opens new branch in Delhi". [Das, 2011] accomplish a good success for the subjectivity detection on Multiple Objective Optimization in Genetic Algorithm.

5.1.2 Level

To analyze how people express emotions. Emotions can be expressed in simple text at different levels, by the use of adjectives or internet language like emoticons, interjections, acronyms and intentional misspelling like repetition of single letter in a word.

Emotions in simple text:

In simple text, we investigated that text is classified into the basic set of different emotions, classified using lexicons(in 1990's using manual lexicons and now the automatically generated lexicons).

Sentiment Analysis is classified in number of levels. There are seven main classification levels- document-level, sentence-level, phrase-level, tweet-level, word-level, entity-level and feature/aspect/topic/attribute/facet level.

Document-level Sentiment Analysis intend to classify an opinion document as expressing a positive or negative opinion or sentiment. It considers the whole document as one basic information unit.

Sentence-level Sentiment Analysis intend to classify sentiment that can be expressed in each and every sentence. Initially, identify whether the sentence is subjective or objective. If the sentence is subjective, Sentence-level Sentiment Analysis will determine whether the sentence expresses positive or negative opinions. [Wilson et al.] explain that expressing a sentiment is not always subjective in nature. There is no basic difference between document and sentence level classifications because sentences are just short documents.

Tweet-level intends to identify the overall sentiment of individual tweets. As tweets is related to sentence as tweets contain 140 characters, is a single sentence or two. Tweets contains emoticons, informal language.

Word-level/Phrase level intends to identify the sentiment

associated to each word as each word is associated with the sharing a sequence of human emotions.

Entity-level SA intends to use probabilistic models that can measure the sentiment of an entity as an combination of the sentiment of all tweets that are co-related with that entity. For example, the tweet, "The new Twitter for iPhone is awesome.", expresses a positive sentiment for "Twitter", but not for " iPhone ".

Classifying the text at document-level, sentence-level, or at word-level does not provide the required detail needed for opinions on all aspects of the entity, we need to move forward to aspect level. Sentiment Analysis till then, is not sufficient to satisfy the needs of end user, as one is interested in aspectual sentimental classification. For example, Indian government may be interested to know the change in the India before and after implementation demonetisation of currency. So, sentiment analysis system should be understand and identify the aspectual sentiments present in the text.

Aspect-level Sentiment Analysis intends to classify with respect to the particular aspects of entities. Initially, identify the entities and their aspects. The opinion possessor can give different opinions for different aspects of the same entity like this sentence "The camera feature of iPhone is not good enough, but the battery life is very good". This survey deal with the first two kinds of Sentiment Analysis.

Adjectives are used to find emotions as they are good indicators of person's emotions. In this we have to split the text into part-of-speech tags and then mark adjectives as emotions.

Emoticons were used in 37% of the posts; 22% of those contained more than one emoticon. Table illustrates the emotions that can be assigned to the used emoticons:

Tuble 2. Emotieona	s und expressed emotion
Emoticon	Emotion
:) :-) =) x) (:	Joy (smiling)
:D	Excitement
;);-);D;P(;	Wink
xD =D ^^ ^.^	Happiness (laughing)
<3 O *_* *.* **	Love
:P	Playfulness
:0	Surprise
:S	Skepticism
(Y)	Support (thumbs up)
:(=(Sadness
	Annoyance

Table 2. Emoticons and expressed emotions

Interjections	Emotion
Mmm	Pleasure
Hmm	Wondering
Mhmm	Confirmation
yeah, uee, juhu, jipi, wuhu, boah	Excitement
haha, hihi	Laughter
jumjum, njamnjam	Tasty
Wow	Surprise

Intentional misspelling and punctuations marks are interestingfrom the perspective of sentiment analysis as indication of emotion intensity. The recognized patterns include Capital letters,Repeating vocals andPunctuation marks, e.g.:"u r2 gud"

5.1.4 Source/Target

We can recognize emotions of a user, but what is user. Is it a reader, a writer or we can find emotions of any third entity or a target user.

FEATURE SELECTION AND EXTRACTION METHODS Feature Selection methods works with annotating the terms on some bases, can be described into lexicon-based methods that require human annotation which begin with a small set of 'seed' words., and statistical methods which are based on automation that we frequently used.

The feature selection methods indulge the documents either as group of words aka Bag of Words, or as a string which retains the sequence of words in the document. Bag of words is used usually because of its ease for the classification.

5.2.1 Syntactic and Statistical techniques

Syntactic techniques can convey improved precision because they make use of the syntactic system of the language in order to identify the verbs, adjectives and nouns. Regrettably such techniques deeply depend on the language of the document and as a result, the classifiers can't be portable to different languages.

On the other hand statistical techniques have probabilistic environment and focus on the associations between the words and categories. Statistical techniques have two considerable benefits over the Syntactic ones: we can use them in further languages with less or no adaptations and we can use translation of machine language of the original dataset and still get fairly high-quality results.

