
International Journal For Technological Research In Engineering

Volume 4, Issue 12, August-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 2596

A SELECTIVE OFFLOADING FRAMEWORK FOR MOBILE CLOUD

COMPUTING

Soumya Nair
1
, Kompal Paliwal

2
, Mitali Manjarekar

3
, Ketki Kokate

4

Department of Information Technology, Cummins College of Engineering for Women, Pune.

Abstract: In the recent years cloud computing has emerged

as a technology which allows users to store and compute

over the network and pay only for what they use. Exploiting

this technology we can achieve better performance in the

case of mobile devices with limited processing power and

battery life, for complex and sophisticated mobile

applications which are exploding in their popularity. This

paper presents an optimization framework where selective

offloading is being performed on a computationally

expensive application. The application is being partitioned

using JADE (Java Application Development Environment)

and then offloaded to the cloud servers accordingly. We use

Google Firebase Cloud Functions for heavy computations.

This process reduces the energy consumption and execution

overhead of the mobile device. We have also discussed the

advantages of using this framework on the basis of various

performance parameters like memory, data, CPU usage and

battery consumption. Experimenting this framework with

real-world mobile applications demonstrates the superiority

of this approach over monolithic execution of resource-

intensive applications on mobile devices.

Index Terms: Cloud Computing, Optimization Framework,

Selective Offloading

I. INTRODUCTION

Over the last decade, the use of smartphones has increased

exponentially. The number of smartphone users in India in

2017 is reported to be around 300 million. 54% of the world's

population has been predicted to own a smartphone by 2018.

Today we are at a point that in less than 2 years, a

smartphone would be the only computer we owned. These

mobile phones have evolved in order to imitate the services

provided by the highly advanced desktop computers.

Smartphones today are easily replacing the formerly popular

desktop PCs with their comparable features like 6+ gigabytes

of RAM, powerful graphics hardware and multiple

processors. Powerful computing capabilities have made these

smartphones increasingly popular. With the advancement in

the technology of smartphones, users heavily rely on them

for their day-to- day tasks such as e-banking, healthcare

applications etc. Emails can be handled from anywhere and

GPS can be used for tracking any location. It has replaced so

many devices like dictionaries, scanners, kindle etc. and shall

replace many more devices like set-top boxes, IDs and many

more. Nearly all tasks that can be performed on mid-range

desktop computers can be performed on smartphones and

tablets. Although smartphones today show nearly similar

performances as that of desktop computers, they will still

face limitations in terms of resources to fulfill its requirement

of being light and handy. The demand for the smartphones to

be sleek and handy is really high these days which poses as a

setback in terms of its resources. Also using these devices for

highly computationally intensive real-time applications like

image processing could put unnecessary load on the

processor and drain the battery of the device. Inspite of all

other features being comparable to the desktop, battery

limitations of the smartphones still persist. The mobile

industry's foremost challenge today is tackling the hurdles

that come with massive energy requirements of the phone.

Also with the rapid advancement in technology the newest

smartphone model turns obsolete within the course of a few

months, meanwhile the applications are progressively getting

complicated. In such a situation buying new devices every

three months is not a cost-effective solution. At the same

time the users must get access to the new applications and

should be able to avail them without having to discard their

old phones. Strategic use should be made of the hardware in

order to utilize it more efficiently. Here is where cloud

computing comes to the rescue. Cloud computing enables us

to remove the load off the device and carry out the

computation on remote well equipped machines. Linking

smartphones with cloud helps in building a more

sophisticated software. Computational offloading to more

powerful servers is the solution to overcome these

constraints and provide these devices with the resources they

need to achieve complex tasks in real-time. Cloud computing

needs to manage the resources on the basis of their

availability and their demand. It provides us this opportunity

to execute our applications on servers instead of running

them locally and favors us to overcome the handsets

limitation of limited resources to a great extent. These

processor intensive tasks can be offloaded to the cloud by

leveraging infrastructure such as Google's Firebase. The rest

of this paper presents the design, implementation and

evaluation of this framework. Our framework achieves

the above mentioned objectives by providing a novel

execution offloading infrastructure to make it easy for

developers to exploit the framework with minimal

modification of the existing code. We provide an easy to

adapt and cost effective solution not just for the convenience

of the developers but also for the users.

