
International Journal For Technological Research In Engineering

Volume 4, Issue 11, July-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 2435

MAKESPAN OPTIMIZATION USING JOB ORDERING AND SLOT

CONFIGURATION OPTIMIZATION APPROACHES FOR

MAPREDUCE WORKLOADS

Ch. Prashanth
1
, M. Praveen

2
, Anil. Degala

3

1,2
Assistant Professor, Dept of CSE,

3
Associate Professor, Dept of IT

Vidya Jyothi Institute of Technology, India

ABSTRACT: The MapReduce is an open supply Hadoop

framework applied for processing and generating

distributed huge Terabyte facts on big clusters. Its principal

motive is to lowering the of completion time of massive

units of MapReduce jobs. Hadoop Cluster most effective

has predefined constant slot configuration for cluster

lifetime. This fixed slot configuration can also produce long

completion time (Makespan) and system low resource

utilization. The current open source Hadoop allows only

static slot configuration, like fixed numbers of map slots

and reduce slots throughout the cluster lifetime. Such static

configuration may lead to long completion length as well as

low system resource utilizations. Propose new schemes

which use slot ratio between Map and Reduce tasks as a

tunable knob for minimizing the completion length (i.e.,

makespan) of a given set. By leveraging the workload

information of recently completed jobs, schemes

dynamically allocates resources (or slots) to map and

reduce tasks. Many scheduling methodologies are discussed

that aim to improve execution performance as well as

completion time goal.

I. INTRODUCTION

In present years, MapReduce has come to be a famous

version for data-extensive computation. The schedulers are

important in improving the performance of

MapReduce/Hadoop in presence of multiple jobs with

specific traits and overall performance goals. In a huge

cluster with heterogeneous sources, maximizing a project’s

distribution can also result in large communication expenses.

Therefore, the corresponding job’s finishing touch time could

be prominent. MapReduce is a processing method and a

software model for dispensed computing based on java. The

MapReduce algorithm contains two critical tasks, namely

Map and Reduce. Map takes a hard and fast of data and

converts it into some other set of data, where man or woman

elements are broken down into tuples (key/value pairs).

Secondly, lessen undertaking, which takes the output from a

Map as an input and combines the ones information tuples

right into a smaller set of tuples. As the collection of the

name MapReduce implies, the reduce mission is continually

carried out after the Map job. MapReduce is that it is

straightforward to scale data processing over multiple

computing nodes. Under the MapReduce version, the

information processing primitives are called mappers and

reducers. Decomposing a data processing utility into mappers

and reducers is sometimes nontrivial. But, once we write

application within the MapReduce form, scaling the software

to run over loads, lots, or maybe tens of heaps of machines in

a cluster is simply a configuration change. This easy

scalability is what has attracted many programmers to use

the MapReduce model. There are two key performance

metrics i.e. Makespan and total completion time (TCT).

Makespan is defined as the time period since the start of the

first job until the completion of the last job for a set of jobs.

It considers the computation time of jobs and is often used to

measure the performance and utilization efficiency of a

system. In contrast, total completion time is referred to as the

sum of completed time periods for all jobs since the start of

the first job. In this works, we aim to optimize these two

metrics. When large data sets are given to operate on them

for each or every single set of jobs the makespan and total

completion time should be able to minimize and optimize the

job reduction issues using MapReduce algorithm. This

including the total completion time for all datasets should be

optimized. To improve the workload distribution among the

multiple machines MapReduce Framework is used. To avoid

more memory consumption using efficient technique,

MapReduce can be used. The importance of MapReduce is

escalating step by step as a parallel programming model for

large scale data preparing. At the same time in the long run,

we find out some customary MapReduce stages which have

a poor execution in content of group asset use following the

conventional multi-stage parallel model and some current

time table approaches utilized as a part of the group

environment have a few disadvantages. We address these

issues through our involvement in planning a Dynamic Split

Model of the assets usage which contains two advances,

Dynamic Resource Allocation considering the stage need

and employment prerequisite when distributing assets and

Resource Usage Pipeline which can relegate errands alertly.

The fundamental pipe line of parallel processing catches the

scholastic world consideration. Further area/circle is an

appropriated figuring stage which is like Google

GFS/MapReduce. It comprises of a parallel runtime Sphere

and in addition a conveyed file framework Sector. Another

parallel runtime is phaser which is a direction build for

element parallelism under the environment of multi-

processors rather than multi-nodes.

II. RELATED WORK

P.F. Dutot, G.Mounie, and D. Trystram offered an attractive

version for scheduling effectively programs on parallel and

disbursed systems primarily based on PTs. It is a pleasant

International Journal For Technological Research In Engineering

Volume 4, Issue 11, July-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 2436

opportunity to conventional computational fashions

particularly for huge conversation delays and new

hierarchical structures. We have proven how to reap properly

approximation scheduling algorithms for the distinct styles of

PTs for two standards for both off-line and on-line instances.

