
International Journal For Technological Research In Engineering

Volume 4, Issue 11, July-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 2318

CLOUD COMPUTING WITH NETWORK SYSTEM

Tanvi
1
, Anjali Namdev

2

1
PG Student,

2
Assistant Professor, CSE Department, S(PG)ITM Rewari, Haryana, India

I. INTRODUCTION

With the increasing popularity of CLOUD COMPUTING

WITH NETWORK SYSTEM services, more and more

businesses are moving their infrastructure to the cloud.

Developers can benefit from it by reducing the amount of

code they need to write to have a fully running service, while

end-users get the ability to access their data from virtually

any device that has a network connection. There are many

possibilities on how to incorporate CLOUD COMPUTING

WITH NETWORK SYSTEM computing into your service.

CLOUD COMPUTING WITH NETWORK SYSTEM

service providers are offering a wide range of services to

satisfy different needs of modern applications by providing

network infrastructure, platform or even database services on

demand. Developers can also use different techniques that

transform their software into services with automatic data

synchronization across all of the users’ devices. But because

these technologies and techniques are relatively new, there

are still many uncertainties about how to incorporate them

into the development pipe to gain most benefits. This is

especially true today when fascinating new server-side

technologies like Node.js are changing software design

patterns. In my Bachelor Thesis I’m going to explore these

possibilities and formulate a methodology for developing and

designing software as a service application, using the newest

open source technologies, using CLOUD COMPUTING

WITH NETWORK SYSTEM service providers, and

demonstrating methodology in work by developing an

application from sketch to deployment.

II. METHODOLOGY

In this chapter I will present a methodology for developing

CLOUD COMPUTING WITH NETWORK SYSTEM

services. First, I will introduce important technologies that I

recommend for building SaaS applications. Then I will

discuss important topics that need to be considered, while

developing the server-side of the service, including

authentication methods, service requests, routing requests

and security in general. For modeling purposes, I’m going to

use UML

TECHNOLOGIES

Hosting Services

One of the first and most important decision while building

CLOUD COMPUTING WITH NETWORK SYSTEM

application is how are you going to deploy and host your

application. I recommend using Heroku PaaS for these

purposes as mentioned previously. To start using Heroku,

you first need to sign up for the service and install the

Heroku toolbelt that is available from their official website.

After that, you need to log in your Heroku client and

download SSH public key, to access your Heroku profile and

applications:

$ heroku login

Enter your Heroku credentials. Email: john@example.com

Password:

Could not find an existing public key. Would you like to

generate one? [Yn] Generating new SSH public key.

Uploading ssh public key /Users/john/.ssh/id_rsa.pub

After that you can start using the Heroku toolbelt to deploy

your application. To do that you need to set up a Git

repository, and then you can deploy your application to the

Heroku right from the Terminal:

$ git init $ git add .

$ git commit -m 'init'

$ heroku apps:rename appname $ heroku create

$ git push heroku master

Later, when you will need to push a newer version of your

application and deploy it, you will just need to type one line:

$ git push heroku master

Heroku will update your application’s data and deploy it

automatically. At any time, you can see how your application

is doing, by checking processes:

$ heroku ps

=== web: 'node appname.js' web.1: up for 10s

But Heroku doesn’t offer MongoDB [7] solution, instead

there is an add-on from MongoLab, which offers MongoDB

in a form of DaaS (Database as a Server). The free basic

version of MongoLab [8] provides 500 MB of storage and

web-based management tools, which is enough for testing

purposes or even small applications. You can add MongoLab

to your project and get connection URI
6
 for your database

from the Heroku website or right from the Terminal:

$ heroku addons:add mongolab

$ heroku config | grep MONGOLAB_URI

MONGOLAB_URI=>

International Journal For Technological Research In Engineering

Volume 4, Issue 11, July-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 2319

mongodb://heroku_app1234:random_password@ds029017...

This is enough configuration to start using Heroku PaaS and

MongoLab DaaS in your project, however, to make your

application fully functional, you need to make sure that

you’re using a special port. This port is provided to your

application by Heroku and without it you won’t be able to

receive any of HTTP requests.

If everything is set up properly, the application will be

available from the URI provided by the Heroku, or

alternatively, you can set up your own domain and add the

domain to your Heroku settings.

Figure . Application’s Infrastructure

Uniform Resource Identifier (URI) is a string of characters

used to identify a name or a web resource.

Server Core Technologies

Successful SaaS applications should support different clients,

including web browsers, mobile applications and desktop

applications. While there may be many different patterns on

how to implement this, the easiest way is to build a HTTP

server that will serve requests for all clients, returning JSON

objects. This can be easily done with Node.js and supporting

technologies.

