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Abstract: The digital data can be transformed using 

Discrete Wavelet Transform (DWT). The imagesneed to be 

transformed without loosing of information. The Discrete 

Wavelet Transform(DWT) was based on time-scale 

representation, which provides efficient multi-resolution. 

Here  Low Pass filter coefficients and the  High Pass filter 

coefficients filter give lossless mode of information as per 

the JPEG 2000 Standard. The new JPEG2000 and MPEG4 

still image and video compression standards are based upon 

the DWT and are shown to produce superior results over 

their previous incarnations that do not use the DWT. The 

discrete wavelet transform (DWT) is being increasingly 

used for image coding. This is dueto the fact that DWT 

supports features like progressive image transmission (by 

quality, by resolution), ease of transformed image 

manipulation, region of interest coding, etc. DWT has 

traditionally been implemented by convolution. Such an 

Implementation demands both a large number of 

computations and a large memory features that are not 

desirable for either high-speed or low-power applications. 

Recently, Available on chip memory storage and external 

memory bandwidth determine the range of parallel 

architecture choices and the degree of design scalability 

and signal optimization. 

Keywords: Discrete wavelet transform; signal and memory 

optimization; VHDL; 2D architecture. 

 

I. INTRODUCTION 

Recently, there has been a tremendous increase in the 

application of wavelets in many scientific disciplines. 

Typical applications of wavelets include signal and image 

processing numerical analysis, with memory optimization 

,.While the wavelet transform offers a wide variety of useful 

features, it is computation intensive. Furthermore, in contrast 

to other transforms, such as Fourier transform or discrete 

cosine transform, it is not block based, which makes it 

difficult to implement in a parallel representation. Several 

VLSI and FPGA architectural solutions for the discrete 

wavelet transform have been proposed in order to meet the 

real time requirements in many applications. These solutions 

include parallel filter architectures, linear array architectures, 

multigridarchitectures , and 2D block based architectures . 

Most of these implementations are special purpose parallel 

processors developed for specific wavelet filters and/or 

wavelet decomposition trees that implement high level 

abstraction of the standard pyramid algorithm. In addition, 

some are complex designs requiring extensive user control. 

Knowles proposed systolic-array-based architectures without 

multipliers for the 1-D and 2D DWT, but these architectures  

 

are not suitable for all wavelets. We proposed a systolic-

parallel architecture for the 2D DWT based on the recursive 

pyramid algorithm, but due to the approximations involved 

these architectures cannot be used when exact reconstruction 

is required. We proposed a sequential implementation of the 

polyphase representation of the DWT suitable for the Xilinx 

Virtex FPGAs. Yong-Hong et al presented a parallel 

architecture that can compute low pass and high pass DWT 

coefficients in the same clock cycle. King-Ch et al 

implemented the operator correlation algorithm of the 2D 

DWT.  

 

However, these FPGA implementations are aimed at specific 

filterbanks, do not support block-based transform, or do not 

handle block boundaries efficiently. There is a clear need for 

a fast hardware DWT that allows flexibility in customizing 

the wavelet transform with regard to the filters being used 

and the structure of the wavelet decomposition. In many 

image processing applications, including compression, 

denoising and enhancement, it is critical to compute the 2D 

wavelet transform in real-time. Field programmable gate 

arrays (FPGAs) offer a suitable platform (cost effective and 

highly flexible) for such an implementation. FPGA-based 

systems represent a new paradigm in the industry – a shift 

away from a full custom ASIC solutions for each application, 

to a single hardware assembly (FPGA) that can be 

reconfigured to accommodate multiple applications. 

 

 

II. PROPOSED ARCHITECTURE 

Working Principle 

A. 2D DWT Architectures for Hardware Implementations 

The DWT, as represented by the Mallat style multilevel 

octave-band decomposition system, which uses a two-

channel wavelet filter bank, is very computation intensive. 

This decomposition can be implemented as a pyramidal 

recursive filtering operation using the corresponding filter 

banks as shown in Figure 1. We will refer to it as the 

standard algorithm. The process for the 2D DWT 

decomposition for each level is implemented with a cascaded 

combination of two 1- D wavelet transforms. The standard 

algorithm is constrained by large latency, a high 

computational cost and the requirement for a large buffer 

size to store intermediate results, which makes it impractical 

for real time applications with memory 40 constraints. An 

alternative representation, requiring fewer computations, is 

the lifting algorithm which will be the basis of our 

implementations in this chapter. 
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Fig.1  : DWT Unit Block Diagram 

B. Existing Architectures for FPGA based parallel 

implementation of the 2D DWT 

Several 2D DWT architectures for parallel implementations 

were proposed recently, as wavelets gained popularity. Most 

of these architectures concentrate on saving hardware 

resources, memory and computations. For example the 1D 

folded architecture by Chakrabati et al reuses the same logic 

for both row and column transforms. While it achieves lower 

hardware resources, it requires high memory bandwidth. For 

an NxN image, 2N2 read and write operations are needed for 

the 1st level DWT decomposition. The Partitioned DWT 

architectures by Ritter et, partitions DWT into small 2D 

Blocks to achieve lower memory bandwidth and low on-chip 

storage, but it produces block artifacts along the boundaries 

between partitions. The recursive pyramid algorithm by 

Vishwanathet. al., takes advantage of different clock rates at 

different DWT levels to intermix the next level computations 

with current calculations. It requires a large on-chip memory 

and complex scheduling for interleaving the DWT levels. 