II. PREVIOUS WORK

Overview

Mobile-cloud computing involves the collaboration between

mobile and cloud computing. In this paper we have proposed

an optimization framework for mobile cloud computing that

dynamically decides which agent-based application partition

must be offloaded to the cloud and which one must be

processed on the mobile device itself. Mobile cloud

International Journal For Technological Research In Engineering

Volume 4, Issue 12, August-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 2597

computing has the potential to bridge the gap between

resource requirements and availability.

Traditional Approach and its Setbacks

Cloud computing is used by many mobile applications today

that are mostly involved in an inflexible split of computation

between the mobile and cloud platforms, following the client-

server paradigm with hard- coded interactions with the server

preventing applications from adapting to conditions such as

high network latency, resulting in poor performance when

cloud resources are preferred over computation on the device.

Optimal partitioning of the mobile application components

between the mobile and cloud platforms based on runtime

conditions. Frameworks with various partitioning and

optimization techniques have been proposed recently. Efforts

in computation offloading have a long history; research in

mobile-cloud computing is still at its infancy. CloneCloud

and MAUI partition applications using a framework that

combines static program analysis with dynamic program

profiling, thus optimizing the execution time and energy

consumption on the mobile device using an optimization

solver. A copy of the whole application code/virtual machine

at the remote execution site is required which becomes a

drawback, this makes the application code vulnerable to

analysis by malicious parties on the same platform and

imposes a strict requirement for public cloud machines

New Approach with Mobile Agents

No pre-requisite requirements on the cloud platform other

than providing isolated execution containers is needed,

autonomous agent-based application partitions alleviate the

management burden of offloaded code by the mobile

platform. A Mobile Agent, namely, is a type of software

agent, with the feature of autonomy, social ability, learning,

and most significantly, mobility. More specifically, a mobile

agent is a process that can transport its state from one

environment to another, with its data intact, and be capable of

performing appropriately in the new environment. Mobile

agents decide when and where to move. Movement is often

evolved from RPC methods. Just as a user directs an Internet

browser to visit a website (the browser merely downloads a

copy of the site or one version of it in the case of dynamic

web sites), similarly, a mobile agent accomplishes a move

through data duplication. When a mobile agent decides to

move, it saves its own state (process image), transports this

saved state to the new host, and resumes execution from the

saved state. A mobile agent is a specific form of mobile code,

within the field of code mobility. However, in contrast to the

Remote evaluation and Code on demand programming

paradigms, mobile agents are active in that they can choose

to migrate between computers at any time during their

execution. This makes them a powerful tool for

implementing distributed applications in a computer network.

There are two types of mobile agent. The classification is

based on their migration path.

 Mobile agents with predefined path: Have static

migration path

 Free roaming mobile agent: Have dynamic

migration path. Depending up on the present

network condition the mobile agent chooses its

path.

Some advantages which mobile agents have over

conventional agents are:

1. Computation bundles - converts computational

client/server round trips to relocatable data bundles,

reducing network load.

2. Parallel processing -asynchronous execution on

multiple heterogeneous network hosts

3. Dynamic adaptation - actions are dependent on the

state of the host environment

4. Tolerant to network faults - able to operate without an

active connection between client and server

5. Flexible maintenance - to change an agent’s actions,

only the source (rather than the computation hosts) must

be updated

6. Bandwidth conversion which is conversion the

bandwidth one host to another host.

7. Reduction in compilation time.

Selective Offloading

The transfer of certain computing tasks to an external

platform, such as a cluster, grid, or a cloud is computation

offloading. It may be necessary due to hardware limitations

of a computer system handling a particular task on its own.

SOME architecture is an offloading system for mobile

applications, in an effort to reduce the computational cost of

mobile devices. The limited processing power and battery

lifetime of mobile phones hinder the possible execution of

computationally intensive applications like content-based

video analysis or 3D modeling. This problem can be

addressed by offloading of computationally intensive

application parts from the mobile platform into a remote

cloud infrastructure or nearby idle computers.