Part-of-speech Tag

Part-of-Speech tagging is done to assign the speech to each word of the review so as to concentrate on the adjectives, verb and adverbs. These words of review are represented using n-grams. This representation is stored in a database for sentiment polarity calculation. The features from the database are retrieved and the sentiment polarity is calculated using sentiment analysis technique i.e. dictionary based technique. N-Grams

N-grams are simply all combinations of adjacent words or letters of length n that you can find in your source text. For example, given the word cow, all 2-grams (or "bigrams") are co and ow. You may also count the word boundary - that would expand the list of 2-grams to #c, co, ow, and w#, where # denotes a word boundary. You can do the same on the word level. As an example, the hello, world! text contains the following word-level bigrams: # hello, hello world, world #.The basic point of n-grams is that they capture the language structure from the statistical point of view, like what letter or word is likely to follow the given one. The longer the n-gram (the higher the n), the more context you have to work with. Optimum length really depends on the application - if your n-grams are too short, you may fail to capture important differences. On the other hand, if they are toolong, you may fail to capture the "general knowledge" and only stick to particular cases.

5.2.2 Linguistic Resources

As we recognize emotions from social networking sites, the major step was to develop lexicons. There are many researcher who develop their lexicon based dictionaries that help to identify the emotion. Lexicon Resources are created to acquire the knowledge about emotions.In this regard, Philip Stones for the first time, identify emotions as compared to manual databases consist of emotion words. Then Fellbaum et al. developed WordNet, the lexicon dictionary consist of all English words. In 1999, Bradley et al. develop ANEW lexicon which consists of all affective words, then LIWC lexicon is proposed by Pennebaker et al. that works on frequency counts. In 2004 C. Strapparava et al. presents WordNet-Affect that emphasis on affective words. Wilson et al. develop MPQA subjectivity lexicon that calculates words valence and arousal level. In 2006, A. Esuli et al. develop SentiWordNet that extends the quality of WordNet. In 2007, C. Strapparava et al. develop Semeval that has numerous tasks. In this, emotions are fond to be categorized as positive, negative, and neutral and marked the text with affective words. Chaumartin et al. develop UPAR7, a rule based lexicon system using three defined lexicons sources, WordNet, WordNet-Affect and SentiWordNet. In 2010 Thelwall develop SentiStrength to find emotions from unstructured online post. Yassine et al. develop emoticons, acronyms and foreign lexicons. Neviarouskaya et al. develop EmoHeart, rule base lexicon that also helps to visualize emotions. Mohammed et al. develop NRC-Emotion lexicon that consists of part-of -speech tags for different set of emotions. In 2011 Cambria et al. give the concept of Concept-Net lexicon that recognize emotions based on common sense and Sentic-Net in 2012 that is based on Concept-Net. In 2014, Poria at al. presents EmoSenticSpace that is based on Concept Net and some machine learning algorithms. In 2015, Petra Kralj Novak et al. presents Emoji lexicons to analyse emotions from tet containing emoticons. In 2016, Hassan Saif et al. presents SentiCircles lexicon that dynamically enhance strength of emotions based on the meaning present behind the context.

5.2.3 Multilingual

To recognize emotions in cross-culture, many papers published uses the concept of translation to an intermediate state and then to a target language. Emoticons are one of the aspect to recognize emotions as emoticons, a graphical symbol is free from language and culture boundations and convey a same emotion throughout this world.

5.2.4 Feature Selection

In learning based techniques, before training the classifier, you must select the words/features that you will use on your model. You can't just use all the words that the tokenization algorithm returned simply because there are several irrelevant words within them.

Two commonly used feature selection algorithms in Text Classification are the Mutual Information and the Chi-square test. Each algorithm evaluates the keywords in a different way and thus leads to different selections. Also each algorithm requires different configuration such as the level of statistical significance, the number of selected features etc. Again you must use Trial and error to find the configuration that works better in your project.

Point-wise Mutual Information (PMI)

The mutual information determination provides a prescribed way to represent the mutual information between the features and the classes. This determination is predicted from the theory of information. The point-wise mutual information (PMI) among the word and the class is defined on the basis of the level of co-occurrence between the class and term .When PMI function returns the value greater than zero, the term is positively correlated to the class otherwise, the term is negatively correlated to the class.

PMI(term, class)=log[p(term, class)p(term)p(class)]

Many applications uses PMI, co-occurrence strength is only the consideration of it, so many changes are applied to it. [Yu and Wu] have enhance the basic PMI by developing a contextual entropy model to inflate a set of seed words generated from a small corpus of stock market news articles. Their contextual entropy model measures the similarity between two terms by comparing their contextual distributions using an entropy measure, allowing for the discovery of words similar to the seed words. Once the seed words have been expanded, both the seed words and expanded words are used to categorize the sentiment of the news articles. The results showed that their method can determine more useful emotion words, and its corresponding intensity improves the classification performance. This process outperformed the PMI-based expansion methods as they consider both co-occurrence strength and contextual distribution, thus acquiring more useful emotion words and fewer noisy words.

Chi-square (X2)

Chi-Square is one of the statistical approach like PMI approach that can assess the goodness of fit between a set of experimental values and those that are predictable hypothetically.

