
International Journal For Technological Research In Engineering

Volume 4, Issue 12, August-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 2607

AUTHENTICATION MANAGER WITH REST AUTHENTICATION

INTERFACE PROFILE

Nagaveni Bhavi

Dept of CS&E, SJCE, Mysuru,

ABSTRACT: Authentication agents are software

applications that securely pass user authentication requests

to and from RSA Authentication Manager. Authentication

agents are installed on each machine, such as a domain

server, web server, or a personal computer, that you protect

with Authentication Manager. For example, agent software

residing on a web server intercepts all user requests for

access to protected web pages. When a user attempts to

access a protected URL, the agent requests the User ID and

passcode and passes the User ID and passcode to the

Authentication Manager for authentication. If the

authentication is successful, the user is granted access to

protected web pages. Adding the ability to allow users to

authenticate into Authentication Manager using RSA

securID 2FA and want to connect directly to customer’s

Authentication Manager Instance through a simple REST

interface so that can start authenticating users. The

Authentication REST Web Service will be deployed in AM,

eliminating the need for standalone SDK all-together. The

data exchanged will be in JSON format. Security is ensured

by making the connections between REST Client and REST

Service as SSL. This will eliminate the need to use CMS,

Node Secret like in TCP, UDP SDKs.

Keywords: authentication manager, agents, SDK, passcode,

node secret.

I. INTRODUCTION

Overview of RSA SecurID

RSA SecurID provides an enterprise-wide authentication

policy that protects most valuable applications, resources,

and information of the organization [3].

Figure 1.1: RSA SecurID overview

RSA SecurID consists of the following components as shown

in figure 1.1

RSA Authentication Manager: The central two-factor

authentication software that provides capabilities to manage

security tokens, users, multiple applications, agents, and

resources across physical sites. Authentication Manager

verifies authentication requests and centrally administers

authentication policies for enterprise networks.

RSA SecurID Software Authenticators: Provide software-

based two-factor authentication security tokens to users on

mobile smart phones, tablets, and PCs.

RSA SecurID Hardware Authenticators: Provide convenient,

hardware-based two-factor authentication security tokens for

your users.

RSA SecurID On-Demand Authenticator: Deliver a

lightweight SMS or email two-factor authentication security

token to a user anywhere in the world.

RSA SecurID Authentication Agents: Enable direct requests

for two-factor authentication from key infrastructure to RSA

Authentication Manager

RSA Authentication manager Architecture

In its simplest configuration, RSA authentication manager

deployment consists of an authentication server and its

associated database –―a primary instance‖[4]. This basic

structure processes requests from authentication agents and

stores and manages users, agents and other system objects.

Expanded a deployment can take advantage of multiple

replica servers- sharing the function of authentication

requests with each replica instance containing a copy of the

deployment’s database contents. Deployment can also take

advantage of realm trust relationships to allow authentication

from users existing in any deployment.

Primary instance

The authentication manager primary instance includes an

embedded database. The overall structure of a replica

instance is similar to primary instance. The replica server

contains its own dedicated database synchronized to the

primary.

Replica Instance

The replica instance provides additional load support for

authentications. Transactions are temporarily stored in the

database of the replica instance and are periodically sent to

the primary. The primary then reconciles the database

between itself and any other replica instances. Replicas also

support disaster recovery by containing a near real time copy

of the primary database contents. From these contents, a

primary may be restored or a replica can be promoted to a

primary. Authentication manager supports up to 15 replica

instances. All replica instances do not provide read/write

administration – they are read-only (Administrators can view

the contents of a user account or view a report but cannot

edit the objects)

International Journal For Technological Research In Engineering

Volume 4, Issue 12, August-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 2608

Authentication Agents

Authentication agents are installed at the point of user entry

to a system and challenge a user for RSA SecurID

credentials[3]. Agents are initially installed with the address

of the primary server. Upon first contact with the primary,

they receive information about other servers. Thereafter

agents contact primary or replica servers as needed for

authentication requests. Authentication agents are available

for different platforms like windows agent, PAM agent for

unix based systems and web agent for web server.