JADE-Java Agent Development Framework

JADE is a distributed agent’s platform, which has a container

for each host where you are running the agents. Agents live

on top of a Platform that provides them with basic services

such as message delivery. A platform is composed of one or

more Containers. Containers can be executed on different

hosts thus achieving a distributed platform. Each container

can contain zero or more agents. Additionally the platform

has various debugging tools, mobility of code and content

agents, the possibility of parallel execution of the behavior of

agents, as well as support for the definition of languages and

ontologies. Agents execute tasks and interact by exchanging

messages.

III. SYSTEM ARCHITECTURE

The components involved in the architecture of the selective

offloading framework are JADE, mobile device and cloud

service directory which is part of the Google Firebase

system. Figure 1 shows the higher level architecture of the

framework. Set of agent- based application partitions that are

offloadable to the cloud for execution (P2 and P3 in the

figure) are part of the architecture, there are a set of native

application components that are always executed on the

International Journal For Technological Research In Engineering

Volume 4, Issue 12, August-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 2598

device due to constraints such as accessing native sensors of

the device or providing the user interface of the application

(P1 in the figure). Partitioning of the application is done

statically right now. During the offline application

partitioning process, program partitions that are not

computationally intensive are set as an offloadable

component.

Fig 3.1

When a mobile application is launched, the framework

contacts the Google Firebase to get a list of available

machine instances in the cloud and selects the instance(s)

with the highest communication speed with the mobile

device and the highest computing power. After this step

executes, offloading decisions for the agent-based

partitions is created. If the execution plan requires offloading

a particular application partition, a bridge is formed between

the caller of that partition and the cloud host selected by the

Google Firebase, through which the offloaded partition

migrates to the container in the host, carrying along its input

parameters. Upon migration, the partition starts executing

and communicates its output data to the caller through the

same bridge.

The main components of the proposed framework are

described below:

MODULES

1. JADE

An application based on JADE is made of a set of

components called Agents each one having a unique name.

Agents execute tasks and interact by exchanging messages.

Agents live on top of a Platform that provides them with

basic services such as message delivery. A platform is

composed of one or more Containers. Containers can be

executed on different hosts thus achieving a distributed

platform. Each container can contain zero or more agents.

Each platform must have a parent container that has two

special agents called AMS and DF. The DF (Directory

Facilitator) provides a directory which announces which

agents are available on the platform. The AMS (Agent

Management System) controls the platform. Is the only one

who can create and destroy other agents, destroy containers

and stop the platform. To access the AMS Service an agent is

created which automatically runs the register method of the

AMS by default before executing the method setup from the

new agent. When an agent is destroyed it executes its

takedown() method by default and automatically calls the

deregister method of the AMS. An application based on

JADE is made of a set of components called Agents each one

having a unique name. Agents execute tasks and interact by

exchanging messages. Agents live on top of a Platform that

provides them with basic services such as message delivery.

A platform is composed of one or more Containers.

Containers can be executed on different hosts thus achieving

a distributed platform. Each container can contain zero or

more agents. JADE was initially developed by Telecom

Italia Lab. This sector is the R and D branch of Telecom

Italia Group which is responsible for promoting

technological innovation. Telecom Italia conceived and

promoted JADE by basing it in 2000. In March 2003

Motorola and Telecom Italia create the JADE Governing

Board with the objective of promoting the development and

adoption of JADE in the mobile telecommunications

industry as middleware based. That organization (JADE

Governing Board) accepts to any company and / or

organization interested in the commercial use and

exploitation of JADE to commit to its development and

promotion.