The test statistic for the chi-squared test of independence is

$$\zeta^{2} = \sum_{i=1}^{r} \sum_{k=1}^{c} [O_{ik} - E_{ik}]^{2} \div E_{ik},$$

where

- *r* is the number of terms.
- *c* is the number of correlated term.
- O_{ik} is the observed count of the cell in the *ith* row and the *kth* column.
- E_{ik} is the expected count of the cell in the *ith* row and the *kth* column.

5.3.1 Dictionary based approach

The lexicon based methods use key Spotting method where they rely on emotion lexicons i.e., pre-built dictionary of words and their related sentiment orientation such as WordNet, LIWC lexicon, MPQA subjectivity lexicon, SentiStrength and SentiWordNet.

5.3.2 Corpus based approach

Corpus based lexicon requires annotating corpus with labels that consist of semantic information which is highly associated as features[Pang,2008] and [I.Titov et al.2008] described a new statistical representation "MultiAspect Sentiment Model" consisting of two things, first is to process generating topics and second to find its associating emotion. The topics is usually an entity for which we find emotions in different linguistics. There are different methods to find relevant emotions from corpus i.e. AAA, stands for Annotation, Abstraction and Analysis. Annotation includes part-of-speech tagging, parsing of text. Abstraction consists of translating of one text to other applying the linguistic rules and Analysis consists of statistically probing, evaluating, manipulating using rule base, and generalizing from the given dataset. SentiWordNet3.0 is more useful dictionary in this case. There are various limitations of lexicon-based methods as they are limited by pre-built dictionaries and they are fully reliant of presence of words or syntactical features that can echo emotions. Although this limitation is improved by Hassan Saif et al. "Contextual Semantics for Sentiment Analysis of Twitter". So, we move to new approach called machine learning approach.

5.4 MACHINE LEARNING APPROACH

Machine learning techniques can be understood by its four categories supervised, semi-supervised, unsupervised and hybrid.

5.4.1 Supervised approach

Supervised learning approach requires training of data to learn emotion classifiers. Initially manual seed-words are use to classify the sentiments of a text whether its polarity is positive, negative or neutral. Each domain should have different classifiers as we have different set of features for different domains and at different levels. For example, A positive review of one product is a negative review for other product. Classifying the emotions has different approaches, polarity, subjectivity classification, feature selection at different levels.

There are many learning algorithms based on supervised approach. Supervised learning approaches include support vector machine, neural network, naive bayes, Bayesian network and maximum entropy classification.

Support Vector Machine(SVM) a emotion trained classifiers used to analyze the data and data patterns that can be used for classification, regression analysis, clustering of opinions of same type of emotions. SVM performs best for tri-gram model Jiang,2011 use SVM classifier to study the classification of target dependent emotions. So, this is also helpful in context aware environment.

Conditional Random Field(CRF) is a classifier used for sequential emotions using structural prediction. It predict a label taking into account a neighboring emotions.

Naïve Bayes Classifier is based on naïve baye's theorem and uses the concept of maximum likelihood and Bayesian probability. It is used in emotion-term model in Sem-Eval 2007 provides a technique to calculate term-emotion associations using their co-occurrence counts. This classifier give highest accuracy with storyline documents or articles.

By using naïve bayes, CRF, and SVM classifier, one can found an emotion in binary output i.e, positive or negative.But a user can be interested to identify an emotion at aspect level so move to next method, Maximum Entropy classifier.

Maximum entropy is a probability distribution estimation technique widely used for language modeling, part-of – speech tagging and text segmentation. It prefer uniform

models that satisfy some constraints.

5.4.2 Semi-supervised approach

The limitations of supervised approach is that it needs to train classifier and its dependence on domain cost much so to overcome this limitation Go et al. propose distant supervision approach that makes use of automatic generated training data set where emoticons are use to tag tweets as positive or negative.

5.4.3 Unsupervised approach

Point-wise Mutual Information (PMI) Algorithm

For the first time Turney et al. used Point-wise mutual information, an unsupervised classifier to automate a system that can find consecutive words and their semantic polarity using emoticons "thumbs up" to represent positive and "thumbs down" to represent negative opinions.

Latent Dirichlet Allocation Algorithm

A domain-independent lexicon based on Latent Dirichlet Allocation for sentiment analysis is constructed. It's a way of automatically discovering topics that sentences contain. LDA is a probabilistic model to construct a lexicon. The lexicon constructed is highly related to the dataset. Precision of this lexicon is more than the Liu's lexicon, MPQA and GI. This method is better than trivial methods in all aspects as trivial approach builds the lexicon based on calculating the words appearing number of occurrences in positive and negative reviews.

Random Walk Algorithm

Random Walk Algorithm, an automatic construction of domain-oriented sentiment lexicon. However, most of the attempts rely on only the relationship between sentiment words, failing to uncover the mutual relationship between the words and the documents, as well as ignoring the useful knowledge of some existed domains (or "old domain"). The approach simulates a random walk on the graphs that reflect four kinds of relationships (the relationship between words, the relationship from words to documents, the relationship between documents, the relationship from documents to words) between documents and words.

5.5 Hybrid Approach

In lexicon based, there is a problem of low recall and in machine learning technique, problem is to domain independence. To avoid these two limitations, hybrid approach is used to determine emotion.

