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ABSTRACT: Automated versions of a heavily-produced 

vehicle uses fuzzy logic techniques to both address common 

challenges and incorporate human procedural knowledge 

into the vehicle managing algorithms. In-vehicle computing 

has been largely relegated to auxiliary tasks such as 

regulating cabin temperature, opening doors, and 

monitoring fuel, oil, and battery-charge levels. However, 

computers are increasingly assuming driving-related tasks 

in some commercial models. Among those tasks are: 

maintaining a reference velocity or keeping a safe distance 

from other vehicles; improving night vision with infrared 

cameras; and building maps and providing alternative 

routes. 

 

I. INTRODUCTION 

Still, many traffic situations remain complex and difficult to 

manage, particularly in urban settings. The driving task 

belongs to a class of problems that depend on underlying 

systems for logical reasoning and dealing with uncertainty. 

So, to move vehicle computers beyond monitoring and into 

tasks related to environment perception or driving, we must 

integrate aspects of human intelligence and behaviors so that 

vehicles manage driving actuators in a way similar to 

humans. This is the motivation behind the AUTOPIA 

program, a set of national research projects in Spain. 

AUTOPIA has two primary objectives: First, we want to 

implement automatic driving using real, mass-produced 

vehicles tested on real roads. Although this objective might 

be called ―utopian‖ at the moment, it’s a great starting point 

for exploring the future. Our second aim is to develop our 

automated system using modular components that can be 

immediately applied in the automotive industry. AUTOPIA 

builds in the Instituto de Automatica Industrail’s extensive 

experience developing autonomous robots and fuzzy control 

systems and the Universidad de Alcala de Henares’s 

knowledge of artificial vision. 

Automated-Vehicle Equipment:- 

Fig 1 shows two mass-produced electric Citroen Berlingo 

vans, which we’ve automated using an embedded fuzzy-

logic-based control system to control their speed and 

steering. The system’s main sensor inputs are a 

CCD(Charged Couple Device) color camera and a high-

precision global positioning system. Through these, the 

system controls the vehicle-driving actuators-that is, the 

steering, throttle, and brake pedals. Both vehicles include an 

onboard PC-based computer, a centimetric, real-time 

kinematic differential GPS(RTK DGPS); Wireless LAN 

support; two servomotors; and an analog/digital I/O card. We 

added a vision system in another computer connected to the 

control computer. Fig 2 shows the control system that we  

developed to handle all these devices.  

 

 
Figure 1. The AUTOPIA testbed vehicles. An embedded 

fuzzy-logic-based control system controls both speed and 

steering in each Citroën Berlingo. 

The computer drives the vans using two fuzzy-logic-based 

controllers: the steering(lateral) control and the 

speed(longitudinal) control. To automate the steering, we 

installed a DC servomotor in the steering wheel column. The 

Berlingo has an electronic throttle control, so we shortened 

the electronic circuit to actuate the throttle using an analog 

output card. The brale pedal is fully mechanical; we 

automated it using a pulley and a DC servomotor. We 

equipped the transmission with an electronic gearbox with 

forward and reverse selection. We automated this using a 

digital I/O card that sends the correct gear to the internal 

vehicle computer. We designed our driving area to emulate 

an urban environment because automatic urban driving is 

one of ITS’s less researched topics. 

 
Figure 2. The AUTOPIA system control structure. The 

sensorial equipment supplies the necessary data to the fuzzy-

logic-based guidance system, which decides the optimal 

control signals to manage the vehicle actuators (steering 

wheel, throttle and brake ). 

 

II. GUIDANCE SYSTEM 

We modeled the guidance system using fuzzy variables and 

rules. In addition to the steering wheel and vehicle velocity 

functionalities, we also consider variables that the system 

can use in adaptive cruise control(ACC) and overtaking 

capabilities. Among these variables are the distance to the 
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next bend and the distance to the lead vehicle(that is, any 

vehicle driving directly in front of the automated vehicle). 

Car driving is a special control problem because 

mathematical models are highly complex and can’t be 

accurately linearized. We use fuzzy logic because it’s a well-

tested method for dealing with this kind of system, provides 

good results, and can incorporate human procedural 

knowledge into control algorithms.  

