International Journal For Technological Research In Engineering

Volume 5, Issue 1, September-2017

ISSN (Online): 2347 - 4718

SINGLE SOURCE SHORTEST PATH ALGORITHMS -
COMPARISON THROUGH IMPLEMENTATION

Sudhanshu Rai?, Dr. Arun JB?, Dr Ashish Sharma®
Ph.D. Scholar, Jodhpur National University, Jodhpur, Rajasthan, India
2Lecturer, Government Polytechnic College, Ajmer, Rajasthan, India
3HOD - Computer Science, Jodhpur National University, Jodhpur, Rajasthan

ABSTRACT: Many applications like transportation and
communication network use shortest path algorithm to find
out the shortest path between two nodes. In the Single
source shortest path algorithm, a shortest path is
calculating from one node to another node. In this paper, |
have compared the results of the shortest path algorithms
(Dijkstra, Bellman Ford) on the basis of running time. I am
using C# programming language to compare the
algorithms. 1 have also compared the algorithms on the
basis of complexity and space. | also tried to give some
advantages and disadvantages of both the algorithms.
Keywords— Shortest Path, Dijkstra, Bellman Ford, Run-
time Analysis

I. INTRODUCTION

Shortest Path Problem is the problem to find out the shortest
path between two nodes. There are so many shortest path
algorithms depending on the source and destination. a) Single
source Shortest Path Algorithm b) Single destination Shortest
Path Algorithm c¢) All pair Shortest path Algorithm In Single
source shortest path algorithm, we have to find out the
shortest path from a source vertex to another vertex. In single
destination shortest path algorithm, we have to find out the
shortest path from all vertices to a single destination vertex.
In All pair shortest path algorithm, we have to find out the
shortest path from all vertices to another vertex. Due to the
nature of routing applications, we need flexible and efficient
shortest path procedures, both from a processing time point
of view and also in terms of the memory requirements. [1] In
this paper, | am comparing single source shortest path
algorithms (Dijkstra’s and Bellman Ford). As mentioned
earlier, a graph can be used to represent a map where the
cities are represented by vertices and the routes or roads are
represented by edges within the graph.[2] In this section, a
graph representation of a map is explained further, and brief
descriptions and implementations of the shortest path
algorithms being studied are presented.

1. WORKING OF DIJKSTRA’S AND BELLMAN FORD
ALGORITHM

The working of Dijkstra’s algorithm and Bellman-Ford

Algorithm is as follows:

DIJKSTRA’S ALGORITHM

The algorithm stores all nodes in a priority queue ordered by

distance of the node from the root — in the first iteration of

the algorithm, only root has distance set to 0, distance of all

other nodes is equal to infinity. Then in each step Dijkstra's

Algorithm picks from the queue a node with the highest

priority (least distance from the root) a processes it and re-
evaluates distances of all unprocessed descendants of the
node. This means that the algorithm checks for all
descendants that the following condition holds: [3]

Distance + Edge-Weight< Distance

BELLMAN FORD ALGORITHM

The Bellman-Ford algorithm is based on the relaxation
operation. The relaxation procedure takes two nodes as
arguments and an edge connecting these nodes. If the
distance from the source to the first node plus the edge
length is less than distance to the second node, than the first
node is denoted as the predecessor of the second node and
the distance to the second node is recalculated (distance(A)+
edge.length). Otherwise no changes are applied. [4]

COMPARISON ON THE BASIS OF COMPLEXITY AND
SPACE

We consider a graph[G] with the vertices or nodes [V] and
the edges[E].Now If we find the complexity of Dijkstra
Algorithm with the Bellman Ford i.e.