2. Firebase

Firebase is a mobile and web application platform with tools

and infrastructure designed to help developers build high-

quality apps. Firebase is made up of complementary features

that developers can mix-and-match to fit their needs. Most

Firebase features are free forever, for any scale. User doesn’t

have to worry about scaling the server code or provisioning

extra capacity Firebase takes care of that. Cloud Functions

for Firebase lets you create functions that are triggered by

Firebase products, such as changes to data in the Real-time

Database, uploads to Cloud Storage, new user sign ups via

Authentication, and conversion events in Analytics. The

ability to extend and connect Firebase features using Cloud

Functions makes Firebase more powerful, allowing you to do

even more with your app. Cloud Functions is a hosted,

private, and scalable Node.js environment where you can run

JavaScript code. Firebase SDK for Cloud Functions

integrates the Firebase platform by letting you write code

that responds to events and invokes functionality exposed by

other Firebase features. In many cases, application logic is

best controlled on the server in order to avoid tampering on

the client side. Cloud Functions are fully insulated from the

client so you can be sure they are private and secure and

can’t be reverse engineered. It requires zero maintenance.

One can deploy the code to the servers with one command

from the command line. On doing that Firebase

automatically scales up computing resources to match the

usage patterns of your users. Credentials, server

configuration, provisioning new servers, or decommissioning

old ones is handled automatically by Firebase. It helps in

keeping the logic private and secure. In many cases,

developers prefer to control application logic on the server to

International Journal For Technological Research In Engineering

Volume 4, Issue 12, August-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 2599

avoid tampering on the client side. Also, sometimes it’s not

desirable to allow that code to be reverse engineered. Cloud

Functions is fully insulated from the client, so you can be

sure it is private and always does exactly what you want. As

a real-time, scalable backend, Firebase provide the tools you

need to quickly build rich, collaborative applications that can

serve the users.

Lifecycle of a Cloud Function for Firebase

 The developer writes code for a new Cloud

Function, selecting an event provider (such as Real-

time Database), and defining the conditions under

which the Cloud Function should execute.

 The developer deploys the Cloud Function, and

Firebase connects it to the selected event provider.

 When the event provider generates an event that

matches the Cloud Function’s conditions, the code

is invoked.

 If the Cloud Function is busy handling many events,

Google creates more instances to handle work faster.

If the Cloud Function is idle, instances are cleaned

up.

 When the developer updates the Cloud Function by

deploying updated code, all instances for the old

version are cleaned up and replaced by new

instances.

 When a developer deletes the Cloud Function, all

instances are cleaned up and the connection between

the Cloud Function and the event provider is

removed.

IV. WORKING OF THE SYSTEM

After you write and deploy a Cloud Function, Google’s

servers begin to manage the function immediately, listening

for events and running the function when it is triggered. As

the load increases or decreases, Google responds by rapidly

scaling the number of virtual server instances needed to run

your function. In this section the step by step working of the

complete system as a unit has been described:

 The partitioned application code is given to JADE.

 JADE wraps it along with the information required

for the code’s execution to create a mobile agent.

 The application is then launched

 Once the application is launched, agents offload the

functions to cloud i.e.

 Google Firebase.

 The computation of the function is done on the

cloud host, the computed result is returned back and

stored on the cloud.

 The results are then displayed on the interface where

the user can access it.

V. EXPERIMENTAL ANALYSIS

An experiment was performed on a locally developed mobile

application called Steganography App. The application used

the concept of steganography which is concealing text within

an image. The text is embedded with the image and on

reception of the image, does not appear with it but can be

extracted. The experiment was used to evaluate performance

of the framework in terms of application memory usage,

processor usage and battery usage. An emulator of Google

Nexus 4G device running Android 4.4 operating system was

used to run the mobile application and Google Firebase

instances were used as cloud hosts. For the offloaded

execution, a moderate speed Wi-Fi connection was used to

send/receive data from the cloud servers. The application

user requires to have a Google Firebase account and needs to

sign- in to get access to the images. To measure the energy

consumed by the applications due to CPU and Wi-Fi

utilization, we used PCloudy, an online testing tool for

mobile applications.

Figures 4.1 and 4.2 show sample ways to upload an image

and create mobile agents.

Fig 4.1

Fig 4.2

VI. PERFORMANCE ANALYSIS

We have implemented the framework using a mobile

application to evaluate the performance of the framework in

terms of memory usage and CPU usage of the mobile device.