 

Steering Control:- 

The steering control system’s objective is to track a 

trajectory. To model lateral and angular tracking deviations 

perceived by a human driver, we use two fuzzy variables : 

Lateral_Error and Angular_Error. These variables represent 

the difference between the vehicle’s current and correct 

position and its orientation to a reference trajectory. 

Both variables can take left or right linguistic values. 

Angular_Error represents the angle between the orientation 

and vehicle velocity vectors. If this angle is 

counterclockwise, the Angular_Error value is left. If the 

angle is clockwise, the Angular_Error value is right. 

Lateral_Error represents the distance from the vehicle to the 

reference trajectory. If the vehicle is positioned on the 

trajectory’s left, the Lateral_Error value is left; it’s right if the 

vehicle is on the right. 

We compute the variables’ instantaneous value using the 

DGPS data and a digital environment map. The fuzzy output 

variable is Steering_Wheel and indicates which direction the 

system must turn the steering wheel to correct the input 

errors. Again, the variable also has left and right linguistic 

values. The value is left if the steering wheel must turn 

counterclockwise, and right if it must turn clockwise. We 

define the fuzzy sets that define the left and right values in an 

interval of -540 degrees and 540 degrees. 

 

As with human behavior, our guidance system works 

differently for tracking lanes or turning on sharp bends. 

When travelling along a straight road, people drive at 

relatively high speeds while gently turning the steering 

wheel. In contrast, on sharp bends, they rapidly reduce speed 

and quickly turn the steering wheel. We emulate such 

behavior by changing the membership function parameters of 

the Lateral_Deviation, Angular_Deviation, and 

Steering_Wheel linguistic variables. To represent the human 

procedural knowledge in the driving task, we need only two 

fuzzy rules. These rules tell the fuzzy inference motor how to 

relate the fuzzy input and output variables: 

If Angular_Error left OR Lateral_Error left THEN 

Steering_Wheel right 

IF Angular_Error right OR Lateral_Error right THEN 

Steering_Wheel left  

 

Although these rules are simple, they generate results that are 

close to human driving. The rules are the same for all 

situations, but the definition of the fuzzy variables’ linguistic 

values change. Fig 3 shows this feature in the membership 

function definition for Lateral_Error and Angular_Error. Figs 

3a and 3b show the degree of truth for the input error values 

in straight-path tracking situations. This definition lets the 

system act quickly when trajectory deviations occur-again in 

keeping with human behavior. 

 To prevent accidents, we must limit the maximum turning 

angle for straight-lane driving. This limitation is also similar 

to human behavior; we achieve it by defining the output 

variable membership function as a singleton, confining this 

turning to 2.5 percent of the total. This makes the driving 

system less reactive when tracking a straight trajectory and 

assures that they’ll adapt to the route smoothly. We can also 

represent the output using a singleton without turning 

limitations. We fine-tuned the membership functions 

experimentally, comparing their behavior with human 

operations and correcting it accordingly until the system 

performed acceptably. So, the driving system selects a fuzzy 

membership function set depending on the situation, which 

leads to different reactions for each route segment. 

 

Speed Control:- 

To control speed, we use two fuzzy input variables: 

Speed_Error and Acceleration. To control the accelerator and 

the brake, we use two fuzzy output variables: Throttle and 

Brake. The Speed_Error crisp value is the difference 

between the vehicle’s real speed and the user-defined  

 
Figure 3. The membership function definition for fuzzy 

variables: (a) Lateral_Error straight, (b) Angular_Error 

straight, (c) Lateral_Error curves, (d) Angular_Error curves, 

(e) Speed_Error throttle, (f) Acceleration throttle, (g) 

Speed_Error brake, and (h) Acceleration brake. 

target speed, and the Acceleration crisp value is the speed’s 

variation during a time interval. The throttle pressure range is 

2-4 volts, and the brake pedal range is 0-240 degrees of the 

actuation motor. 

The fuzzy rules containing procedural knowledge for throttle 

control are:- 

 IF Speed_Error MORE THAN null THEN Throttle 

up 

 IF Speed_Error LESS THAN null THEN Throttle 

down 
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 IF Acceleration MORE THAN null THEN Throttle 

up 

 IF Acceleration LESS THAN null THEN Throttle 

down 

 

The rules for brake control are:- 

IF Speed_Error MORE THAN nullf THEN Brake down 

IF Speed_Error LESS THAN nullf  THEN Brake up 

IF Acceleration LESS THAN nullf THEN Brake up 

Where brake/throttle down means depress the brake and 

throttle, and brake/throttle up means release the brake and 

throttle. The associated membership functions of the fuzzy 

linguistic labels null and nullf define the degree of nearness 

to 0 of Acceleration and Speed_Error, repectively. 