Algorithm Time Complexity Space

Complexity
Dijkstra Algorithm O(E+(log V)) o)
Bellman-Ford O(EV) o)
Algorithm

ADVANTAGES AND DISADVANTAGES:

DIJKSTRA’S ALGORITHM

The advantages and disadvantages are as follows: 1. It is a
Greedy Algorithm. 2. It doesn’t work on negative weight. 3.
It can work for directed and undirected graph. 4. It requires
global information. b) Bellman Ford Algorithm- The
advantages and disadvantages are as follows: 1. It is a
dynamic Algorithm. 2. It can work on negative weight. 3. It
can only work for directed graph. 4. It only requires local
information.

BELLMAN FORD ALGORITHM

The advantages and disadvantages are as follows: 1. It is a
dynamic Algorithm. 2. It can work on negative weight. 3. It
can only work for directed graph. 4. It only requires local
information.

COMPARISON USING C# CODE

Now, | will determine the efficiency of shortest path
algorithm. | have created a window based application to find
out the running time of both the algorithms. | have created a
WindowFormsApplicationl, in which I have created a Form

Www.ijtre.com

Copyright 2017.All rights reserved.

2752




International Journal For Technological Research In Engineering

Volume 5, Issue 1, September-2017

and add a list box to display the running time of Dijkstra’s
and bellman ford algorithm. I have implemented Dijkstra’s
algorithm and Bellman Ford algorithm using C# code. | have
created two functions for Dijkstra’s and Bellman Ford
algorithms. From the Form_Load () method, both functions
are called and display the shortest path for every node from a
single source. And | have used stopwatch to calculate the
running time of Dijkstra’s algorithm and Bellman Ford
algorithm in microseconds. | used Random numbers to

generate a graph.

To strore a Graph :
public struct Edge

{

public int u, v, w;

2

int NODES ; /* the number of nodes */
int EDGES; /* the number of edges */

int[Jd=new int [10000];  /* d[i] is the minimum distance
from source node s to node i */

double[,] G = new double[1000, 1000];

/* graph to store the graph adjacency matrix */

To store the adjacency matrix of graph using Random
numbers:
Random rnl = new Random();

for (m = 0; m length; m++)

{
for (n = 0; n < length; n++)
{
w[m, n] = rn1.Next(0, 10000);
G[m, n] = w[m, n];
}
}
To Store the Edges with their weight:
k=0;
for (i =0; i < NODES; ++i)
{

for (j = 0; j < NODES; ++j)
{
if (W[i, j] 1= 0)
{

edges[k].u =1i;
edges[k].v =j;
edges[k].w = wl[i, j];
k++;

}

I++;
}

3

EDGES = k;

To Find out the running time using stopwatch:
Stopwatch s = new Stopwatch();

s.Start();

BellmanFord(source_vertex); /* Call for Bellman Ford
Algorithm */

s.Stop();

ISSN (Online): 2347 - 4718

long time = s.ElapsedTicks / Stopwatch.Frequency / (1000L
*1000L));
listBox1.ltems.Add("time taken by Bellman ford is"+ time+"
microseconds");

s.Start();
Dijkstra(source vertex); /* Call for Dijkstra’s Algorithm */
s.Stop();
long time = s.ElapsedTicks / Stopwatch.Frequency / (1000L
*1000L));
listBox 1.Items.Add("time taken by Dijkstra’s algorithm is"+
time+" microseconds");

TABLE
First Run
N Dijkstra’s Bellman Ford

Algorithm Algorithm

5 1577 741

10 1617 764

50 1853 4655

100 2777 32026

500 23923 4205010

1000 92550 33416106
Second Run

N Dijkstra’s Bellman Ford
Algorithm Algorithm

5 1459 657

10 3570 687

50 1918 9631

100 2921 32822

500 23794 4224362

1000 96836 33603691
Third Run

N Dijkstra’s Bellman Ford
Algorithm Algorithm

5 1567 667

10 1455 697

50 1758 4557

100 2644 37941

500 25087 4158252

1000 02149 33592017
Fourth Run

N Dijkstra’s Bellman Ford
Algorithm Algorithm

5 1460 688

10 1411 678

50 1748 4476

100 24606 32904

500 24285 4196981

Www.ijtre.com

Copyright 2017.All rights reserved.