II. EXISTING SYSTEM

Figure 2.1 Client /server interaction through SecureID Agent

with stand-alone SDK.

RSA Authentication Agents perform the following steps in a

secure manner:

Intercept all access attempts, such as attempts to log on or

access a URL.

Determine whether the specific requested resource is

protected by RSA SecurID.

 If the requested resource is not protected, the Agent

either ignores the request or, in the case of a custom

Agent, takes whatever action is appropriate, such as

writing an audit message in the UNIX syslog or the

Windows Event Log.

 If the requested resource is protected by RSA

SecurID, the Agent continues the authentication

process.

Determine the user name of the person logging on, so that the

RSA Authentication Manager can validate that the token

code comes from the authentication device registered to that

person.

Where RSA Authentication Manager Replicas are deployed,

lock the user name to prevent replay attacks.

Request the user’s passcode.

Combine the passcode with data known only to the Agent

and its associated RSA Authentication Manager in the realm,

and deliver the combined data to a Server for validation.

If an RSA Authentication Manager approves the request, the

Agent permits access to the protected resource and takes any

other appropriate actions.

If an RSA Authentication Manager denies access, the Agent

prevents the user from logging on to the protected resource

and takes any other appropriate actions.

III. PROPOSED SYSTEM

From the existing system we are going to remove

authentication SDK. Deploying rest Authentication REST

profile in AM, eliminating the need for standalone SDK all-

together. The data exchanged will be in JSON format.

Security is ensured by making the connections between

REST Client and REST Service as SSL. This will eliminate

the need to use CMS, Node Secret like in TCP, UDP SDKs.

This product can be integrated with all other RSA products

like via-access, Access manager etc. Clients who want to

protect the resources can use the product. The resource may

be file, device or web page.

Figure 3.1 Basic architecture of agent/server model

IV. LITERATURE SURVEY

4.1 Single factor authentication

Network users often authenticate their login with a single

authenticating factor- their network pass word[18]. The use

of a password as an authentication mechanism presumes that

the password is secret – known only to the user who is

presenting it to the system.

However there is weakness to passwords – passwords stem

from the fact that they may not always be secret. This occurs

because passwords can be:

 Hacked or guessed

 Cracked

 Shared among users

4.2 Two factor authentication

To overcome the drawbacks of single factor authentication

two factor authentication techniques uses two pieces of

information for the purpose of authentication [3,18,19]. The

two pieces of information are

 Something the user knows- PIN

 Something the user have – Token

Figure 2.2 Process of two factor authentication

The process of two factor authentication shown in the figure

2.1 in which the user will provide passcode (PIN + token

code) during Authentication. Then agent will send this

information to authentication manager which will calculate

the passcode and compares with one that was entered by

user. When the passcodes match then user will be provided

the access.

International Journal For Technological Research In Engineering

Volume 4, Issue 12, August-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 2609

4.3 RESTful Web services

Representational State Transfer (REST) has gained

widespread acceptance across the Web as a simpler

alternative to SOAP- and Web Services Description

Language (WSDL)-based Web services. Key evidence of this

shift in interface design is the adoption of REST by main

stream Web 2.0 service providers—including Yahoo,

Google, and Facebook—who have deprecated or passed on

SOAP and WSDL-based interfaces in favor of an easier-to-

use, resource-oriented model to expose their services. In this

article, Alex Rodriguez introduces you to the basic principles

of REST [5].

REST Web service follows four basic design principles:

 Use HTTP methods explicitly.

 Be stateless.

 Expose directory structure-like URIs.

 Transfer XML, JavaScript Object Notation (JSON),

or both.