VI. CONCLUSION

Emotions are one of the major aspect of human life that are very useful in various applications as discussed in Table 1. So there is a need of something that recognizes emotions. Ekman, Pluchik and many other researchers define the group of emotions where we can classify our emotions. In this field we try our best to read as many papers as we can, summarise all papers, discuss some classifiers which we can use. To recognize emotions, a first step is to remove any content that can not be beneficial to recognize emotions like hashtagged content, url, email, etc. Then convert mis-spelled words like acronyms used, informal content used in messages etc. then using classifier, find the group which it belongs to, then find polarity, valence etc. to recognize emotions. Negative words, modals, adjectives, emoticons are good source to recognize emotions. We also identified that a emotion is not recognized only by its words, their co-occurrence but their semantic behind every context.

REFERENCES

- Osgood, Charles Egerton, William H. May, and Murray S. Miron. Cross-cultural universals of affective meaning. University of Illinois Press, 1975.
- [2] Russell, James A. "Is there universal recognition of emotion from facial expressions? A review of the cross-cultural studies." Psychological bulletin115, no. 1 (1994): 102.
- [3] Fahlman, Scott E., Jeff Baird, and Mike Jones. "Original Bboard Thread in which:-) was proposed." (1982).
- [4] Miller, George A., Richard Beckwith, Christiane Fellbaum, Derek Gross, and Katherine J. Miller. "Introduction to wordnet: An on-line lexical database*."International journal of lexicography 3, no. 4 (1990): 235-244.
- [5] Ortony, Andrew, Gerald L. Clore, and Allan Collins. The cognitive structure of emotions.Cambridge university press, 1990.
- [6] Shaver, Phillip, Judith Schwartz, Donald Kirson, and Cary O'connor. "Emotion knowledge: further exploration of a prototype approach." Journal of personality and social psychology 52, no. 6 (1987): 1061.
- [7] Pluchik, R. "A general psychoevolutionary theory of emotions." Emotion: Theory, research and experience 1: 3-33.
- [8] Hearst, Marti A. "Automatic acquisition of hyponyms from large text corpora." In *Proceedings* of the 14th conference on Computational linguistics-Volume 2, pp. 539-545.Association for Computational Linguistics, 1992.
- [9] Ekman, Paul. "An argument for basic emotions." Cognition & emotion 6, no. 3-4 (1992): 169-200.
- [10] Brill, Eric. "Some advances in transformation-based part of speech tagging."arXiv preprint cmplg/9406010 (1994).
- [11] Hatzivassiloglou, Vasileios, and Kathleen R. McKeown. "Predicting the semantic orientation of adjectives." In Proceedings of the 35th annual meeting of the association for computational linguistics and eighth conference of the european chapter of the association for computational linguistics, pp. 174-181. Association for Computational Linguistics, 1997.
- [12] Bradley, Margaret M., and Peter J. Lang. Affective norms for English words (ANEW): Instruction manual and affective ratings. Technical report C-1, the center for research in psychophysiology, University of Florida, 1999.
- [13] Hatzivassiloglou, Vasileios, and Janyce M. Wiebe. "Effects of adjective orientation and gradability on sentence subjectivity."In *Proceedings of the 18th conference on Computational linguistics*-Volume 1,

pp. 299-305. Association for Computational Linguistics, 2000

- [14] Hatzivassiloglou, Vasileios, and Janyce M. Wiebe.
 "Effects of adjective orientation and gradability on sentence subjectivity."In *Proceedings of the 18th conference on Computational linguistics*-Volume 1, pp. 299-305. Association for Computational Linguistics, 2000
- [15] Das, Sanjiv, and Mike Chen. "Yahoo! for Amazon: Extracting market sentiment from stock message boards." In *Proceedings of the Asia Pacific finance association annual conference (APFA)*, vol. 35, p. 43. 2001.
- [16] Corney, Malcolm, Olivier De Vel, Alison Anderson, and George Mohay. "Gender-preferential text mining of e-mail discourse."In Computer Security Applications Conference, 2002.Proceedings. 18th Annual, pp. 282-289. IEEE, 2002.
- [17] Turney, Peter D. "Thumbs up or thumbs down?: semantic orientation applied to unsupervised classification of reviews." In *Proceedings of the* 40th annual meeting on association for computational linguistics, pp. 417-424.Association for Computational Linguistics, 2002.
- [18] Morinaga, Satoshi, Kenji Yamanishi, Kenji Tateishi, and Toshikazu Fukushima. "Mining product reputations on the web."*In Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining*, pp. 341-349.ACM, 2002.
- [19] Pang, Bo, Lillian Lee. and ShivakumarVaithyanathan. "Thumbs up?: sentiment classification using machine learning techniques." In Proceedings of the ACL-02 conference on Empirical methods in natural language processing-Volume 10. pp. 79-86. Association for Computational Linguistics, 2002.
- [20] Pennebaker, James W., Matthias R. Mehl, and Kate G. Niederhoffer. "Psychological aspects of natural language use: Our words, our selves." Annual review of psychology 54, no. 1 (2003): 547-577.
- [21] Yi, Jeonghee, Tetsuya Nasukawa, RazvanBunescu, Wayne Niblack. "Sentiment and analyzer: Extracting sentiments about a given topic using natural language processing techniques." In Data 2003.ICDM 2003. Mining, Third IEEE International Conference on, pp. 427-434. IEEE, 2003.
- [22] Yu, Hong, and VasileiosHatzivassiloglou. "Towards answering opinion questions: Separating facts from opinions and identifying the polarity of opinion sentences." In *Proceedings of the 2003 conference* on Empirical methods in natural language processing, pp. 129-136. Association for Computational Linguistics, 2003
- [23] Dave, Kushal, Steve Lawrence, and David M. Pennock. "Mining the peanut gallery: Opinion extraction and semantic classification of product reviews."In *Proceedings of the 12th international*

conference on World Wide Web, pp. 519-528.ACM, 2003.