Node.js is a platform for building network applications based

on Google’s V8 JavaScript engine . It uses an event-driven,

asynchronous I/O model, which makes it ideal for frequently

accessed service. Another nice quality of Node.js is that there

is no separation between your application and the web server,

so you can create the server, customize it, and deliver content

all at once, using JavaScript. It’s a great solution for server-

side because it has a large community of developers that

frequently contribute to the project, it’s open source and it’s

modular. Due to its big community and modular principles,

you can easily extend your application, including some of the

available modules or developing your own module.

The core modules of Node.js lets you create HTTP or

HTTPS server, and handle its requests.

MongoDB

MongoDB is a document-oriented NoSQL database that

stores structured data in a form close to JSON. Unlike classic

relational databases, it uses dynamic schemas which makes

integration of data easier, so you can change your schemas

on the go without affecting already existing objects. One of

the biggest advantages is that MongoDB is schema-free,

which means there is no schema migrations. The only

schema that’s going to be defined is in your code.

Express.js

Express.js is a module for Node.js. It is a very minimal web

application framework that provides tools for routing,

template and view rendering, session management, serving

static files, application settings and more. Although you can

handle everything directly in Node.js, eventually, you will

end up reinventing many of the capabilities that Express.js

already has.

Mongoose.js

Mongoose.js is another module for Node.js, which provides

object modeling tools on top of MongoDB. It is rather

difficult to use MongoDB queries directly, especially if

you’ll end up with a complicated data structure. Mongoose

let’s you create objects that will represent your data and call

object methods instead of manually querying the database.

Passport.js

Passport.js is authentication middleware for Express.js. It

provides certain methods for using third-party authentication

(Facebook, Twitter, Google+), as well as classic

username/password solutions. If for any reason you don’t

want to store password in your database, it’s a great idea to

let users authenticate with their already existing Facebook

account. Facebook provides its developers with SDKs, but

unfortunately, there is no official supported SDK for

Node.js. With Passport.js, using Facebook authentication is

easy.

Socket.IO

Socket.IO is a socket solution for Node.js application. It

consists of a nearly identical APIs for both server-side and

client side browser applications. Socket.IO primarily uses

WebSockets to provide connectivity, but when it’s not

available, it’s automatically switched to another

transportation method, like Adobe Flash sockets, AJAX long

polling, AJAX multipart streaming, JSONP poling or

another.

The advantage of using Socket.IO is it provides cross-

browser compatibility and allows you to support relatively

old browsers with the same API. It also provides essential

features for real-time web applications, like heartbeats,

timeouts and more. Another great concept about Socket.IO is

that you can force it to use specific protocol, which is very

useful while using Heroku (where WebSocket is not

http://en.wikipedia.org/wiki/Character_string_(computer_science)
http://en.wikipedia.org/wiki/Character_(computing)
http://en.wikipedia.org/wiki/Character_(computing)
http://en.wikipedia.org/wiki/Character_(computing)
http://en.wikipedia.org/wiki/Identifier

International Journal For Technological Research In Engineering

Volume 4, Issue 11, July-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 2320

supported yet.) You can forcefully use long pulling, e.g. xhr-

polling, and later on use WebSocket support when it is

added. Your final step would be to change a few parameters.

Authentication

In order to know if a user is authorized to perform an action,

he should be authenticated. There are many different

authentication methods to achieve this. First of all, you can

use your own login and registration forms with classic

username and password fields. Then, you will need to store

users’ password in a secure way. You should consider

hashing your password with salt using cryptographic hash

function. Node.js has a module called “crypto”, which can

provide you tools for hashing your password. Another aspect

is protecting your database against brute-force attacks. It

might be a good idea to count the number of wrong log in

attempts for each user, and when there will be 10 recursively

wrong attempts you can disable the log in for several minutes

or add a CAPTCHA field, to ensure that the request is

performed by a human. If you want to avoid these

complexities, you can use third-party services for

authentication. For example, you can implement “Log in with

Facebook” button, and let them worry about possible security

issues. Passport.js, an open-source Node.js module, providing

tools for most of the known authentication methods,

including OAuth 2.0, Facebook, Twitter, Google+ and more.

Your application just sends a request to Facebook, and if a

user is authenticated within a browser (or device) and allows

your application to use his profile data, you will receive user

profile information.

Log in with Facebook

Facebook login is a great example of how modern social

services cooperate to provide a better experience for both

users and developers. Users usually don’t like to spend their

time on registration process, in fact, sometimes they even

make a decision not to use a service because of the

registration process that usually requires email or phone

verification and, most importantly, delays users ability to use

the service.