In our application we have carried out a form of image

processing on cloud. We send an image along with a text to

Firebase for computation. The image is processed on cloud

in a way that the text gets hidden within the image and is

International Journal For Technological Research In Engineering

Volume 4, Issue 12, August-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 2600

sent back to the device. Thus the computational part is

offloaded by the application to the cloud. Our application is

based on the concept of covered writing, hiding of a message

within another so that the presence of the hidden message is

indiscernible which ensures that the people who are not

intended to be the recipients of the message should not even

suspect that a hidden message exists. The performance

analysis was done keeping 2 scenarios in mind i.e. before the

network connection to the cloud is established and after the

network connection to the cloud is established.

Fig.5.1

Figure 5.1 shows the memory usage of the application

against time in seconds before connecting to the cloud.

Fig.5.2

Figure 5.2 shows the memory usage of the application

against time in seconds after connecting to the cloud. We see

that once the application is connected to the cloud, the

memory usage decreases.

Fig.5.3

Figure 5.3 shows the CPU usage of the application in

percentage against time in seconds before connecting to the

cloud.

Fig.5.4

The Figure 5.4 shows the CPU usage of the application

against time in seconds after connecting to the cloud. There

is a rise and dip in the CPU usage once connected to the

cloud. Thus we observe that offloading always consumes

comparatively less energy and memory than the device-only

approach.

Fig.5.5

The Figure 5.5 shows the monitoring results for the live data

usage. It shows the incoming and outgoing packets.

Fig.5.6

The Figure 5.6 shows the battery usage of the device before

and after connecting to the cloud, battery usage of the

application and the total battery consumption in percentage

against the time in seconds. We can see that the battery usage

of the application is minimalistic as compared to that of the

We have proposed a dynamic performance optimization

framework for mobile-cloud computing using mobile agent

based application partitions, imposing minimal structural

requirements on the cloud. Our approach does not impose

any requirements on the cloud platform other than providing

isolated execution containers, and it alleviates the

management burden of offloaded code by the mobile

platform using stateful, autonomous application partitions.

We also investigate the effects of different cloud runtime

environment conditions on the performance of mobile-cloud

International Journal For Technological Research In Engineering

Volume 4, Issue 12, August-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 2601

computing, and present a simple and low-overhead dynamic

makespan estimation model integrated into autonomous

agents to enhance them with self-performance evaluation in

addition to self-cloning capabilities. The proposed

performance profiling model is used in conjunction with a

cloud resource optimization scheme to ensure optimal

performance. Anybody using the trending heavy applications

can benefit from this framework. Upcoming virtual reality

apps could make use of this framework as they are extremely

computation intensive. Many users report substantial battery

drain after an update to such VR apps. Users report that the

CPU in their phones is staying cranked up, preventing the

device from going to sleep. This really burns through the

battery. The proposed framework is promising for improved

performance and wide adoption in mobile-cloud computing.

VII. FUTURE WORK

Our future work will mainly focus on the following 2 points:

Dynamic partitioning of the agents:

The static partitioning of the agents will fall short in

capturing the performance for every possible problem size, as

it could prove hard to enumerate all possible problem sizes

for a specific program partition.

Our future work will focus on working on a model where the

agents are partitioned dynamically so as to optimize the

performance.

Security:

One of the main problems in integrating an application with

cloud is its security. The security can be easily breached as

the computation is carried out on a remote platform. Lack of

control over these remote resources may increase the security

risks involved. An additional area of concern here is that the

agents can be tampered with while on the move.

Our future work will involve working towards reducing these

security risks and ensuring secure commutation of the agents

to the cloud platform.

APPENDIX

Google Firebase: Firebase is a mobile and web application

platform with tools and infrastructure designed to help

developers build high-quality apps.

JADE: JADE is a distributed agents platform, which has a

container for each host where you are running the agents.

Additionally the platform has various debugging tools,

mobility of code and content agents, the possibility of

parallel execution of the behavior of agents, as well as

support for the definition of languages and ontologies.

Mobile Agents: Mobile agent is a process that can transport

its state from one environment to another, with its data intact,

and be capable of performing appropriately in the new

environment. Mobile agents decide when and where to move.