- [24] Blei, David M., Andrew Y. Ng, and Michael I. Jordan. "Latent dirichlet allocation." the Journal of machine Learning research 3 (2003): 993-1022.
- [25] Liu, Hugo, Henry Lieberman, and Ted Selker. "A model of textual affect sensing using real-world knowledge." In *Proceedings of the 8th international conference on Intelligent user interfaces*, pp. 125-132. ACM, 2003.
- [26] Wilson, Theresa, JanyceWiebe, and Rebecca Hwa. "Just how mad are you? Finding strong and weak opinion clauses."In aaai, vol. 4, pp. 761-769. 2004.
- [27] Kamps, Jaap, M. J. Marx, Robert J. Mokken, and M. de Rijke. "Using wordnet to measure semantic orientations of adjectives." (2004): 1115-1118
- [28] Hu, M. and Liu, B., 2004, August. Mining and summarizing customer reviews. In *Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining* (pp. 168-177).ACM.
- [29] Strapparava, Carlo, and Alessandro Valitutti. "WordNet Affect: an Affective Extension of WordNet." In LREC, vol. 4, pp. 1083-1086. 2004.
- [30] Aue, Anthony, and Michael Gamon. "Customizing sentiment classifiers to new domains: A case study." In Proceedings of recent advances in natural language processing (RANLP), vol. 1, no. 3.1, pp. 2-1. 2005.
- [31] Alm, Cecilia Ovesdotter, Dan Roth, and Richard Sproat. "Emotions from text: machine learning for text-based emotion prediction." In *Proceedings of the conference on human language technology and empirical methods in natural language processing*, pp. 579-586. Association for Computational Linguistics, 2005
- [32] Read, Jonathon. "Using emoticons to reduce dependency in machine learning techniques for sentiment classification."In *Proceedings of the ACL student research workshop*, pp. 43-48.Association for Computational Linguistics, 2005.
- [33] Wiebe, Janyce, and Ellen Riloff. "Creating subjective and objective sentence classifiers from unannotated texts." In Computational Linguistics and Intelligent Text Processing, pp. 486-497. Springer Berlin Heidelberg, 2005.
- [34] Ma, Chunling, Helmut Prendinger, and Mitsuru Ishizuka. "Emotion estimation and reasoning based on affective textual interaction." In Affective computing and intelligent interaction, pp. 622-628.Springer Berlin Heidelberg, 2005.
- [35] Wilson, Theresa, JanyceWiebe, and Paul Hoffmann. "Recognizing contextual polarity in phrase-level sentiment analysis."In *Proceedings of the conference on human language technology and empirical methods in natural language processing*, pp. 347-354.Association for Computational Linguistics, 2005.
- [36] Gamon, Michael, Anthony Aue, Simon Corston-

Oliver, and Eric Ringger. "Pulse: Mining customer opinions from free text." In Advances in Intelligent Data Analysis VI, pp. 121-132.Springer Berlin Heidelberg, 2005.

- [37] Niu, Yun, Xiaodan Zhu, Jianhua Li, and Graeme Hirst. "Analysis of polarity information in medical text."In AMIA. 2005.
- [38] Zhao, Yan-Yan, Bing Qin, and Ting Liu. "Sentiment analysis." Journal of Software 21, no. 8 (2010): 1834-1848.
- [39] Andreevskaia, Alina, and Sabine Bergler. "Sentiment tagging of adjectives at the meaning level."In Advances in Artificial Intelligence, pp. 336-346.Springer Berlin Heidelberg, 2006.
- [40] Mao, Yi, and Guy Lebanon. "Isotonic conditional random fields and local sentiment flow." In Advances in neural information processing systems, pp. 961-968. 2006.
- [41] Wiebe, Janyce, and RadaMihalcea. "Word sense and subjectivity." In Proceedings of the 21st International Conference on *Computational* Linguistics and the 44th annual meeting of the Association for Computational Linguistics, pp. Association 1065-1072. for Computational Linguistics, 2006.
- [42] Wu, Chung-Hsien, Ze-Jing Chuang, and Yu-Chung Lin. "Emotion recognition from text using semantic labels and separable mixture models." *ACM transactions on Asian language information processing (TALIP)* 5, no. 2 (2006): 165-183.
- [43] Wang, Xuerui, and Andrew McCallum. "Topics over time: a non-Markov continuous-time model of topical trends." In *Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining*, pp. 424-433.ACM, 2006.
- [44] Esuli, Andrea, and FabrizioSebastiani.
 "Sentiwordnet: A publicly available lexical resource for opinion mining." In Proceedings of LREC, vol. 6, pp. 417-422. 2006.
- Bethard, and [45] Steven, James H. Martin. "Identification of event mentions and their semantic class."In Proceedings of the 2006 Conference on Empirical Methods Natural in Language Processing, 146-154.Association for pp. Computational Linguistics, 2006.
- [46] Eguchi, Koji, and Victor Lavrenko. "Sentiment retrieval using generative models."In Proceedings of the 2006 conference on empirical methods in natural language processing, pp. 345-354.Association for Computational Linguistics, 2006.
- [47] Yang, Changhua, Kevin Hsin-Yih Lin, and Hsin-Hsi Chen. "Emotion classification using web blog corpora."In Web Intelligence, IEEE/WIC/ACM International Conference on, pp. 275-278.IEEE, 2007.
- [48] Strapparava, Carlo, and RadaMihalcea. "Semeval-2007 task 14: Affective text." In *Proceedings of the*