 Stateful design

Figure 4.3.1 Stateful design

Stateful services like this get complicated. In a Java Platform,

Enterprise Edition (Java EE) environment stateful services

require a lot of up-front consideration to efficiently store and

enable the synchronization of session data across a cluster of

Java EE containers. In this type of environment, there's a

problem familiar to servlet/JavaServer Pages (JSP) and

Enterprise JavaBeans (EJB) developers who often struggle to

find the root causes of java.io.NotSerializableException

during session replication. Whether it's thrown by the servlet

container during HttpSession replication or thrown by the

EJB container during stateful EJB replication, it's a problem

that can cost developers days in trying to pinpoint the one

object that doesn't implement Serializable in a sometimes

complex graph of objects that constitute the server's state. In

addition, session synchronization adds overhead, which

impacts server performance.

2.4.1.2 Stateless design

Figure 4.3.2 Stateless design

Stateless server-side components, on the other hand, are less

complicated to design, write, and distribute across load-

balanced servers. A stateless service not only performs better,

it shifts most of the responsibility of maintaining state to the

client application. In a RESTful Web service, the server is

responsible for generating responses and for providing an

interface that enables the client to maintain application state

on its own. For example, in the request for a multipage result

set, the client should include the actual page number to

retrieve instead of simply asking for next

A stateless Web service generates a response that links to the

next page number in the set and lets the client do what it

needs to in order to keep this value around. This aspect of

RESTful Web service design can be broken down into two

sets of responsibilities as a high-level separation that clarifies

just how a stateless service can be maintained:

Server

Generates responses that include links to other resources to

allow applications to navigate between related resources.

This type of response embeds links. Similarly, if the request

is for a parent or container resource, then a typical RESTful

response might also include links to the parent's children or

subordinate resources so that these remain connected.

Generates responses that indicate whether they are cacheable

or not to improve performance by reducing the number of

requests for duplicate resources and by eliminating some

requests entirely. The server does this by including a Cache-

Control and Last-Modified (a date value) HTTP response

header.

Client application

Uses the Cache-Control response header to determine

whether to cache the resource (make a local copy of it) or

not. The client also reads the Last-Modified response header

and sends back the date value in an If-Modified-Since header

to ask the server if the resource has changed. This is called

Conditional GET, and the two headers go hand in hand in

that the server's response is a standard 304 code (Not

Modified) and omits the actual resource requested if it has

not changed since that time. A 304 HTTP response code

means the client can safely use a cached, local copy of the

resource representation as the most up-to-date, in effect

bypassing subsequent GET requests until the resource

changes. Sends complete requests that can be serviced

independently of other requests. This requires the client to

make full use of HTTP headers as specified by the Web

service interface and to send complete representations of

resources in the request body. The client sends requests that

make very few assumptions about prior requests, the

existence of a session on the server, the server's ability to add

context to a request, or about application state that is kept in

between requests. This collaboration between client

application and service is essential to being stateless in a

RESTful Web service. It improves performance by saving

bandwidth and minimizing server-side application state.

V. SYSTEM DESIGN

Authentication Process Flow

The following diagram shows the general flow of the

interface during authentication.

International Journal For Technological Research In Engineering

Volume 4, Issue 12, August-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 2610

Figure 5.1 General flow of the interface during

authentication

The following steps describe at a high level the client-server

process flow during authentication. These steps apply to both

the RSA Authentication Manager server and the Cloud

Authentication Service.

 The client calls the Initialize interface. Calls to the

Authentication Manager server use the user login ID

(subjectName). Calls to the Cloud Authentication

Service use email or the SecurID Username

specified in the Identity Source configuration in the

Cloud Administration Console. For Active

Directory, the default is sAMAccountName. For

other LDAP vendors, this is a vendor-specific value.

 The Initialize interface responds with the challenge

method options and requirements for the user to

complete authentication.

 The client collects challenge method credentials

from the user and sends them to the server in a

Verify interface call.

 The Verify interface responds in one of two ways:

o If the user’s authentication is complete and

successful, the user is granted access to the

requested resource.

o If authentication is not complete, the Verify

interface sends the additional challenge

requirements the user needs to complete

authentication.

VI. MODULE DESIGNS

6.1 System

Figure 6.1 Calls to server

The first call to the server must be the initialize call. This

starts the authentication process.