Figures 3e through 3h show the membership functions of 

null(for the throttle controller) and nullf (for the brake 

controller) for Speed_Error and Acceleration, repectively. An 

asymmetry exists in the two variable definitions for two 

reasons: 

 To account for the difference in how accelerating 

and braking vehicles behave, and 

 To coordinate both pedals’ actuation to emulate 

human driving. 

Throttle and brake controllers are independent, but they must 

work cooperatively. Activating the two pedals produces 

similar outcomes and can 

 Increase the target speed (stepping on the throttle or 

stepping off the brake on down-hill roads), 

 Maintain speed (stepping on or off either pedal 

when necessary), and 

 Reduce the vehicle’s speed (downshifting the 

throttle or stepping on the brake). 

ACC+Stop&Go 

With ACC, the system can change the vehicle’s speed to 

keep a safe distance from the lead vehicle. As an extreme 

example, the lead vehicle might come to a complete stop 

owing to a traffic jam. In this case, the ACC must stop the 

vehicle using a stop- and-go maneuver; when the road is 

clear, the ACC reaccelerates the vehicle until it reaches the 

target speed. Combining ACC with stop-and-go maneuvers 

increases driving comfort, regulates traffic speed,  and breaks 

up bottlenecks more quickly. Many rear-end collisions 

happen in stop-and-go situations because of driver 

distractions.  

 

ACC systems have been on the market since 1995, when 

Mitsubishi offered the Preview Distance Control system in its 

Diamante model. Several sensors can provide the vehicle 

with ACC capability; radar, laser vision, or a combination 

thereof. Almost all car manufacturers now offer ACC 

systems for their vehicles, but they all have two clear 

drawbacks. First, the ACC systems don’t work at speeds 

lower than 40kmh, so they can’t offer stop-and-go 

maneuvers. Second, the systems manage only the throttle 

automatically; consequently, the speed adaptation range is 

limited.  

 
Figure 4. The ACC+Stop&Go controller’s performance in an 

automated vehicle. Keeping a safe distance (a) at 30 kmh, (b) 

during speed reduction, and (c) in stop-and-go situations. 

 

Our system overcomes these limitations by automating the 

throttle and brake, which lets the system act across the 

vehicle’s entire speed range. In our case, we selected GPS as 

the safety-distance sensor. We installed GPS in both the 

vehicles, and they communicate their position to one another 

via WLAN. 

Keeping a user-defined safety distance from the next vehicle 

is a speed-dependent function: the higher the speed, the 

larger the required intervehicle gap. This is the time-

headway concept- a time-dependent safety distance 

maintained between two vehicles. If we set a safety time gap 

of two seconds, for example, the space gap is 22.2 meters for 

a vehicle moving at 40 kmh but approximately 55.5 meters 

for 100 kmh. The time gap setting depends on the vehicle’s 

braking power, the weather, the maximum speed, and so on. 

Figure 4 shows our ACC+Stop&Go controller’s  

performance in one of our automated vehicles. At the 

experiment’s beginning, the trailing vehicle starts moving, 

speeds up, and eventually stops because the lead vehicle is 

blocking the way. The lead vehicle then starts moving, gains 

speed, and brakes again, emulating a congested traffic 

situation. A few seconds later, the trailing vehicle starts up 

again, eventually stopping behind the lead vehicle.  

 

Overtaking:- 

The system can also manage obstacles or other vehicles in 

the vehicle’s path by calculating when the vehicle should 

change lanes to overtake the obstacles. First, 

 The vehicle must be in the straight-lane driving 

mode, 

 The left lane must be free, and 

 There must be room for the overtaking. 

Given this, overtaking occurs as follows:- 

 Initially, the vehicle is in straight-lane mode. 

 The driving mode changes to lane-change mode, 

and the vehicle moves into the left lane. 

 The driving mode changes to straight-lane mode 

until the vehicle has passed the obstacle or vehicle. 
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Figure 5. A flow chart of the overtaking algorithm. 

 

The driving mode again changes to lane-change mode, and 

the vehicle returns to the right lane. 

