
International Journal For Technological Research In Engineering

Volume 4, Issue 9, May-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 1651

VLSI ARCHITECTURE FOR EXPLOITING CARRY-SAVE

ARITHMETIC USING VERILOG HDL

Penumala Swathi
1
, Venkata Rao Param

2

1
PG Scholar,

2
Asst.Prof

Dept of ECE, St.Mary’s Womens Engineering College, Budampadu, Guntur, AP.

Abstract: The selective use of carry-save arithmetic, where

appropriate, can accelerate a variety of arithmetic-

dominated circuits. Carry-save arithmetic occurs naturally

in a variety of DSP applications, and further opportunities

to exploit it can be exposed through systematic data flow

transformations that can be applied by a hardware

compiler. Field-programmable gate arrays (FPGAs),

however, are not particularly well suited to carry-save

arithmetic. To address this concern, we introduce the“ field

programmable counter array” (FPCA), an accelerator for

carry-save arithmetic intended for integration into an

FPGA as an alternative to DSP blocks. In addition to

multiplication and multiply accumulation, the FPCA can

accelerate more general carry-save operations, such as

multi-input addition (e.g., add integers) and multipliers that

have been fused with other adders. Our experiments show

that the FPCA accelerates a wider variety of applications

than DSP blocks and improves performance, area

utilization, and energy consumption compared with soft

FPGA logic.

Index Terms: Carry-save arithmetic, field-programmable

gate array (FPGA),

I. INTRODUCTION

Modern embedded systems target high-end application

domains requiring efficient implementations of

computationally intensive digital signal processing (DSP)

functions. The incorporation of heterogeneity through

specialized hardware accelerators improves performance and

reduces energy consumption [1]. Although application-

specific integrated circuits (ASICs) form the ideal

acceleration solution in terms of performance and power,

their inflexibility leads to increased silicon complexity, as

multiple instantiated ASICs are needed to accelerate various

kernels. Many researchers have proposed the use of domain-

specific coarse-grained reconfigurable accelerators in order

to increase ASICs’ flexibility without significantly

compromising their performance. High-performance flexible

data paths have been proposed to efficiently map primitive or

chained operations found in the initial data-flow graph (DFG)

of a kernel. The templates of complex chained operations are

either extracted directly from the kernel’s DFG or specified

in a predefined behavioral template library. Design decisions

on the accelerator’s datapathhighly impact its efficiency.

Existing works on coarse-grained reconfigurable data paths

mainly exploit architecture-level optimizations, e.g.,

increased instruction-level parallelism (ILP) . The domain-

specific architecture generation algorithms of [5] and [9] vary

the type and number of computation units achieving a

customized design structure. The flexible architectures were

proposed exploiting ILP and operation chaining. Recently

aggressive operation chaining is adopted to enable the

computation of entire sub expressions using multiple ALUs

with heterogeneous arithmetic features. The aforementioned

reconfigurable architectures exclude arithmetic optimizations

during the architectural synthesis and consider them only at

the internal circuit structure of primitive components, e.g.,

adders, during the logic synthesis . However, research

activities have shown that the arithmetic optimizations at

higher abstraction levels than the structural circuit one

significantly impact on the data path performance. In [10],

timing-driven optimizations based on carry-save (CS)

arithmetic were performed at the post-Register Transfer

Level (RTL) design stage. In [11], common sub expression

elimination in CS computations is used to optimize linear

DSP circuits. Vermaet al. [12] developed transformation

techniques on the application’s DFG to maximize the use of

CS arithmetic prior the actual datapath synthesis. The

aforementioned CS optimization approaches target inflexible

datapath, i.e., ASIC, implementations. Recently, a flexible

architecture combining the ILP and pipelining techniques

with the CS-aware operation chaining has been

proposed.However, all the aforementioned solutions feature

an inherent limitation, i.e., CS optimization is bounded to

merging only additions/subtractions. A CS to binary

conversion is inserted before each operation that differs from

addition/subtraction,e.g.,multiplication, thus, allocating

multiple CS to binary conversions that heavily degrades

performance due to time-consuming carry propagations.

In this brief, we propose a high-performance architectural

scheme for the synthesis of flexible hardware DSP

accelerators by combining optimization techniques from both

the architecture and arithmetic levels of abstraction. We

introduce a flexible datapath architecture that exploits CS

optimized templates of chained operations. The proposed

architecture comprises flexible computational units (FCUs),

which enable the execution of a large set of operation

templates found in DSP kernels. The proposed accelerator

architecture delivers average gains in area-delay product and

in energy consumption compared to state-of-art flexible

datapaths , sustaining efficiency toward scaled technologies.

II. CARRY-SAVE ARITHMETIC: MOTIVATIONAL

OBSERVATIONS AND LIMITATIONS

CS representation has been widely used to design fast

arithmetic circuits due to its inherent advantage of

eliminating the large carry-propagation chains. CS arithmetic

optimizations rearrange the application’s DFG and reveal

International Journal For Technological Research In Engineering

Volume 4, Issue 9, May-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 1652

multiple input additive operations (i.e., chained additions in

the initial DFG), which can be mapped onto CS compressors.