The Generic 2D biorthogonal DWT by Benkrid et al uses 

separate architectures to calculate each DWT level. It 

achieves full utilization of memory bandwidth – one write 

and one read per pixel, but with massive on-chip storage 

requirements. The Modified folded architectures for SPHIT 

image compression by Fry and Hauck uses the same filter 

assembly for both rows and columns with pixels read from 

one memory port, transposed for the column transform, and 

written to another memory port. It achieves a DWT runtime 

of ¾ N2 cycles for an NxN image, but it assumes 64-bit wide 

memory ports to allow filtering of 4 rows at a time of 16 bit 

pixels, which may not be practical for all systems. 

 

C.  Proposed Parallel Architectures for the 2D DWT  

The standard DWT algorithm operates on the whole image in 

a sequential manner. An improved implementation would 

partition the image into several blocks and 43 operate on 

each block independently and in a parallel manner, and then 

would merge the results to complete the DWT. While this 

architecture still requires the same intensive computations of 

the recursive filtering operation and the same memory 

requirements, the computation can be sped-up if one uses a 

multi-processor system or identical parallel hardware 

implementations of the filtering blocks that can operate on 

multiple image blocks simultaneously. A known 

disadvantage of such an approach is that it requires data 

exchanges between neighboring blocks at each 

decomposition level of the discrete wavelet transform, and 

hence an additional overhead due to inter-processor 

communications. We consider three parallel implementations 

based on the lifting factorization of the DWT. The standard 

overlapping algorithm shown in Figure eliminates the 

blocking artifacts and imposes relatively simple control 

complexity, but has high computational cost and requires 

high on-chip buffering of data. For an NxN image, using 

DWT filters of length less than or equal to L, and partitioned 

into S Blocks, the number of additional filtering operations 

for a 1 level 2D DWT decomposition vs. a non-overlapped 

approach is: 2N*L*(S-1). 

 

III. THEORETICAL FRAMEWORK 

MEMORY OPTIMIZATION 

A. Memory Bandwidth Considerations and Storage 

Calculations 

 For a DWT filter pair and an image of N x N pixels, 

denoting: 

Fl - length of the longest filter 

J - DWT decomposition levels 

 S - Number of DWT line processors (blocks/stripes)  

Consider the stripe-parallel design shown in Figure 3.6. After 

the completion of 1 level DWT decomposition, the number 

of transitional boundary states generated at the first boundary 

of B1 and B2 is: 

Mb1=⎣ ½ F⎦*N 

Mb2=⎡½ F ⎤*N 

From B1 

Mb1=⎣ ½ F⎦*N* ½ 

From B2 

Mb2=⎡½ F ⎤*N* ½ 

wherememory is measured here in number of pixels, ⎡⎤ and 

⎣⎦ are the ceiling and the floor operators to accommodate odd 

length DWT filters at the stripe boundaries. 

 This results from the absence of image data along the 

boundaries of B1 and B2 required to complete the filtering 

operations. After the completion of 2 decomposition levels 

additional transitional boundary states are generated at the 

same boundary 

From B1 

Mb1=⎣ ½ F⎦*N* ½ 

From B2 

Mb2=⎡½ F ⎤*N* ½ 

Hence the memory required to hold transitional boundary 

states for each boundary is 

M1=Fl N
𝑗−1
𝑖=0 * (½)

i
 

Mtotal=Fl N
𝑗−1
𝑖=0 * (½)(s-1) 

To minimize external memory I/O bandwidth, the decision 

was made earlier to use 

the cascaded architecture, i.e., pipeline row and column 

filtering. Assuming a FIFO 

buffer length of N (image width), the memory required for 

row buffering is: 

for one block 

MFIFO = Fl* N 

and total needed memory for FIFO buffers is 

MFIFO- total = Fl* N * S 
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For example: for an image of 512x512 pixels, a 3 level (9,7) 

DWT decomposition 

with a partition size of 4 stripes, the total required on-chip 

RAM (BRAM) measured 

in pixels is: 9*(512+256+128)*4 + 9*512*4 = 42K bytes 

Actual required BRAM may need to be 84K bytes to account 

for dynamic expansion 

in DWT domain. 

 

B. For signal optimization 

The pyramidal algorithm for 2-D  DWT with separable 

wavelet bases is given by the following equations. 