Offloading: Offloading refers to the transfer of certain

computing tasks to an external platform, such as a cluster,

grid, or a cloud.

Cloud Functions: Cloud Functions is a hosted, private, and

scalable Node.js environment where you can run JavaScript

code. Firebase SDK for Cloud Functions integrates the

Firebase platform by letting you write code that responds to

events and invokes functionality exposed by other Firebase

features. Function Point Analysis Based Method: The

Function Point Analysis is another method of quantifying the

size and complexity of a software system in terms of the

functions that the systems delivers to the user. A number of

proprietary models for cost estimation have adopted a

function point type of approach, such as ESTIMACS and

SPQR/20.

REFERENCES

[1] Andrea. Colangelo, “Google Cloud vs AWS: A

Comparison | Cloud Academy, ” Cloud Academy

Blog, 20-Feb-2017. [Online]. Available:

http://cloudacademy.com/blog/google-cloud-vs-

aws-a-comparison/ [Accessed: 17-Aug-2016].

[2] “What Can I Do with Cloud Functions? |

Firebase, ” Google. [Online]. Available:

https://firebase.google.com/docs/functions/use-

cases. [Accessed: 22-Sep-2016].

[3] “Running, Testing, and Deploying the Backend |

Cloud Tools for Android Studio |Google Cloud

Platform,” Google. [Online]. Available:

https://cloud.google.com/tools/android-

studio/app_engine/run_test_deploy. [Accessed: 17-

Oct-2016].

[4] P. Angin and B. Bhargava, “An Agent-based

Optimization Framework for Mobile-Cloud

Computing,” Journal of Wireless Mobile Networks,

Ubiquitous Computing, and Dependable

Applications, vol. 4, no. 2, pp. 1–17, 2013

[5] R. Irani, “Announcing .. Gradle Tutorial Series –

Romin Irani's Blog,” RominIrani'sBlog,28-Jul-

2014.[Online].Available:

https://rominirani.com/announcing-gradle-tutorial-

series- 5fd134223bf8#.qwoy9n1fi.[Accessed: 02-

Jan-2017].

[6] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis,

Mayur Naik, and Ashwin Patti. Clonecloud: Elastic

execution between mobile device and cloud In

Proceedings of the 6th European Conference on

Computer Systems (EuroSys 2011), April 2011.

[7] “Step 4: Create a Mobile Application for Android,”

Step 4: Create a Mobile Application for Android -

AWS Lambda. [Online]. Available:

http://docs.aws.amazon.com/lambda/latest/dg/with-

ondemand-android-mobile-create-app.html.

[Accessed: 09-Jan-2017].

[8] Eduardo Cuervo, Aruna Balasubramanian,

Dae-ki Cho, Alec Wolman, Stefan Saroiu,

RanveerChandra, and Paramvir Bahl; MAUI:

making smartphones last longer with code offload.

In MobiSys '10:Proceedings of the 8th international

conference on Mobile systems, applications, and

services, ACM, 2010.

[9] S. Park, Y. Choi, Q. Chen, and H. Y. Yeom,

Some: Selective offloading for a mobile computing

environment, International Conference on Cluster

Computing (CLUSTER12),, in Proc. of the IEEE,

http://cloudacademy.com/blog/google-cloud-vs-aws-a-comparison/
http://cloudacademy.com/blog/google-cloud-vs-aws-a-comparison/
http://docs.aws.amazon.com/lambda/latest/dg/with-ondemand-android-
http://docs.aws.amazon.com/lambda/latest/dg/with-ondemand-android-

International Journal For Technological Research In Engineering

Volume 4, Issue 12, August-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 2602

Beijing, China. IEEE, September 2012, pp. 588-591.

[10] S. Kosta, A. Aucinas, P. Hui, R. Mortier,

and X. Zhang. ThinkAir:Dynamic resource

allocation and parallel execution in the cloud for

mobile code offloading, in Proc. of the 31st IEEE

International Conference on Computer

Communications (INFOCOM12), Orlando, Florida,

USA. IEEE, March 2012, pp. 945-953.