The goal is to maximize the range that a CS computation is

performed within the DFG. However, whenever a

multiplication node is interleaved in the DFG, either a CS to

binary conversion is invoked or the DFG is transformed

using the distributive property . Thus, the aforementioned CS

optimization approaches have limited impact on DFGs

dominated by multiplications, e.g.,filtering DSP applications.

In this brief, we tackle the aforementioned limitation by

exploiting the CS to modified Booth (MB) recoding each

time a multiplication needs to be performed within a CS-

optimized datapath. Thus, the computations throughout the

multiplications are processed using CS arithmetic and the

operations in the targeted datapath are carried out without

using any intermediate carry-propagate adder for CS to

binary conversion, thus improving performance.

III. PROPOSED FLEXIBLE ACCELERATOR

The proposed flexible accelerator architecture is shown in

Fig. 1. Each FCU operates directly on CS operands and

produces data in the same form1 for direct reuse of

intermediate results. Each FCU operates on 16-bit operands.

Such a bit-length is adequate for the most DSP data paths ,

but the architectural concept of the FCU can be

straightforwardly adapted for smaller or larger bit-lengths.

The number of FCUs is determined at design time based on

the ILP and area constraints imposed by the designer. The

CStoBinmodule is a ripple-carry adder and converts the CS

form to the two’s complement one. The register bank consists

of scratch registers and is used for storing intermediate

results and sharing operands among the FCUs. Different DSP

kernels (i.e., different register allocation and data

communication patterns per kernel) can be mapped onto the

proposed architecture using post-RTL datapath

interconnection sharing techniques. The control unit drives

the overall architecture (i.e., communication between the data

port and the register bank, configuration words of the FCUs

and selection signals for the multiplexers) in each clock

cycle.

A. Structure of the Proposed Flexible Computational Unit

The structure of the FCU (Fig. 2) has been designed to enable

high-performance flexible operation chaining based on a

library of operation templates. Each FCU can be configured

to any of the T1–T5 operation templates shown in Fig. 3. The

proposed FCU enables intratemplate operation chaining by

fusing the additions performed before/after the multiplication

& performs any partial operation template of the following

complex operations:

W
*
 = A × (X* + Y*) + K* (1)

W* = A × K* + (X* + Y*) (2)

The following relation holds for all CS data: X

*
 = { X

C
, X

S
}

=X
C

+ X
S
. The operand A is a two’s complement number.

The alternative execution paths in each FCU are specified

after properly setting the control signals of the multiplexers

MUX1 and MUX2 (Fig. 2). The multiplexer MUX0 outputs

Y* when CL0 = 0 (i.e., X* + Y* is carried out) or Y* when

X* − Y*is required and CL0 = 1. The two’s complement 4:2

CS adder produces theN* = X* + Y* when the input carry

equals 0 or the N* = X* − Y*when the input carry equals 1.

The MUX1 determines if N* (1) orK* (2) is multiplied with

A. The MUX2 specifies if K* (1) or N*(2) is added with the

multiplication product. The multiplexer MUX3 accepts the

output of MUX2 and its 1’s complement and outputs the

former one when an addition with the multiplication product

is required (i.e., CL3 = 0) or the later one when a subtraction

is carried out (i.e., CL3 = 1). The 1-bit ace for the subtraction

is added in the CS adder tree. The multiplier comprises a CS-

to-MB module, which adopts a recently proposed technique

to recode the 17-bit P*in its respective MB digits with

minimal carry propagation. The multiplier’s product consists

of 17 bits. The multiplier includes a compensation method

for reducing the error imposed at the product’s accuracy by

the truncation technique. However, since all the FCU inputs

consist of 16 bits and provided that there are no overflows,

the 16 most significant bits of the 17-bit W*(i.e., the output

of the Carry-Save Adder (CSA) tree, and thus, of the FCU)

are inserted in the appropriate FCU when requested.

B. DFG Mapping Onto the Proposed FCU-Based

Architecture

In order to efficiently map DSP kernels onto the proposed

FCU-based accelerator, the semiautomatic synthesis

methodology has been adapted. At first, a CS-aware

transformation is performed onto the original DFG, merging

nodes of multiple chained additions/subtractions to 4:2

compressors. A pattern generation on the transformed DFG

clusters the CS nodes with the multiplication operations to

form FCU template operations (Fig. 3). The designer selects

the FCU operations covering the DFG for minimized

International Journal For Technological Research In Engineering

Volume 4, Issue 9, May-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 1653

latency.Given that the number of FCUs is fixed, a resource-

constrained scheduling is considered with the available FCUs

and CStoBinmodules determining the resource constraint set.

The clustered DFG is scheduled, so that each FCU operation

is assigned to a specific control step. A list-based scheduler

has been adopted considering the mobility2 of FCU

operations. The FCU operations are scheduled according to

descending mobility. The scheduled FCU operations are

bound onto FCU instances and proper configuration bits are

generated. After completing register allocation, a FSM is

generated in order to implement the control unit of the

overall architecture.