4th International Workshop on Semantic Evaluations, pp. 70-74.Association for Computational Linguistics, 2007.

- [49] Hancock, Jeffrey T., Christopher Landrigan, and Courtney Silver. "Expressing emotion in text-based communication." In *Proceedings of the SIGCHI conference on Human factors in computing systems*, pp. 929-932. ACM, 2007.
- [50] Redondo, Jaime, Isabel Fraga, Isabel Padrón, and Montserrat Comesaña. "The Spanish adaptation of ANEW (affective norms for English words)."Behavior research methods 39, no. 3 (2007): 600-605
- [51] Chaumartin, François-Régis. "UPAR7: A knowledge-based system for headline sentiment tagging." In Proceedings of the 4th International Workshop on Semantic Evaluations, pp. 422-425.Association for Computational Linguistics, 2007.
- [52] Mei, Qiaozhu, Xu Ling, Matthew Wondra, Hang Su, and ChengXiangZhai. "Topic sentiment mixture: modeling facets and opinions in weblogs." In *Proceedings of the 16th international conference* on World Wide Web, pp. 171-180.ACM, 2007.
- [53] Titov, Ivan, and Ryan T. McDonald. "A Joint Model of Text and Aspect Ratings for Sentiment Summarization."In ACL, vol. 8, pp. 308-316. 2008.
- [54] Strapparava, Carlo, and RadaMihalcea. "Learning to identify emotions in text." In Proceedings of the 2008 ACM symposium on Applied computing, pp. 1556-1560. ACM, 2008.
- [55] Zhao, Jun, Kang Liu, and Gen Wang. "Adding redundant features for CRFs-based sentence sentiment classification."In Proceedings of the conference on empirical methods in natural language processing, pp. 117-126.Association for Computational Linguistics, 2008.
- [56] Pang, Bo, and Lillian Lee. "Opinion mining and sentiment analysis."Foundations and trends in information retrieval 2, no. 1-2 (2008): 1-135.
- [57] Ganesan, Kavita A., NeelakantanSundaresan, and HarshalDeo. "Mining tag clouds and emoticons behind community feedback." In *Proceedings of the 17th international conference on World Wide Web*, pp. 1181-1182.ACM, 2008.
- [58] Jindal, Nitin, and Bing Liu. "Opinion spam and analysis."In *Proceedings of the 2008 International Conference on Web Search and Data Mining*, pp. 219-230.ACM, 2008.
- [59] Bao, Shenghua, ShengliangXu, Li Zhang, Rong Yan, Zhong Su, Dingyi Han, and Yong Yu. "Joint emotion-topic modeling for social affective text mining."In Data Mining, 2009.ICDM'09. Ninth IEEE International Conference on, pp. 699-704. IEEE, 2009.
- [60] Go, Alec, RichaBhayani, and Lei Huang. "Twitter sentiment classification using distant supervision." CS224N Project Report, Stanford 1 (2009): 12.