 

 
Figure 6. The overtaking maneuver (a) starts with a change 

from the right to the left lane and (b) ends with a change 

from the left to the right lane. A is the distance at which the 

vehicle changes lanes, and l is the vehicle’s length. 

When the vehicle is centered in the lane, the driving mode 

changes back to straight-lane mode, and driving continue as 

usual. 

Figure 5 shows a detailed flowchart of this algorithm. We 

calculate the time for starting the transition from the first to 

the second step as a function of the vehicles’ relative speed 

and the overtaking vehicles’ length. Figure 6 illustrates the 

overtaking maneuver.the overtaking vehicle must change 

lanes at point A+l, where A is the distance at which the 

vehicle changes lanes and l is the vehicle’s length. The dot 

on the back of each vehicle represents a GPS antenna, 

located over the rear axle. Vehicles use the GPS receptor and 

the WLAN link to continuously track their own position and 

that of other vehicles. The lane change proceeds only if the 

front of the overtaking vehicle is completely in the left lane 

upon reaching the rear of the overtaken vehicle in the right 

lane. A is speed dependent- A=F(v), where v is the relative 

speed between the overtaking and overtaken vehicles 

because the higher the velocity, the larger the lane- change 

distance. A is a function of the relative speed between both 

vehicles because overtaking depends on the two mobile 

objects’ speed. In this case, l is 4meters, a Citreon Berlingo’s 

length. The system transitions from step 2 to step 3 when the 

overtaking vehicle’s angular and lateral errors are both low. 

Specifically, Angular_Error must be less than 2 degrees and 

Lateral_Error less than 0.8 meter. The system transitions to 

step 4 when the overtaking vehicle’s rear end passes the 

overtaken vehicle’s front end and the separation is l. Finally, 

the transition to step 5 is the same as from step 2 to 3. 

Vision-based vehicle detection 

To achieve reliable navigation, all autonomous vehicles must 

master the basic skill of obstacle detection. This vision-based 

task is complex. Consider, for example, common situations 

in urban environments, such as missing lane markers, 

vehicles parked on both sides of the street, or crosswalks. All 

such situations make it difficult for a system to reliably 

detect other vehicles, creating hazards for the host vehicle. 

To address this, we use a monocular color-vision system to 

give our GPS-based navigator visual reactive capacity. 
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Search and vehicle detection 

 We sharply reduce execution time by limiting obstacle 

detection to a predefined area in which obstacles are more 

likely to appear. This rectangular area-or region of 

interest(ROI)-covers the image’s central section. 

To robustly detect and track vehicles along the road, we need 

two consecutive processing stages. First, the system locates 

vehicles on the basis of their color and shape properties, 

using vertical edge and color symmetry characteristics. It 

combines this analysis with temporal constraints for 

consistency, assuming that vehicles generally have artificial 

rectangular and symmetrical shapes that make their vertical 

edges easily distinguishable. Second, the system tracks the 

detected vehicle using a real-time estimator. 

 

Vertical-edge and symmetry discriminating analysis 

After identifying candidate edges representing the target 

vehicle’s limits, the system computes a symmetry map of the 

ROI to enhance the objects with strong color symmetry 

characteristics. It computes these characteristics using pixel 

intensity to measure the match between two halves of an 

image region around vertical axis. It then considers the 

vertical edges of paired ROIs with high symmetry 

measures(rejecting uniform areas). It does this only for pairs 

representing possible vehicle contours, disregarding any 

combinations that lead to unrealistic vehicle shapes. 

Temporal consistency 

In the real world, using only spatial features to detect 

obstacles leads to sporadic, incorrect detection due to noise. 

We therefore use a temporal validation filter to remove 

inconsistent objects from the scene. That is, the system must 

detect any spatially interesting object in several consecutive 

image iterations to consider that object a real vehicle; it 

discards all other objects. 

We use the value t=0.5s to ensure that a vehicle appears in a 

consistent time sequence. A major challenge of temporal-

spatial validation is for the system to identify the same 

vehicle’s appearance in two consecutive frames. To this end, 

our system uses the object’s(x,y) position in correlative 

frames. That is, it can use the position differences to describe 

the vehicle’s evolution in the image plane. At time instant t0, 

the system annotates each target object’s (x,y) position in a 

dynamic list, and starts a time count to track all candidate 

vehicles’ temporal consistency. At time t0+1, it repeats the 

process using the same spatial-validation criterion. We 

increase the time count only for those objects whose distance  

from some previous candidate vehicle is less than dv. 

