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Abstract: The selective use of carry-save arithmetic, where 

appropriate, can accelerate a variety of arithmetic-

dominated circuits. Carry-save arithmetic occurs naturally 

in a variety of DSP applications, and further opportunities 

to exploit it can be exposed through systematic data flow 

transformations that can be applied by a hardware 

compiler. Field-programmable gate arrays (FPGAs), 

however, are not particularly well suited to carry-save 

arithmetic. To address this concern, we introduce the“ field 

programmable counter array” (FPCA), an accelerator for 

carry-save arithmetic intended for integration into an 

FPGA as an alternative to DSP blocks. In addition to 

multiplication and multiply accumulation, the FPCA can 

accelerate more general carry-save operations, such as 

multi-input addition (e.g., add integers) and multipliers that 

have been fused with other adders. Our experiments show 

that the FPCA accelerates a wider variety of applications 

than DSP blocks and improves performance, area 

utilization, and energy consumption compared with soft 

FPGA logic. 

Index Terms: Carry-save arithmetic, field-programmable 

gate array (FPGA), 

 

I. INTRODUCTION 

Modern embedded systems target high-end application 

domains requiring efficient implementations of 

computationally intensive digital signal processing (DSP) 

functions. The incorporation of heterogeneity through 

specialized hardware accelerators improves performance and 

reduces energy consumption [1]. Although application-

specific integrated circuits (ASICs) form the ideal 

acceleration solution in terms of performance and power, 

their inflexibility leads to increased silicon complexity, as 

multiple instantiated ASICs are needed to accelerate various 

kernels. Many researchers have proposed the use of domain-

specific coarse-grained reconfigurable accelerators in order 

to increase ASICs’ flexibility without significantly 

compromising their performance. High-performance flexible 

data paths have been proposed to efficiently map primitive or 

chained operations found in the initial data-flow graph (DFG) 

of a kernel. The templates of complex chained operations are 

either extracted directly from the kernel’s DFG or specified 

in a predefined behavioral template library. Design decisions 

on the accelerator’s datapathhighly impact its efficiency. 

Existing works on coarse-grained reconfigurable data paths 

mainly exploit architecture-level optimizations, e.g., 

increased instruction-level parallelism (ILP) . The domain-

specific architecture generation algorithms of [5] and [9] vary 

the type and number of computation units achieving a  

 

customized design structure. The flexible architectures were 

proposed exploiting ILP and operation chaining. Recently 

aggressive operation chaining is adopted to enable the 

computation of entire sub expressions using multiple ALUs 

with heterogeneous arithmetic features. The aforementioned 

reconfigurable architectures exclude arithmetic optimizations 

during the architectural synthesis and consider them only at 

the internal circuit structure of primitive components, e.g., 

adders, during the logic synthesis . However, research 

activities  have shown that the arithmetic optimizations at 

higher abstraction levels than the structural circuit one 

significantly impact on the data path performance. In [10], 

timing-driven optimizations based on carry-save (CS) 

arithmetic were performed at the post-Register Transfer 

Level (RTL) design stage. In [11], common sub expression 

elimination in CS computations is used to optimize linear 

DSP circuits. Vermaet al. [12] developed transformation 

techniques on the application’s DFG to maximize the use of 

CS arithmetic prior the actual datapath synthesis. The 

aforementioned CS optimization approaches target inflexible 

datapath, i.e., ASIC, implementations. Recently, a flexible 

architecture combining the ILP and pipelining techniques 

with the CS-aware operation chaining has been 

proposed.However, all the aforementioned solutions feature 

an inherent limitation, i.e., CS optimization is bounded to 

merging only additions/subtractions. A CS to binary 

conversion is inserted before each operation that differs from 

addition/subtraction,e.g.,multiplication, thus, allocating 

multiple CS to binary conversions that heavily degrades 

performance due to time-consuming carry propagations. 

In this brief, we propose a high-performance architectural 

scheme for the synthesis of flexible hardware DSP 

accelerators by combining optimization techniques from both 

the architecture and arithmetic levels of abstraction. We 

introduce a flexible datapath architecture that exploits CS 

optimized templates of chained operations. The proposed 

architecture comprises flexible computational units (FCUs), 

which enable the execution of a large set of operation 

templates found in DSP kernels. The proposed accelerator 

architecture delivers average gains in area-delay product and 

in energy consumption compared to state-of-art flexible 

datapaths , sustaining efficiency toward scaled technologies. 

 

II. CARRY-SAVE ARITHMETIC: MOTIVATIONAL 

OBSERVATIONS AND LIMITATIONS 

CS representation  has been widely used to design fast 

arithmetic circuits due to its inherent advantage of 

eliminating the large carry-propagation chains. CS arithmetic 

optimizations rearrange the application’s DFG and reveal 
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multiple input additive operations (i.e., chained additions in 

the initial DFG), which can be mapped onto CS compressors. 

The goal is to maximize the range that a CS computation is 

performed within the DFG. However, whenever a 

multiplication node is interleaved in the DFG, either a CS to 

binary conversion is invoked  or the DFG is transformed 

using the distributive property . Thus, the aforementioned CS 

optimization approaches have limited impact on DFGs 

dominated by multiplications, e.g.,filtering DSP applications. 

In this brief, we tackle the aforementioned limitation by 

exploiting the CS to modified Booth (MB) recoding each 

time a multiplication needs to be performed within a CS-

optimized datapath. Thus, the computations throughout the 

multiplications are processed using CS arithmetic and the 

operations in the targeted datapath are carried out without 

using any intermediate carry-propagate adder for CS to 

binary conversion, thus improving performance. 