- [61] Denecke, Kerstin. "Are SentiWordNet scores suited for multi-domain sentiment classification?." In Digital Information Management, 2009.ICDIM 2009. Fourth International Conference on, pp. 1-6. IEEE, 2009.
- [62] Das, Dipankar, and SivajiBandyopadhyay. "Sentence-level emotion and valence tagging." Cognitive Computation 4, no. 4 (2012): 420-435.
- [63] Mohammad, Saif M., and Peter D. Turney. "Emotions evoked by common words and phrases: Using Mechanical Turk to create an emotion lexicon." In *Proceedings of the NAACL HLT 2010* workshop on computational approaches to analysis and generation of emotion in text, pp. 26-34.Association for Computational Linguistics, 2010.
- [64] Go, Alec, RichaBhayani, and Lei Huang. "Twitter sentiment classification using distant supervision." CS224N Project Report, Stanford 1 (2009): 12.
- [65] Pak, Alexander, and Patrick Paroubek. "Twitter as a Corpus for Sentiment Analysis and Opinion Mining." In LREc, vol. 10, pp. 1320-1326. 2010.
- [66] Thelwall, Mike, Kevan Buckley, Georgios Paltoglou, Di Cai, and ArvidKappas. "Sentiment strength detection in short informal text." Journal of the American Society for Information Science and Technology 61, no. 12 (2010): 2544-2558.
- [67] Yassine, Mohamed, and Hazem Hajj. "A framework for emotion mining from text in online social networks."In Data Mining Workshops (ICDMW), 2010 IEEE International Conference on, pp. 1136-1142.IEEE, 2010.
- [68] Neviarouskaya, Alena, Helmut Prendinger, and Mitsuru Ishizuka. "EmoHeart: conveying emotions in second life based on affect sensing from text."Advances in Human-Computer Interaction 2010 (2010): 1.
- [69] Baccianella, Stefano, Andrea Esuli, and FabrizioSebastiani. "SentiWordNet 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining." In LREC, vol. 10, pp. 2200-2204. 2010.
- [70] Batra, Siddharth, and Deepak Rao. "Entity based sentiment analysis on twitter." Science 9, no. 4 (2010): 1-12.
- [71] Mohammad, Saif M., and Peter D. Turney. NRC Emotion Lexicon.NRC Technical Report, 2013.
- [72] Davidov, Dmitry, Oren Tsur, and Ari Rappoport. "Enhanced sentiment learning using twitter hashtags and smileys." In Proceedings of the 23rd international conference on computational linguistics: posters, pp. 241-249. Association for Computational Linguistics, 2010.
- [73] Boyd-Graber, Jordan, and Philip Resnik. "Holistic sentiment analysis across languages: Multilingual supervised latent Dirichlet allocation." In Proceedings of the 2010 Conference on Empirical Methods in Natural Language

Processing, pp. 45-55.Association for Computational Linguistics, 2010.

- [74] Joshi, Aditya, A. R. Balamurali, and Pushpak Bhattacharyya. "A fall-back strategy for sentiment analysis in hindi: a case study." *Proceedings of the* 8th ICON (2010).
- [75] Kouloumpis, Efthymios, Theresa Wilson, and Johanna D. Moore. "Twitter sentiment analysis: The good the bad and the omg!." Icwsm 11 (2011): 538-541.
- [76] Taboada, Maite, Julian Brooke, Milan Tofiloski, Kimberly Voll, and Manfred Stede. "Lexicon-based methods for sentiment analysis." Computational linguistics 37, no. 2 (2011): 267-307.
- [77] Zhang, Yudong, Zhengchao Dong, Lenan Wu, and Shuihua Wang. "A hybrid method for MRI brain image classification." Expert Systems with Applications 38, no. 8 (2011): 10049-10053.
- [78] Das, Swagatam, and PonnuthuraiNagaratnamSuganthan. "Differential evolution: a survey of the state-of-theart." Evolutionary Computation, IEEE Transactions on 15, no. 1 (2011): 4-31.
- [79] Cambria, Erik, Thomas Mazzocco, Amir Hussain, and Tariq Durrani. "Switching Between Different Ways to Think."In Analysis of Verbal and Nonverbal Communication and Enactment. The Processing Issues, pp. 56-69. Springer Berlin Heidelberg, 2011.
- [80] Hernández, Sergio, and Philip Sallis. "Sentimentpreserving reduction for social media analysis." In Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, pp. 409-416. Springer Berlin Heidelberg, 2011.
- [81] Agarwal, Apoorv, BoyiXie, Ilia Vovsha, Owen Rambow, and Rebecca Passonneau. "Sentiment analysis of twitter data."In *Proceedings of the workshop on languages in social media*, pp. 30-38.Association for Computational Linguistics, 2011.
- [82] Wang, Xiaolong, Furu Wei, Xiaohua Liu, Ming Zhou, and Ming Zhang. "Topic sentiment analysis in twitter: a graph-based hashtag sentiment classification approach." In *Proceedings of the 20th* ACM international conference on Information and knowledge management, pp. 1031-1040.ACM, 2011.
- [83] Cui, Anqi, Min Zhang, Yiqun Liu, and Shaoping Ma. "Emotion tokens: Bridging the gap among multilingual twitter sentiment analysis." InInformation retrieval technology, pp. 238-249.Springer Berlin Heidelberg, 2011.
- [84] Das, Dipankar, Anup Kumar Kolya, AsifEkbal, and SivajiBandyopadhyay. "Temporal analysis of sentiment events-a visual realization and tracking."InComputational Linguistics and Intelligent Text Processing, pp. 417-428. Springer Berlin Heidelberg, 2011.
- [85] Cambria, Erik, Marco Grassi, Amir Hussain, and

Catherine Havasi. "Sentic computing for social media marketing." Multimedia tools and applications 59, no. 2 (2012): 557-577.