If it is not first call then it will verify the credentials provided

by the client.

6.2 Initialize

Figure 6.2 Initialize process

Call to initialize may be

Without credentials

With credentials

6.3 Process SecurID credential

Figure 6.3 SECURID credential process

International Journal For Technological Research In Engineering

Volume 4, Issue 12, August-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 2611

For valid credentials if

 Status is OK then credential verified will be success.

 Status is new pin then it will ask for system pin or

user pin and they are put for the challenge for

authentication.

 Status is next pin then it will put for the challenge

still authentication is required.

6.4 Verify

Figure 6.4 Verify process

Call to the verify will verify all the entered credentials for the

pericular client and sends back appropriate status as

response.

VII. RESULTS

Initialize Request

Figure 7.1 Initialize request for SecurID with credentials

Initialize Response (Response Headers)

Figure 7.2 Initialize response(response header) for SecurID

with credentials

Initialize Response (Response Body)

Figure 7.3 Initialize response(response body) for SecurID

without credentials

Verify Request

Figure 7.4 Verify request for SecurID with credentials

International Journal For Technological Research In Engineering

Volume 4, Issue 12, August-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 2612

Status

Figure 7.6 status for SecurID with credentials

VIII. CONCLUSION AND FUTURE WORK

From the existing system we are going to remove

authentication SDK. Deploying rest Authentication REST

profile in AM, eliminating the need for standalone SDK all-

together. The data exchanged will be in JSON format.

Security is ensured by making the connections between

REST Client and REST Service as SSL. This will eliminate

the need to use CMS, Node Secret like in TCP, UDP SDKs.

This product can be integrated with all other RSA products

like via-access, Access manager etc. Clients who want to

protect the resources can use the product. The resource may

be file, device or web page. Here as we consider two factor

authentication for future work it can be extend to multifactor

authentication which includes biometrics as one factor along

with static password and passcode generated by SecurID

token.

REFERENCES

[1] http://searchsecurity.techtarget.com/definition/multi

factor-authentication-MFA

[2] https://wiki.na.rsa.net/display/AUTHA/Authenticati

on+Agents+-+New+Joinee+Ramp+Up

[3] https://wiki.na.rsa.net/display/~balaks5/Authenticati

on+Agents

[4] https://wiki.na.rsa.net/display/AM8X/AM+8.x+-

+REST+Authentication+API

[5] http://mariusbancila.ro/blog/2013/08/19/full-

fledged-client-server-example-with-cpprest-sdk-

110/

[6] https://wiki.na.rsa.net/display/SIDASE/Authenticati

on+Manager.

[7] McAfee Case Study ―Securing the Cloud with

Strong Two-Factor Authentication through McAfee

One Time Password‖

http://www.mcafee.com/in/case-studies/cs-

cloudalize.aspx.

[8] http://www.oneid.com/wp-

content/uploads/2014/05/OneID_WhitePaper_Adv-

of-Integrated-2FA-final.pdf.

[9] Dinei Florencio, Cormac Herley ― A Large-Scale

Study of Web Password Habits‖ Proceedings of the

16th international conference on the World Wide

Web, ACM Digital Library, pp 657-666, 2007.

[10] Andrew Kemshall, Phil Undewood ―White paper -

Options for Two Factor Authentication‖

SecurEnvoy July 2007.

[11] Ziqing Mao, Dinei Florencio, and Cormac Herley

―Painless Migration from Passwords to Two Factor

Authentication‖ in 'WIFS' , IEEE, Brazil, pp. 1-6,

Nov 29th-Dec 2nd, 2011.

[12] Manav Singhal and Shashikala Tapaswi ―Software

Tokens Based Two Factor Authentication Scheme‖

International Journal of Information and Electronics

Engineering, Vol. 2, No. 3, pp. 383 - 386, May

2012.

[13] Olufemi Sunday Adeoye ―Evaluating the

Performance of two-factor authentication solution

in the Banking Sector‖ IJCSI International Journal

of Computer Science Issues, Vol. 9, Issue 4, No 2,

July 2015.