J. N. D. Gupta described that the two-level flowshop problem

while there are same a couple of machines at each level, and

shows that the problem is NP-complete. An efficient heuristic

algorithm is developed for finding an approximate answer of

a unique case whilst there may be most effective one

machine at stage2.

Anil Sagar T, Ramakrishna V Moni proposed a DynamicMR

Technique can be used to beautify the execution of

MapReduce workloads even as retaining up the fairness. It

incorporates of 3 strategies, mainly, DHSA, SEPB, Slot

PreScheduling, all of which focus on the slot use

optimization for MapReduce group from trade points of

view. DHSA concentrates on the slot use enlargement by

way of dispensing map or reduce slots to map and reduce

obligations alterably. Especially, it doesn't have any

presumption or require any earlier studying and can be

applied for any kinds of MapReduce jobs (e.G., self reliant or

subordinate ones). Two varieties of DHSA are brought,

particularly, PI-DHSA and PD-DHSA, in view of exceptional

levels of fairness. Client can choose each of them likewise.

Slot Pre-Scheduling complements the talent of slot use

through using growing its statistics locality.

Chen He, Ying Lu and David Swanson developed a new

matchmaking algorithm to improve the data locality rate and

the average response time of MapReduce clusters. We have

carried out experiments to compare not only MapReduce

scheduling algorithms with and without our matchmaking

algorithm but also with an existing data locality enhancement

technique.

Dawei Jiang, Beng Chin Ooi, Lei Shi and Sai Wu conducted

an in-depth performance study of MapReduce in its open

source implementation, Hadoop. We have identified five

factors that affect the performance of MapReduce and

investigated alternative implementation strategies for each

factor.

III. FRAMEWORK

A. Proposed System Overview

We goal at one subset of manufacturing MapReduce

workloads that consist of a set of unbiased jobs (e.g., every of

jobs approaches distinct information units and not using a

dependency among each different) with one-of-a-kind

procedures. For dependent jobs (i.e., MapReduce workflow),

one MapReduce can most effective begin simplest whilst its

preceding structured jobs end the computation concern to the

input-output statistics dependency. In comparison, for

independent jobs, there's an overlap computation among two

jobs, i.e., while the current job completes its map-section

computation and starts its map-phase computation, the

subsequent task can begin to perform its map-segment

computation in a pipeline processing mode by means of

possessing the launched map slots from its preceding activity.

To maximize the slot utilization for MapReduce and balance

the performance exchange between a single job and a batch

of jobs with fair scheduling and improving the performance

of MapReduce cluster in Hadoop. Goals and Objective the

objective is to utilize the slots in MapReduce cluster.

Fig1. Overview of Framework

The slot utilization remains a challenging task because of

fairness and resource needs. It is truthful once all pools are

allotted with a similar quantity of resources. The resources

needs between the map slot and reduce slot are typically

different. This is as a result of the map task and reduce task

are often exhibit completely different execution patterns. We

tend to review job ordering optimization. To model

performance of system, make span and total completion time

is used. Total time taken to complete job is calculated. We

tend to describe the dynamic slot allocation framework that

produces the optimized job order and additionally prove its

approximation ratio. We tend to additionally describe the job

order which provides the worst, i.e., longest make-span,

which is used for derivation of the boundary make-span of a

workload. We tend to propose an alternative technique

known as dynamic Hadoop slot allocation by keeping the

slot based model. It relaxes the slot allotment constriction to

allow slots to be reallocated to either map or reduce tasks

depending on their needs. Second, the speculative execution

will tackle the straggler problem that is shown to boost the

performance for single job however at the expense of the

clustering. Within the view, we tend to propose speculative

execution performance balancing to balance performance

trade-off between single job and a batch of jobs. Third, delay

scheduling has shown to enhance the data vicinity however

at the cost of fairness.

B. Need for Makespan Optimization

In this paper, Makespan and Total Completion Time (TCT)

are two major performance metrics to the MapReduce

workloads. Generally, makespan is defined because the term

for the reason that begin of the first task until the entirety of

the final task for a hard and fast of jobs. It considers the

computation time of jobs and is often used to degree the

overall performance and utilization efficiency of a machine.

In assessment, general of completion time is called the sum

of finished time periods for all jobs for the reason that begin

of the primary job. It is a generalized makespan with queuing

time covered. We can use it to measure the satisfaction to the

device from a single task’s perspective thru dividing the

entire of entirety time by using the quantity of jobs. In this

paper, we describe the MK_JR set of rules that produces the

optimized task order and also prove its approximation ratio.