2753




International Journal For Technological Research In Engineering

Volume 5, Issue 1, September-2017

1000 92377 | 34340142
Fifth Run

N Dijkstra’s Bellman Ford

Algorithm Algorithm

5 1506 670

10 1495 728

50 1659 4486

100 3479 31950

500 24323 4147961

1000 126932 33643137
Average

5 1513.8 684.6

10 1909.6 710.8

50 1787.2 5561

100 28574 33528.6

500 24282.4 4186513.2

1000 100168.8 33719018.6

We can observe from this table that for the small number of
vertices (N=5, 10) Bellman Ford is taking less time in
comparison with Dijkstra’s algorithm. And for the large
number of vertices (N=50, 100, 500, 1000) Dijkstra’s is
taking less time in comparison with Bellman Ford.

1. CONCLUSION

In this study we have studied about two source shortest path
algorithms and their comparison. There is advantage and
disadvantage in algorithms. To find the running time of each
algorithm | used one Program for comparing the running time
(in Microseconds). After running the same program on five
different runs (for each different value of N=>5, 10, 50, 100,
500, 1000), I calculated the average running time for each
algorithm and then showed the result with the help of a chart.
From the chart | can conclude that for a small number of
nodes (N=5, 10) Bellman Ford the most efficient algorithm to
find out the shortest path.

Average Running Time for N=5,10

2000+
1500+

1000 O N=5

M N=10
5004
0_
Dijkstra's Bellman Ford
Figure |

For N =50, Dijkstra’s Algorithm is the efficient algorithm.

ISSN (Online): 2347 - 4718

Average Running Time for N=50

6000 5
5000
4000
3000 OnN=50
2000

1000

Dijkstra's Bellman Ford

o
Figure 2

For N=100,again Dijkstra’s algorithm, there is a very big
difference in running time of Bellman Ford running time and
algorithm.

Average Running Time for N=100

EE}
ON=100

35000

30000

25000

20000

15000

10000

5000 2

Dijkstra's Bellman Ford

Figure 3
For N = 500, 1000, Dijkstra’s Algorithm is the efficient
algorithm in comparison to Bellman-Ford Algorithm.

Average Running Time for N=500

4500000 41
4000000
3500000
3000000
2500000
2000000
1500000
1000000
500000

0

O N=500

Dijkstra's Bellman Ford

Figure 4

Www.ijtre.com

Copyright 2017.All rights reserved.

2754



International Journal For Technological Research In Engineering
Volume 5, Issue 1, September-2017

By these all charts, we can conclude that for small number of
nodes (N < 50) Bellman Ford perform

better than Dijkstra’s algorithm. Dijkstra’s algorithm takes
twice the running time of Bellman Ford algorithm. But a
large number of nodes (N>50) Dijkstra’s algorithm becomes
more efficient. For N=50, Bellman Ford algorithm is three
times to Dijkstra’s running time. For N=100, Bellman Ford is
11 times to Dijkstra’s algorithm.

35000000

30000000

25000000

20000000

15000000

10000000

5000000

Average Running Time for N=1000

ON=1000

0
Dijkstra's Bellman Ford

Figure 5

For N=500, 1000, Dijkstra’s algorithm outperforms in
comparison to Bellman Ford algorithm.

[1]
(2]
(3]
[4]

REFERENCES
Faramroze Engineer, Fast Shortest Path Algorithms
for Large Networks
Kairanbay Magzhan, Hajar Mat Jani Shortest Path
Algorithms
http://en.algoritmy.net/article/45514/Dijkstras
Algorithm
http://en.algoritmy.net/article/47389/Bellman  Ford
Algorithm

ISSN (Online): 2347 - 4718

Www.ijtre.com Copyright 2017.All rights reserved.

2755


http://en.algoritmy.net/article/45514/Dijkstras
http://en.algoritmy.net/article/47389/Bellman