[14] Goode intelligence ―Two Factor Authentication

Goes Mobile‖ www.goodeintelligence.com,

September 2012.

[15] Sharifah Mumtazah Syed Ahmad, et al ―Technical

Issues and Challenges of Biometric Applications as

access control tools of Information Security‖

International Journal of Innovative Computing,

Information and Control Vol8, No. 11, pp 7983 -

7999 Nov 2015.

[16] Sans Securing the Human ―Two Factor

Authentication‖ the monthly Security awareness

news letter for computer users November 2015

[17] Haichang Gao, Wei Jia, Fei Ye, Licheng Ma ―A

survey on the use of Graphical Passwords in

Security‖, Journal of software, Vol. 8, No. 7, July

2013.

[18] Rahul Kale, Neha Gore, Kavita, Nilesh Jadhav,

Swapnil Shinde ― Review Paper on Two Factor

Authentication Using Mobile Phone‖ International

Journal of Innovative research and Studies, Vol. 2,

Issue 5, pp. 164 - 170, May 2015.

[19] Alexandra Dmitrienko, Christopher Liebchen,

Christian Rossow, and Ahmad-Reza Sadeghi ―On

the (In) Security of Mobile Two-Factor

Authentication‖ Lecture Notes in Computer

Science, pp. 365-383, Nov 2015.

[20] S. Vaithyasubramanian, A. Christy ―A practice to

create user friendly secured password using CFG‖

International Conference on Mathematics and

Engineering Sciences, Chitkara University, Punjab,

p. 39, March 2015.

[21] S. Vaithyasubramanian, A. Christy, D. Lalitha

―Generation of Array Passwords Using Petri Net for

Effective Network and Information Security‖

Advances in Intelligent Systems and Computing,

Springer India, Vol.1, pp. 189 - 200, July 2016.

[22] S. Vaithyasubramanian, A. Christy ―A Scheme to

https://wiki.na.rsa.net/display/AUTHA/Authentication+Agents+-+New+Joinee+Ramp+Up
https://wiki.na.rsa.net/display/AUTHA/Authentication+Agents+-+New+Joinee+Ramp+Up
https://wiki.na.rsa.net/display/~balaks5/Authentication+Agents
https://wiki.na.rsa.net/display/~balaks5/Authentication+Agents
https://wiki.na.rsa.net/display/AM8X/AM+8.x+-+REST+Authentication+API
https://wiki.na.rsa.net/display/AM8X/AM+8.x+-+REST+Authentication+API
http://mariusbancila.ro/blog/2013/08/19/full-fledged-client-server-example-with-cpprest-sdk-110/
http://mariusbancila.ro/blog/2013/08/19/full-fledged-client-server-example-with-cpprest-sdk-110/
http://mariusbancila.ro/blog/2013/08/19/full-fledged-client-server-example-with-cpprest-sdk-110/
https://wiki.na.rsa.net/display/SIDASE/Authentication+Manager
https://wiki.na.rsa.net/display/SIDASE/Authentication+Manager
http://www.oneid.com/wp-content/uploads/2014/05/OneID_WhitePaper_Adv-of-Integrated-2FA-final.pdf
http://www.oneid.com/wp-content/uploads/2014/05/OneID_WhitePaper_Adv-of-Integrated-2FA-final.pdf
http://www.oneid.com/wp-content/uploads/2014/05/OneID_WhitePaper_Adv-of-Integrated-2FA-final.pdf

International Journal For Technological Research In Engineering

Volume 4, Issue 12, August-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 2613

Create Secured Random Password Using Markov

Chain‖ Advances in Intelligent Systems and

Computing, Springer India, Vol. 325, pp. 809-814,

2016.

[23] S. Vaithyasubramanian, A. Christy, D. Lalitha ―Two

factor Authentication for Secured Login Using

Array Password Engender by Petri net‖ Accepted

for Procedia Computer Science, Elsevier 2016.