Otherwise, we reset the time count. A candidate object is 

validated as a real vehicle when its time count reaches t=0.5s. 

Given that the vision algorithm’s complete execution time is 

100 ms, an empirical value dv=1m has proven successful in 

effectively detecting real vehicles in the scene. Figure 7 

shows examples of the original and filtered images along 

with the ROI symmetry map and the detected vehicle’s final 

position. 

 

Vehicle tracking 

We track the detected vehicle’s position using position 

measurement and estimation. We use the detected vehicle’s 

ROI image as a template to detect position updates in the 

next image using a best-fit correlation. We then use the 

vehicle’s (x,y) location in data association for position 

validation. Basically, we want to determine whether any 

object in the current frame matches the vehicle being 

tracked. To do this, we specify a limited search area around 

the vehicle position, leading to fast, efficient detection. We 

also establish a minimum correlation value and template size 

to end the tracking process if the system obtains poor 

correlations or if the vehicle moves too far away or leaves 

the scene.  

Next, we filter the vehicle position measurements using a 

recursive least-squares estimator with exponential decay. To 

avoid partial conclusions, the system keeps the previously 

estimated vehicle position for five consecutive iterations—

without calculating any validated position—before 

considering the vehicle track as lost. Given a loss, the system 

stops vehicle tracking and restarts the vehicle detection 

stage. Figure 8 illustrates our algorithm, showing how the 

system tracked the lead vehicle in real traffic situations. 

Adaptive  Navigation 

After detecting the lead vehicle’s position, we must ensure 

safe navigation in ACC mode if the lead vehicle suddenly 

brakes within the safety gap limits. This event could easily 

lead to a crash unless the host vehicle rapidly detects the 

braking situation and brakes hard. To ensure this, the system 

must detect the lead vehicle’s brake light activation, which 

clearly indicates braking. 

A vehicle’s brake light position varies depending on its 

model and manufacturer. So, the system must carry out a 

detailed search to accurately locate these lights inside the 

vehicle’s ROI. We do have some priori information to ease 

the search: brake indicators are typically two red lights 

symmetrically located near the vehicle’s rear left and right 

sides. Once the system locates these lights, it must detect 

sudden brake light activation; it does this by continuously 

monitoring the lights’ luminance. In case of sudden 

activation, the system raises an alarm to the vehicle navigator 

to provoke emergency braking. 

Figure 9 shows an example of sudden braking decision. 

Brake lights are a redundant safety feature: if they’re 

activated, a braking procedure has already started. 

Fortunately, our system continuously computes the distance 

to the lead vehicle. If this distance is too short, it 

automatically stops the vehicle.  

 

III. CONCLUSION 

We carried out all our experiments within a private circuit 

and the results shows that the fuzzy controllers perfectly 

mimic human driving behavior in driving and route tracking, 

as well as in more complex, multiple-vehicle maneuvers, 

such as ACC or overtaking. In the near future, we’re 

planning to run new experiments involving three automatic 

driving cars in more complex situations such as intersections 

or roundabouts. Fuzzy control’s flexibility let us integrate a 

host of sensorial information to achieve our results. Also, 

using vision for vehicle and obstacle detection lets the host 

vehicle react to real traffic conditions, and has proven a 

crucial complement to the GPS-based navigation system. To 



International Journal For Technological Research In Engineering 

Volume 4, Issue 10, June-2017                                                ISSN (Online): 2347 - 4718 

 
 

www.ijtre.com                        Copyright 2017.All rights reserved.                                                                          2238 

improve and further this work, we’re collaborating with other 

European institutions specializing in autonomous vehicle 

development under the UE Contract Cyber-Cars-2. Through 

this collaboration, we plan to perform a cooperative driving 

involving more than six vehicles, adding new sensors for 

pedestrian detection, traffic-sign detection, and infrastructure 

monitoring. We’ll also integrate new wireless communication 

systems that include vehicle-to-vehicle, vehicle-to-

infrastructure, and in-vehicle information transmission. 

Finally, we’re planning to use Galileo , next-generation GPS 

systems that address some existing GPS positioning problems 

and improve location accuracy. 
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