 

III. PROPOSED FLEXIBLE ACCELERATOR 

The proposed flexible accelerator architecture is shown in 

Fig. 1. Each FCU operates directly on CS operands and 

produces data in the same form1 for direct reuse of 

intermediate results. Each FCU operates on 16-bit operands. 

Such a bit-length is adequate for the most DSP data paths , 

but the architectural concept of the FCU can be 

straightforwardly adapted for smaller or larger bit-lengths. 

The number of FCUs is determined at design time based on 

the ILP and area constraints imposed by the designer. The 

CStoBinmodule is a ripple-carry adder and converts the CS 

form to the two’s complement one. The register bank consists 

of scratch registers and is used for storing intermediate 

results and sharing operands among the FCUs. Different DSP 

kernels (i.e., different register allocation and data 

communication patterns per kernel) can be mapped onto the 

proposed architecture using post-RTL datapath 

interconnection sharing techniques. The control unit drives 

the overall architecture (i.e., communication between the data 

port and the register bank, configuration words of the FCUs 

and selection signals for the multiplexers) in each clock 

cycle. 

 
A. Structure of the Proposed Flexible Computational Unit 

The structure of the FCU (Fig. 2) has been designed to enable 

high-performance flexible operation chaining based on a 

library of operation templates. Each FCU can be configured 

to any of the T1–T5 operation templates shown in Fig. 3. The 

proposed FCU enables intratemplate operation chaining by 

fusing the additions performed before/after the multiplication 

& performs any partial operation template of the following 

complex operations: 

W
*
 = A × (X* + Y*) + K*  (1) 

W* = A × K* + (X* + Y*) (2) 

 
The following relation holds for all CS data: X

*
 = { X

C
, X

S
} 

=X
C 

+ X
S
. The operand A is a two’s complement number. 

The alternative execution paths in each FCU are specified 

after properly setting the control signals of the multiplexers 

MUX1 and MUX2 (Fig. 2). The multiplexer MUX0 outputs 

Y* when CL0 = 0 (i.e., X* + Y* is carried out) or Y* when 

X* − Y*is required and CL0 = 1. The two’s complement 4:2 

CS adder produces theN* = X* + Y* when the input carry 

equals 0 or the N* = X* − Y*when the input carry equals 1. 

The MUX1 determines if N* (1) orK* (2) is multiplied with 

A. The MUX2 specifies if K* (1) or N*(2) is added with the 

multiplication product. The multiplexer MUX3 accepts the 

output of MUX2 and its 1’s complement and outputs the 

former one when an addition with the multiplication product 

is required (i.e., CL3 = 0) or the later one when a subtraction 

is carried out (i.e., CL3 = 1). The 1-bit ace for the subtraction 

is added in the CS adder tree. The multiplier comprises a CS-

to-MB module, which adopts a recently proposed technique 

to recode the 17-bit P*in its respective MB digits with 

minimal carry propagation. The multiplier’s product consists 

of 17 bits. The multiplier includes a compensation method 

for reducing the error imposed at the product’s accuracy by 

the truncation technique. However, since all the FCU inputs 

consist of 16 bits and provided that there are no overflows, 

the 16 most significant bits of the 17-bit W*(i.e., the output 

of the Carry-Save Adder (CSA) tree, and thus, of the FCU) 

are inserted in the appropriate FCU when requested. 

 

B. DFG Mapping Onto the Proposed FCU-Based 

Architecture 

In order to efficiently map DSP kernels onto the proposed 

FCU-based accelerator, the semiautomatic synthesis 

methodology  has been adapted. At first, a CS-aware 

transformation is performed onto the original DFG, merging 

nodes of multiple chained additions/subtractions to 4:2 

compressors. A pattern generation on the transformed DFG 

clusters the CS nodes with the multiplication operations to 

form FCU template operations (Fig. 3). The designer selects 

the FCU operations covering the DFG for minimized 
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latency.Given that the number of FCUs is fixed, a resource-

constrained scheduling is considered with the available FCUs 

and CStoBinmodules determining the resource constraint set. 

The clustered DFG is scheduled, so that each FCU operation 

is assigned to a specific control step. A list-based scheduler 

has been adopted considering the mobility2 of FCU 

operations. The FCU operations are scheduled according to 

descending mobility. The scheduled FCU operations are 

bound onto FCU instances and proper configuration bits are 

generated. After completing register allocation, a FSM is 

generated in order to implement the control unit of the 

overall architecture. 

 
(A)                                             (B) 

Fig.4. Typical chaining of addition–multiplication–addition 

operations reflecting T1 template of Fig. 3. Its design is 

based on (A) CS optimizations with multiplication 

distribution (B)incorporating the CS-to-MB recoding 

concept. 

 

IV. SIMULATION RESULTS 

 
FIG.5 RTL 

 
FIG.6 Output Waveform 

 

V. CONCLUSION 

In this brief, we introduced a flexible accelerator architecture 

that exploits the incorporation of CS arithmetic optimizations 

to enable fast chaining of additive and multiplicative 

operations. The proposed flexible accelerator architecture is 

able to operate on both conventional two’s complement and 

CS-formatted data operands, thus enabling high degrees of 

computational density to be achieved. Theoretical and 

experimental analyses have shown that the proposed solution 

forms an efficient design tradeoff point delivering optimized 

latency/area and energy implementations. 
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