X
s
(i, j)=  𝐿−1𝑘=0

𝐿−1

𝑘=0
h1(k)h2(k)X

s-1
(2i-k,2j-k) 

Y
s
(i, j)=  𝐿−1𝑘=0

𝐿−1

𝑘=0
g1(k)h2(k)X

s-1
(2i-k,2j-k) 

U
s
(i, j)=  𝐿−1𝑘=0

𝐿−1

𝑘=0
g1(k)h2(k)X

s-1
(2i-k,2j-k) 

V
s
(i, j)=  𝐿−1𝑘=0

𝐿−1

𝑘=0
g1(k)h2(k)X

s-1
(2i-k,2j-k) 

Where  X
s
( i, j ), Y

s
( i, j ), U

s
( i, j )and V

s
( i, j) are the 

coefficients of s-th stage of 2-D DWT and ,I,j = 0, 1 … … . , 

N− 1,. L represents the length of the low-pass and high-pass 

filters used for decomposing the input data matrix of size (N 

x N) into four sub-bands. The pyramidal algorithm pertaining 

to the low-low sub-band computation [X
s
(i, j) ] may be 

decomposed into two stages of computation as:  

X
s
( 2i,2 j)=  𝐿−1𝑘=0

𝐿−1

𝑘=0
h2(k)W

s
2(k)(2i,2j-k) 

W
s
( 2i,2 j)=   𝐿−1𝑘=0

𝐿−1

𝑘=0
h1(k)X

s-1
2(k)(2i-K,j) 

in z-domain representation: 

W
s
(Z1,Z2)=X

s-1 
  (Z1,Z2) 

𝐿−1
𝑘=0 h1(k)(Z1-K) 

X
s
(Z1,Z2)=W

s 
  (Z1,Z2) 

𝐿−1
𝑘=0 h2(k)(Z2-K) 

Where, the input and output of equation are time multiplexed 

in z-domain. Equations  can also be derived for Y
s
( i, j ), U

s
( 

i, j )and V
s
( i, j) 

in z-domain and the 2-D DWT, therefore may be computed. 

Design of an Efficient VLSI Architecture for 2D DWT 

Wavelet Image Processing 

The selected low pass or high pass filter are FIR (finite 

impulse response) filters. The transfer functions for these 

filters are as, Transfer function for low pass filter, 

H(z)=h0H
-1         

+h1H
-1   

+h2H
-1 

+h3H
-1

+ hL-1H
-L

 

G(z)=g0H
-1         

+g1H
-1   

+g2H
-1 

+g3H
-1

+g L-1H
-L 

 

IV. IMPLEMENTATION RESULTS AND DISCUSSIONS 

A. IMPLEMENTATION RESULTS 

RESULT OF MEMORY OPTIMIZATION 

Table1: Resources Utilization for the Overlap-State 

Implementation 

 ONE DWT 

MODEL 

TWO PARRLEL 

DWT MODEL 

Number of Slice 

 

3380 (10% of 

total ) 

available slices) 

7267 (22%) 

Number of Slice 

Flip Flops 

3488 (5%) 7499 (11%) 

Number of 

input LUTs 

5455 (8%) 11729 (18%) 

Number of 

BRAMS 

26 (8%) 56 (17%) 

Number of 

Multipliers 

16 (5%) 34 (10%) 

 

Table2: Resources Utilization and Throughput Comparisons 

to other Optimized Methods 

 
 

B.Performance Evaluation 

(i)for memory optimization 

 

Fig2 . Performance algorithms 
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Fig 3. Performance-parallel-overlap-state 

(ii) FOR SIGNAL OPTIMIZATION 

 

Fig4 (a)Low-pass filtered output image (b) High-pass filtered 

output image 

 

Fig5 .one-level decomposed output image (b) Third-level 

decomposed output image 

 

V. CONCLUSIONS 

We presented, in thesis, a methodology for parallel 

implementation of memory and signal optimization using 

DWT on FPGAs. We investigated and analyzed parallel and 

efficient hardware implementations targeting state-of-the-art 

FPGAs. We addressed practical considerations and various 

design choices and decisions at all design stages to achieve 

an efficient DWT implementation, subject to a given set of 

constraints and limitations. We presented a specific 

optimization representation for the DWT that provides 

architectures suitable for efficient hardware implementation, 

and a novel data transfer method that provides seamless 

handling of boundary and transitional states associated with 

parallel implementations.Also In recent years, several 

architectures have been proposed for 2-d discrete wavelet 

transform. However, the hardware of these architectures 

needs to be further improved. Therefore, in this paper, we 

have proposed an efficient recursive architecture for 2-D 

DWT. The advantages of the proposed architecture are 

saving adders, multipliers, simple control complexity, and 

complete hardware utilization, making this design suitable 

for image processing systems. 
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