We also describe the process order which offers the worst,

International Journal For Technological Research In Engineering

Volume 4, Issue 11, July-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 2437

i.e., longest makespan, that's used for derivation of the higher

sure makespan of a workload. Next, we describe the

MK_TCT_JR algorithm, which optimizes each makespan

and overall of completion time.

IV. EXPERIMENTAL RESULTS

In this experiment, we need run unoptimized (by using

normal map reducer concept). Here we are running 3 types of

jobs such as word count, sorting and creating inverted index.

After run these three jobs, we can run the MK_JR algorithm.

As per this algorithm, we order jobs in J based on the

following principles: Partition jobs set J into two disjoint sub-

sets JobA and JobB:

JobA = when T(m) <= T(r)

JobB = when T(m) > T(r)

MK_TCT_JR algorithm is also similar to MK_JR algorithm

but difference is based on time threshold value it arrange the

jobs. After completion of these two algorithms, we can run

the MK_SF_JR algorithm. This algorithm shows that how

many processes required for job and MK_TCT_SF_JR

algorithm provide the processes information based on time

threshold. Finally, we can see the makespan time for all

algorithms.

V. CONCLUSION

In this paper we worked on the job ordering and map/reduce

slot configuration problems for MapReduce production

workloads, wherever the typical execution time of

map/reduce tasks for a MapReduce job can be profiled from

the history run. Two performance metrics are considered, i.e.,

Makespan and total completion time. We tend to initial

specialize in the Makespan. We tend to propose job ordering

optimization algorithm and map/reduce slot configuration

optimization algorithm. We tend to observe that the entire

completion time are often poor subject to obtaining the

optimal Makespan, therefore, we tend to additional propose a

brand new greedy job ordering algorithm and a map/reduce

slot configuration algorithm to minimize the Makespan and

total completion time together. The theoretical analysis is

additionally given for our projected heuristic algorithms, as

well as approximation ratio, higher and lower bounds on

Makespan. Finally, we tend to conduct extensive experiments

to validate the effectiveness of our projected algorithms and

their theoretical results.

REFERENCES

[1] S. R. Hejazi and S. Saghafian, “Flowshop-

scheduling problemswith makespan criterion: A

review,” Int. J. Production Res., vol. 43,no. 14, pp.

2895–2929, 2005.

[2] S. Agarwal, S. Kandula, N. Bruno, M.-C. Wu, I.

Stoica, and J.Zhou, “Re-optimizing data-parallel

computing,” in Proc. 9th USENIX Conf. Netw.

Syst. Design Implementation, 2012, p. 21.

[3] P. Agrawal, D. Kifer, and C. Olston, “Scheduling

shared scans oflarge data files,” Proc. VLDB

Endow., vol. 1, no. 1, pp. 958–969,Aug. 2008.

[4] W. Cirne and F. Berman, “When the herd is smart:

Aggregatebehavior in the selection of job request,”

IEEE Trans. Parallel Distrib. Syst., vol. 14, no. 2,

pp. 181–192, Feb. 2003.

[5] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein,

K. Elmeleegy,and R. Sears, “Mapreduce online,” in

Proc. 7th USENIX Conf.Netw. Syst. Design

Implementation, 2010, p. 21.

[6] J. Dean and S. Ghemawat, “Mapreduce: Simplified

data processing on large clusters,” in Proc. 6th

Conf. Symp. Oper. Syst. DesignImplementation,

2004, vol. 6, p. 10.

[7] J. Dittrich, J.-A.-Quiane Ruiz, A. Jindal, Y. Kargin,

V. Setty, and J.Schad, “adoop++: Making a yellow

elephant run like a cheetah(without it even

noticing),” Proc. VLDB Endowment, vol. 3,nos. 1–

2, pp. 515–529, Sep. 2010.

[8] P.-F. Dutot, L. Eyraud, G. Mounie, and D.

Trystram, “Bi-criteriaalgorithm for scheduling jobs

on cluster platforms,” in Proc. 16thAnnu. ACM

Symp. Parallelism Algorithms Archit., 2004, pp.

125–132.

[9] P.-F. Dutot, G.Mounie, and D. Trystram,

“Scheduling paralleltasks: Approximation

algorithms,” in Handbo ok of

Scheduling:Algorithms, Models, and Performance

Analysis, J. T. Leung, Ed. BocaRaton, FL, USA:

CRC Press, ch. 26, pp. 26-1–26-24.

[10] J. Gupta, A. Hariri, and C. Potts, “Scheduling a

two-stage hybridflow shop with parallel machines at

the first stage,” Ann. Oper.Res., vol. 69, pp. 171–

191, 1997.