- [86] Bao, Shenghua, ShengliangXu, Li Zhang, Rong Yan, Zhong Su, Dingyi Han, and Yong Yu. "Mining social emotions from affective text." Knowledge and Data Engineering, IEEE Transactions on 24, no. 9 (2012): 1658-1670.
- [87] Chamlertwat, Wilas, PattarasineeBhattarakosol, TippakornRungkasiri, and ChoochartHaruechaiyasak. "Discovering Consumer Insight from Twitter via Sentiment Analysis." J. UCS 18, no. 8 (2012): 973-992.
- [88] Mohammad, Saif M., Svetlana Kiritchenko, and Xiaodan Zhu. "NRC-Canada: Building the state-ofthe-art in sentiment analysis of tweets." arXiv preprint arXiv:1308.6242 (2013).
- [89] Cambria, Erik. "An introduction to concept-level sentiment analysis."InAdvances in Soft Computing and Its Applications, pp. 478-483. Springer Berlin Heidelberg, 2013.
- [90] Montejo-Ráez, Arturo, Eugenio Martínez-Cámara, M. Teresa Martín-Valdivia, and L. Alfonso Ureña-López. "Ranked wordnet graph for sentiment polarity classification in twitter." Computer Speech & Language 28, no. 1 (2014): 93-107.
- [91] Narayanan, Vivek, IshanArora, and Arjun Bhatia. "Fast and accurate sentiment classification using an enhanced Naive Bayes model."InIntelligent Data Engineering and Automated Learning–IDEAL 2013, pp. 194-201. Springer Berlin Heidelberg, 2013.
- [92] Petz, Gerald, MichałKarpowicz, HaraldFürschuß, Andreas Auinger, VáclavStříteský, and Andreas Holzinger. "Opinion mining on the web 2.0– characteristics of user generated content and their impacts." In Human-Computer Interaction and Knowledge Discovery in Complex, Unstructured, Big Data, pp. 35-46. Springer Berlin Heidelberg, 2013.
- [93] Ortega, Reynier, Adrian Fonseca, and Andrés Montoyo. "SSA-UO: Unsupervised Twitter sentiment analysis." In Second Joint Conference on Lexical and Computational Semantics (* SEM), vol. 2, pp. 501-507. 2013.
- [94] Cui, Anqi, Haochen Zhang, Yiqun Liu, Min Zhang, and Shaoping Ma. "Lexicon-based sentiment analysis on topical chinesemicroblog messages." In Semantic Web and Web Science, pp. 333-344. Springer New York, 2013.
- [95] Qadir, Ashequl, and Ellen Riloff. "Bootstrapped learning of emotion hashtags# hashtags4you."In Proceedings of the 4th workshop on computational approaches to subjectivity, sentiment and social media analysis, pp. 2-11. 2013.
- [96] Mao, Xudong, YanghuiRao, and Qing Li. "Recipe popularity prediction based on the analysis of social reviews." In Awareness Science and Technology and Ubi-Media Computing (iCAST-UMEDIA), 2013 International Joint Conference on, pp. 568-

573. IEEE, 2013.

- [97] Kiritchenko, Svetlana, Xiaodan Zhu, and Saif M. Mohammad. "Sentiment analysis of short informal texts." Journal of Artificial Intelligence Research(2014): 723-762.
- [98] Shaheen, Shadi, Wassim El-Hajj, Hazem Hajj, and Shady Elbassuoni. "Emotion Recognition from Text Based on Automatically Generated Rules." In Data Mining Workshop (ICDMW), 2014 IEEE International Conference on, pp. 383-392.IEEE, 2014.
- [99] Poria, Soujanya, Erik Cambria, GregoireWinterstein, and Guang-Bin Huang.
 "Sentic patterns: Dependency-based rules for concept-level sentiment analysis." Knowledge-Based Systems 69 (2014): 45-63.
- [100] Rao, Yanghui, Qing Li, Xudong Mao, and Liu Wenyin. "Sentiment topic models for social emotion mining." Information Sciences 266 (2014): 90-100.
- [101] Fraisse, Amel, and Patrick Paroubek."Toward a unifying model for Opinion, Sentiment and Emotion information extraction."In LREC, pp. 3881-3886. 2014.
- [102] Fraisse, Amel, and Patrick Paroubek. "Twitter as a comparable corpus to build multilingual affective lexicons." In The 7th Workshop on Building and Using Comparable Corpora, pp. 26-31. 2014.
- [103] Khan, Farhan Hassan, Saba Bashir, and UsmanQamar. "TOM: Twitter opinion mining framework using hybrid classification scheme." Decision Support Systems 57 (2014): 245-257.
- Poria, Soujanya, Alexander Gelbukh, Erik Cambria, Amir Hussain, and Guang-Bin Huang.
 "EmoSenticSpace: A novel framework for affective common-sense reasoning." Knowledge-Based Systems 69 (2014): 108-123.
- [105] Koto, Fajri, and MirnaAdriani."The Use of POS Sequence for Analyzing Sentence Pattern in Twitter Sentiment Analysis." In Advanced Information Networking and Applications Workshops (WAINA), 2015 IEEE 29th International Conference on, pp. 547-551. IEEE, 2015.
- [106] Amalanathan, Anthoniraj, and S. Margret Anouncia."Social network user's content personalization based on emoticons." Indian Journal of Science and Technology 8, no. 23 (2015).
- [107] Novak, Petra Kralj, JasminaSmailović, BorutSluban, and Igor Mozetič."Sentiment of emojis." PloS one 10, no. 12 (2015): e0144296.
- [108] Saif, Hassan, Yulan He, Miriam Fernandez, and HarithAlani."Contextual semantics for sentiment analysis of Twitter." Information Processing & Management 52, no. 1 (2016): 5-19.