(A) (B)

Fig.4. Typical chaining of addition–multiplication–addition

operations reflecting T1 template of Fig. 3. Its design is

based on (A) CS optimizations with multiplication

distribution (B)incorporating the CS-to-MB recoding

concept.

IV. SIMULATION RESULTS

FIG.5 RTL

FIG.6 Output Waveform

V. CONCLUSION

In this brief, we introduced a flexible accelerator architecture

that exploits the incorporation of CS arithmetic optimizations

to enable fast chaining of additive and multiplicative

operations. The proposed flexible accelerator architecture is

able to operate on both conventional two’s complement and

CS-formatted data operands, thus enabling high degrees of

computational density to be achieved. Theoretical and

experimental analyses have shown that the proposed solution

forms an efficient design tradeoff point delivering optimized

latency/area and energy implementations.

REFERENCES

[1] P. Ienne and R. Leupers, Customizable Embedded

Processors: Design Technologies and Applications.

San Francisco, CA, USA: Morgan Kaufmann, 2007.

[2] P. M. Heysters, G. J. M. Smit, and E. Molenkamp,

“A flexible and energy-efficient coarse-grained

reconfigurable architecture for mobile systems,” J.

Supercomput., vol. 26, no. 3, pp. 283–308, 2003.

[3] B. Mei, S. Vernalde, D. Verkest, H. D. Man, and

R.Lauwereins, “ADRES: An architecture with

tightly coupled VLIW processor and coarse-grained

reconfigurable matrix,” in Proc. 13th Int. Conf.

FieldProgram. Logic Appl., vol. 2778. 2003, pp.

61–70.

[4] M. D. Galanis, G. Theodoridis, S. Tragoudas, and

C. E. Goutis, “A high-performance data path for

synthesizing DSP kernels,” IEEE Trans. Comput.-

Aided Design Integr. Circuits Syst., vol. 25, no. 6,

pp. 1154–1162, Jun. 2006.

[5] K. Compton and S. Hauck, “Automatic design of

reconfigurable domainspecific flexible cores,” IEEE

Trans. Very Large Scale Integr. (VLSI)Syst., vol.

16, no. 5, pp. 493–503, May 2008.

[6] S. Xydis, G. Economakos, and K. Pekmestzi,

“Designing coarse-grain reconfigurable

International Journal For Technological Research In Engineering

Volume 4, Issue 9, May-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 1654

architectures by inlining flexibility into custom

arithmetic data-paths, “Integr., VLSI J., vol. 42, no.

4, pp. 486–503, Sep. 2009.

[7] S. Xydis, G. Economakos, D. Soudris, and K.

Pekmestzi, “High performance and area efficient

flexible DSP datapath synthesis,” IEEE Trans.Very

Large Scale Integr. (VLSI) Syst., vol. 19, no. 3, pp.

429–442, Mar. 2011.

[8] G. Ansaloni, P. Bonzini, and L.Pozzi, “EGRA: A

coarse grained reconfigurable architectural

template,” IEEE Trans. Very Large ScaleIntegr.

(VLSI) Syst., vol. 19, no. 6, pp. 1062–1074, Jun.

2011.

[9] M. Stojilovic, D. Novo, L. Saranovac, P. Brisk, and

P. Ienne, “Selective flexibility: Creating domain-

specific reconfigurable arrays,” IEEE Trans.

Comput.-Aided Design Integr. Circuits Syst., vol.

32, no. 5, pp. 681–694, May 2013.

[10] T. Kim and J. Um, “A practical approach to the

synthesis of arithmetic circuits using carry-save-

adders,” IEEE Trans. Comput.-Aided Design Integr.

Circuits Syst., vol. 19, no. 5, pp. 615–624,May

2000.

[11] A. Hosangadi, F. Fallah, and R. Kastner,

“Optimizing high speed arithmetic circuits using

three-term extraction,” in Proc. Design, Autom.

Test Eur. (DATE), vol. 1. Mar. 2006, pp. 1–6.

[12] A. K. Verma, P. Brisk, and P. Ienne, “Data-flow

transformations to maximize the use of carry-save

representation in arithmetic circuits,” IEEE Trans.

Comput.-Aided Design Integr. Circuits Syst., vol.

27, no. 10, pp. 1761–1774, Oct. 2008.

Penumala Swathi is PG Scholar, Dept of ECE, St.Mary’s

womens engineering college, Budampadu,Guntur,AP. Her

areas of interests are VLSI Design and Verilog HDL. E-mail-

id: Swathip043@gmail.com.

Venkata Rao Param is Asst.Prof,Dept of ECE, St.Mary’s

womens engineering college, Budampadu,Guntur,AP. His

Areas of interests are Low power VLSI and FPGA Design.

E-mail id: vnk333@gmail.com.

mailto:Swathip043@gmail.com