Developers also benefit from using Facebook log ins.

Relying on Facebook means that developers don’t have to

worry about encrypting and storing passwords, providing

registration form and brute force attacks against our

application. Later, when they establish core functionality,

they can add our custom registration if they need it.

Edit profile

User must be able to change his profile data, like name or

surname. Again, only basic profile information will be

available, but it can easily be extended later.

Add or remove friends

A user must be able to add friends. To accomplish this, a user

must know his friends name and will be provided by a friends

search feature. Users will send friend requests, and recipients

will decide to add or reject the friend request.

Send and receive messages

After adding a friend, users will be able to communicate with

each other in form of live chatting.

Use Case Diagram

So our users will be provided with tools for managing their

friend list and communicating with their friends. This is the

basic functionality that nearly every social service needs to

have. Below is a use case diagram that represents this

functionality.

Figure Use Case Diagram in UML

Class Diagram

Our User model is going to be the core class of our

application. It will be used for verifying and saving user data,

storing access tokens that allow access to user’s public

profile data from corresponding Facebook friend lists and

conversations. I could have just implemented messages,

without having a conversation middleware class, but then

we’d have to perform expensive queries in order to perform

basic functionality, like queuing all messages between two

friends, number of new messages or last message sent.

Message classes are going to store message bodies and other

essential attributes. I added sender and receiver fields, so we

will be able to identify a message after the user deletes a

message from a conversation and messages status, so we will

know if the user has read a received message.

Figure Class Diagram in UML

International Journal For Technological Research In Engineering

Volume 4, Issue 11, July-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 2321

Implementation

Each part of application was implemented and tested locally,

and then deployed on Heroku PaaS. First, I implemented a

HTTP server, to test its basic functionality. Then I

implemented models, and tested them locally. After that, I

implemented routing system, templates and client-side.

Folder Structure

The application was structured in such a way so it wouldn’t

be hard to add features later. It also helps organizing the code

and making development easier.

Planody

node_modules

models

views

public

images

scripts

styles

app.js

router.js

tests.js

package.json

commit.sh Procfile

Folder node_modules contains all of the dependencies for

Node that I decided to use in my project. They also need to

be defined in the file package.json, so they could easily be

installed later, on any machine by running npm install

command in the terminal. This contains the package.json file

with the application’s dependencies:

{

"name": "planody", "author": "Vasily Zhovner", "version":

"0.0.1", "dependencies": {

"express": "3.0.0", "mongoose": "3.6.9", "jade": "*",

"passport": "*", "passport-facebook": "*"

}

}

Another file called Procfile is a declaration of a script that

needs to be invoked to run our application. This is where

Heroku looks when deploying our application. My Procfile

contains

this: web: NODE_ENV=production node app.js.

I have created another shell helper script that will take care of

Git versioning and deploying our application on Heroku. It’s

called commit.sh:

git add .

git commit -m "init" git push heroku master

After pushing your code to Heroku it will launch script in

Procfile and application will be ready to use.

Main Application

This file contains the main Node application, starts the server

and configures the application. It also loads the required

modules of our application, defined before in package.json

files.

var express = require('express')

app = express()

jade = require('jade')

mongoose = require('mongoose')

passport = require('passport')

Facebook Strategy = require('passport-facebook').Strategy

router = require('./router');

There are two different configurations: one with production

settings and another with development settings. They differ

in Facebook application data and the database they connect

to:

// Development settings

app.configure ('development', function () {

mongoose.connect ('localhost', 'planody');

FB_CALLBACK_URL =

"http://localhost:3000/auth/facebook/callback";

FB_CLIENT_ID = '480176905384895';

FB_CLIENT_SECRET = <hidden>;

});

// Production settings

app.configure ('production', function () { mongoose.connect

('mongodb://planody:<password>.mongolab.com:72345');

FB_CALLBACK_URL =

"http://planody.herokuapp.com/auth/facebook/callback";

FB_CLIENT_ID = '168496716625349';

FB_CLIENT_SECRET = <hidden>;

});

Then I set up default application’s settings, like a static

folder, start the server on a specific port

and initialize the router:

// Default settings

app.configure(function () { app.use(express.static(__dirname

+ '/public')); app.set('view engine', 'jade');

... more here

});

// Start server

app.listen(PORT);

console.log('Application is listening on PORT ' + PORT);

// Start router

router.start(app, passport);

One more thing that I did in app.js was set up Passport.js

authentication. First, I created a Facebook authentication

strategy, told Passport.js to use that strategy and finally set

up a method for serializing and deserializing the user:

// Passport settings

var User = require('./models/User'); // User Model, explained

later

function facebook Login (accessToken, refreshToken,

profile, done) {User.loginFacebook(profile, accessToken,

function(err, user) {

done(err, user);

});

};

var facebook Strategy = new Facebook Strategy({

clientID: FB_CLIENT_ID,

clientSecret: FB_CLIENT_SECRET, callbackURL:

FB_CALLBACK_URL

}, facebookLogin);

International Journal For Technological Research In Engineering

Volume 4, Issue 11, July-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 2322

passport.use (facebook Strategy);

passport. serializeUser (function(user, done) {

done(null, user.id);

});

passport.deserializeUser (function(id, done) {User.findById

(id, function(err, user) {

done(err, user);

});

});

III. CONCLUSION

The main aim of my thesis was to formulate a methodology

for developing and designing SaaS applications in the cloud.

This task was successfully completed, and methodology can

be used to develop and deploy applications in the CLOUD

COMPUTING WITH NETWORK SYSTEM as shown in

case study application (Chapter 5.) I studied and reviewed

some of the most popular CLOUD COMPUTING WITH

NETWORK SYSTEM service providers, and learned how

they can be incorporated into deployment process. I found

that PaaS services are generally more suited for developers

with no prior CLOUD COMPUTING WITH NETWORK

SYSTEM experience, because of its easy integration and

deployment process. Among other PaaS, Heroku offers a

very wide range of functionality that can be used in different

projects, and can be used in both commercial and educational

purposes for free. Formulated methodology can be used by

developers with little to no prior CLOUD COMPUTING

WITH NETWORK SYSTEM experience to study problem

domain, learn how to develop SaaS applications and deploy

their applications in the cloud, using technologies described

in the methodology. The practical part of methodology

resulted in development of a fully functional SaaS service,

deployed on Heroku PaaS that can be used as a foundation

for a more extended product. The methodology only covers

how to design and deploy applications on PaaS, and can be

further expanded to study possibilities of integrating with

IaaS.

REFERENCES

[1] Christensen, Clayton M., The Innovator's Challenge:

Understanding the Influence of Market Environment

on Processes of Technology Development in the

Rigid Disk Drive Industry. Unpublished doctoral

dissertation, Harvard University Graduate School of

Business Administration, Boston, Massachusetts,

1992

[2] B. Majumdar, Innovations, Product developments

and Technology Transfer: An Empirical Study of

Dynamic Competitive Advantage, The Case of

Electronic Calculator, Ph. D, Diss. Case Western

Reserve University, Cleveland, Ohio, 1977 Thesis:

Cloud Computing Models Page 81

[3] http://en.community.dell.com/techcenter/b/techcente

r/archive/2012/02/29/digging-deepinto-dell-boomi-

how-does-it-work.aspx

[4] http://www.gartner.com/it/page.jsp?id=1903814

[5] http://en.community.dell.com/techcenter/b/techcente

r/archive/2012/02/29/digging-deepinto-dell-boomi-

how-does-it-work.aspx

[6] collab.net

[7] http://en.wikipedia.org/wiki/Agile_software_develo

pment

[8] http://en.wikipedia.org/wiki/Waterfall_model

[9] http://www.slideshare.net/rajdeep/introduction-to-

google-app-engine-presentation

[10] http://www.gartner.com/it/page.jsp?id=1963815

[11] http://salesforce.com

http://en.community.dell.com/techcenter/b/techcenter/archive/2012/02/29/digging-deepinto-dell-boomi-how-does-it-work.aspx
http://en.community.dell.com/techcenter/b/techcenter/archive/2012/02/29/digging-deepinto-dell-boomi-how-does-it-work.aspx
http://en.community.dell.com/techcenter/b/techcenter/archive/2012/02/29/digging-deepinto-dell-boomi-how-does-it-work.aspx
http://en.community.dell.com/techcenter/b/techcenter/archive/2012/02/29/digging-deepinto-dell-boomi-how-does-it-work.aspx
http://en.community.dell.com/techcenter/b/techcenter/archive/2012/02/29/digging-deepinto-dell-boomi-how-does-it-work.aspx
http://en.community.dell.com/techcenter/b/techcenter/archive/2012/02/29/digging-deepinto-dell-boomi-how-does-it-work.aspx
http://en.wikipedia.org/wiki/Agile_software_development
http://en.wikipedia.org/wiki/Agile_software_development
http://en.wikipedia.org/wiki/Waterfall_model
http://www.slideshare.net/rajdeep/introduction-to-google-app-engine-presentation
http://www.slideshare.net/rajdeep/introduction-to-google-app-engine-presentation
http://www.gartner.com/it/page.jsp?id=1963815
http://salesforce.com/

