EFFICIENCY OF DIESEL OXIDATION CATALYST ON A NONROAD DIESEL ENGINE EMISSION

Ashwani Kumar1, Punit Bhardwaj2, Tarun Gupta3, Vinod Sehrawat4, Nitin Kumar5
1Research Scholar, M.Tech. (Thermal Engineering), Department of Mechanical Engineering
2DGM, Engine Design and Testing, Knowledge Management Centre, Escorts Limited
3,4,5Department Of Mechanical Engineering, NGF College of Engineering and Technology (Palwal) Faridabad.

Abstract: This technical paper presents the effect of diesel engine oxidation catalyst on exhaust emission by a non-road diesel engine. The diesel oxidation catalyst oxidises the carbon mono-oxide (CO), un-burnt hydro-carbon (HC) and the particulate matter from the exhaust of diesel engine. The performance and the efficiency of the diesel oxidation catalyst depend on the soot which is being generated by the engine. The soot constituents and its properties depend on the combustion, sulphur content in diesel and also on the engine lubricating oil.

Key Word: Diesel oxidation catalyst (DOC), Diesel engine emission

I. INTRODUCTION
Diesel Oxidation Catalysts (DOC) helps reduce particulate matter mass from exhaust gasses, turning hydrocarbons and carbon monoxide into carbon dioxide and water. DOCs also aid the overall performance of after-treatment systems comprising DPF/Selective Catalytic Reduction. The diesel oxidation catalyst (DOC) has been part of diesel exhaust systems since regulations were introduced to limit the amount of harmful emissions released to the environment from diesel engines. The DOC primary functions are oxidation of CO, unburned hydrocarbons, and NO, while active hydrocarbon oxidation can also be used to generate isotherms required for downstream components. This review will describe work that has attempted to understand the reactions, both desired and undesired, that occur over the catalyst. First, the history, configuration, and components of the DOC will be discussed, followed by in-depth coverage of the fundamental reactions that occur over a DOC, including reaction mechanisms, reaction inhibition, and other reactivity effects. Finally, DOC deactivation mechanisms and their effects on the DOC are described. While there is a lot of research literature regarding Pt- and Pd-based catalysts for many different reaction schemes, this review tries to highlight work most relevant to DOC applications.

II. LITERATURE REVIEW
The catalytic converter was invented by Eugene Houdry, a French mechanical engineer and expert in catalytic oil refining, who moved to the United States in 1930. When the results of early studies of smog in Los Angeles were published, Houdry became concerned about the role of smoke stack exhaust and automobile exhaust in air pollution and founded a company called Oxy-Catalyst. Houdry first developed catalytic converters for smoke stacks called "cats" for short, and later developed catalytic converters for warehouse forklifts that used low grade, unleaded gasoline. In the mid-1950s, he began research to develop catalytic converters for gasoline engines used on cars. He was awarded United States Patent 2,742,437 for his work. Widespread adoption of catalytic converters did not occur until more stringent emission control regulations forced the removal of the anti-knock agent tetraethyl lead from most types of gasoline. Lead is a "catalyst poison" and would effectively disable a catalytic converter by forming a coating on the catalyst's surface. Catalytic converters were further developed by a series of engineers including John J. Mooney, Carl D. Keith, Antonio Eleazar at the Engelhard Corporation, creating the first production catalytic converter in 1973. William C. Pfefferle developed a catalytic combustor for gas turbines in the early 1970s, allowing combustion without significant formation of nitrogen oxides and carbon monoxide.

III. EXPERIMENT
Engine Specifications:
Diesel engine the engine used in this study was 75HP 3.12 litre turbocharged diesel engine (featuring high-pressure common rail fuel injection). It is representative of modern diesel engine design practice, and features. Below mentioned the table for specification of the engine which we did the DOC exercise

<table>
<thead>
<tr>
<th>Rated Power(HP)</th>
<th>75HP@2000 rpm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Torque(Nm)</td>
<td>350Nm@1400rpm</td>
</tr>
<tr>
<td>No of Cylinder</td>
<td>4</td>
</tr>
<tr>
<td>Bore X Stroke</td>
<td>95 X 110</td>
</tr>
<tr>
<td>Swept Volume</td>
<td>3.12</td>
</tr>
<tr>
<td>Aspiration</td>
<td>Turbo charged Inter cooler</td>
</tr>
<tr>
<td>High Idle</td>
<td>2200rpm</td>
</tr>
<tr>
<td>Low Idle</td>
<td>750rpm</td>
</tr>
</tbody>
</table>

The particle sample of above engine taken without DOC and
sample sent to the laboratory for detailed analysis of lube Oil, Fuel, results are tabulated below

<table>
<thead>
<tr>
<th>Filter Number</th>
<th>Particle Total Loading</th>
<th>Particle Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Front (mg)</td>
<td>VOF</td>
</tr>
<tr>
<td>Primary</td>
<td></td>
<td>mg % of Total</td>
</tr>
<tr>
<td>0.423</td>
<td></td>
<td>0.311</td>
</tr>
</tbody>
</table>

Engine Test Bench Details:
The engine trials were performed using an engine emission test-bed within the Escorts Engine test laboratory which is certified by VCA (Vehicle Certification Agency, U.K) and equipped with AVL instruments and devices. The configuration of the engine test cell is illustrated in Figure. The engine was mounted on a test bed and coupled to an APA120 kW transient dynamometer.

IV. ENGINE CONTROL & DATA ACQUISITION SYSTEM
The test cell was equipped with data logging facilities made by AVL. The data logging box consisted of three pressure and thirty temperature channels. The computer in the control room used Puma 2.0 software, which recorded all the temperatures, pressures, gas concentrations and engine operating conditions from the test. It allows system customization using Visual Basic and also contains Real Time multi-tasking direct digital control functions. Its interface supports input from the dynamometer, engine control unit (ECU), fuel Balancing Unit, sensors and controllers. This comprehensive system eliminated the need for laborious data synchronisation (between temperature and gas composition measurements) post testing.

V. RESULT & CONCLUSION:

5.1 Smoke:
The smoke values without DOC at almost all 8 modes found to be at par with DOC.

5.2 NOX:
The NOx PPM values without DOC at almost all 8 modes found to be at par with DOC.

5.3 CO:
There found considerable impact of DOC on CO PPM value mainly at the 4th mode.

5.4 HC:
There found considerable impact of DOC on HC PPM value mainly at the 4th mode.
5.5 NRSC Cycle gaseous emissions (gm/Kw.hr):
The difference of NRSC cycle gaseous emission with and without DOC, can be seen in the below plot:

5.6 NRSC Cycle PM during:

5.7 DOC Efficiency Calculation:
PM with DOC = 0.023
PM without DOC 0.027

\[\eta = \frac{(1-0.023/0.027)}{100} \]
=14.81%

The efficiency of the sample DOC with subject engine found to be 14.81%.

REFERENCE

