
International Journal For Technological Research In Engineering

Volume 5, Issue 1, September-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 2752

SINGLE SOURCE SHORTEST PATH ALGORITHMS -

COMPARISON THROUGH IMPLEMENTATION

Sudhanshu Rai1, Dr. Arun JB2, Dr Ashish Sharma3
1Ph.D. Scholar, Jodhpur National University, Jodhpur, Rajasthan, India

2Lecturer, Government Polytechnic College, Ajmer, Rajasthan, India
3HOD - Computer Science, Jodhpur National University, Jodhpur, Rajasthan

ABSTRACT: Many applications like transportation and

communication network use shortest path algorithm to find

out the shortest path between two nodes. In the Single

source shortest path algorithm, a shortest path is

calculating from one node to another node. In this paper, I

have compared the results of the shortest path algorithms

(Dijkstra, Bellman Ford) on the basis of running time. I am

using C# programming language to compare the

algorithms. I have also compared the algorithms on the

basis of complexity and space. I also tried to give some

advantages and disadvantages of both the algorithms.

Keywords— Shortest Path, Dijkstra, Bellman Ford, Run-

time Analysis

I. INTRODUCTION

Shortest Path Problem is the problem to find out the shortest

path between two nodes. There are so many shortest path

algorithms depending on the source and destination. a) Single

source Shortest Path Algorithm b) Single destination Shortest

Path Algorithm c) All pair Shortest path Algorithm In Single

source shortest path algorithm, we have to find out the

shortest path from a source vertex to another vertex. In single

destination shortest path algorithm, we have to find out the

shortest path from all vertices to a single destination vertex.

In All pair shortest path algorithm, we have to find out the

shortest path from all vertices to another vertex. Due to the

nature of routing applications, we need flexible and efficient

shortest path procedures, both from a processing time point

of view and also in terms of the memory requirements. [1] In

this paper, I am comparing single source shortest path

algorithms (Dijkstra’s and Bellman Ford). As mentioned

earlier, a graph can be used to represent a map where the

cities are represented by vertices and the routes or roads are

represented by edges within the graph.[2] In this section, a

graph representation of a map is explained further, and brief

descriptions and implementations of the shortest path

algorithms being studied are presented.

II. WORKING OF DIJKSTRA’S AND BELLMAN FORD

ALGORITHM

The working of Dijkstra’s algorithm and Bellman-Ford

Algorithm is as follows:

DIJKSTRA’S ALGORITHM

The algorithm stores all nodes in a priority queue ordered by

distance of the node from the root – in the first iteration of

the algorithm, only root has distance set to 0, distance of all

other nodes is equal to infinity. Then in each step Dijkstra's

Algorithm picks from the queue a node with the highest

priority (least distance from the root) a processes it and re-

evaluates distances of all unprocessed descendants of the

node. This means that the algorithm checks for all

descendants that the following condition holds: [3]

Distance + Edge-Weight< Distance

BELLMAN FORD ALGORITHM

The Bellman-Ford algorithm is based on the relaxation

operation. The relaxation procedure takes two nodes as

arguments and an edge connecting these nodes. If the

distance from the source to the first node plus the edge

length is less than distance to the second node, than the first

node is denoted as the predecessor of the second node and

the distance to the second node is recalculated (distance(A)+

edge.length). Otherwise no changes are applied. [4]

COMPARISON ON THE BASIS OF COMPLEXITY AND

SPACE

We consider a graph[G] with the vertices or nodes [V] and

the edges[E].Now If we find the complexity of Dijkstra

Algorithm with the Bellman Ford i.e.

Algorithm Time Complexity Space

Complexity

Dijkstra Algorithm O(E+(log V)) O(V)

Bellman-Ford

Algorithm

O(EV) O(V)

ADVANTAGES AND DISADVANTAGES:

DIJKSTRA’S ALGORITHM

The advantages and disadvantages are as follows: 1. It is a

Greedy Algorithm. 2. It doesn’t work on negative weight. 3.

It can work for directed and undirected graph. 4. It requires

global information. b) Bellman Ford Algorithm- The

advantages and disadvantages are as follows: 1. It is a

dynamic Algorithm. 2. It can work on negative weight. 3. It

can only work for directed graph. 4. It only requires local

information.

BELLMAN FORD ALGORITHM

The advantages and disadvantages are as follows: 1. It is a

dynamic Algorithm. 2. It can work on negative weight. 3. It

can only work for directed graph. 4. It only requires local

information.

COMPARISON USING C# CODE

Now, I will determine the efficiency of shortest path

algorithm. I have created a window based application to find

out the running time of both the algorithms. I have created a

WindowFormsApplication1, in which I have created a Form

International Journal For Technological Research In Engineering

Volume 5, Issue 1, September-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 2753

and add a list box to display the running time of Dijkstra’s

and bellman ford algorithm. I have implemented Dijkstra’s

algorithm and Bellman Ford algorithm using C# code. I have

created two functions for Dijkstra’s and Bellman Ford

algorithms. From the Form_Load () method, both functions

are called and display the shortest path for every node from a

single source. And I have used stopwatch to calculate the

running time of Dijkstra’s algorithm and Bellman Ford

algorithm in microseconds. I used Random numbers to

generate a graph.

To strore a Graph :

public struct Edge

{

public int u, v, w;

};

int NODES ; /* the number of nodes */

int EDGES; /* the number of edges */

int[]d=new int [10000]; /* d[i] is the minimum distance

from source node s to node i */

double[,] G = new double[1000, 1000];

/* graph to store the graph adjacency matrix */

To store the adjacency matrix of graph using Random

numbers:

Random rn1 = new Random();

for (m = 0; m length; m++)

{

for (n = 0; n < length; n++)

{

w[m, n] = rn1.Next(0, 10000);

G[m, n] = w[m, n];

}

}

To Store the Edges with their weight:

k = 0;

for (i = 0; i < NODES; ++i)

{

for (j = 0; j < NODES; ++j)

{

if (w[i, j] != 0)

{

edges[k].u = i;

edges[k].v = j;

edges[k].w = w[i, j];

k++;

}

l++;

}

}

EDGES = k;

To Find out the running time using stopwatch:

Stopwatch s = new Stopwatch();

s.Start();

BellmanFord(source_vertex); /* Call for Bellman Ford

Algorithm */

s.Stop();

long time = s.ElapsedTicks / Stopwatch.Frequency / (1000L

* 1000L));

listBox1.Items.Add("time taken by Bellman ford is"+ time+"

microseconds");

s.Start();

Dijkstra(source_vertex); /* Call for Dijkstra’s Algorithm */

s.Stop();

long time = s.ElapsedTicks / Stopwatch.Frequency / (1000L

* 1000L));

listBox1.Items.Add("time taken by Dijkstra’s algorithm is"+

time+" microseconds");

International Journal For Technological Research In Engineering

Volume 5, Issue 1, September-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 2754

We can observe from this table that for the small number of

vertices (N=5, 10) Bellman Ford is taking less time in

comparison with Dijkstra’s algorithm. And for the large

number of vertices (N=50, 100, 500, 1000) Dijkstra’s is

taking less time in comparison with Bellman Ford.

III. CONCLUSION

In this study we have studied about two source shortest path

algorithms and their comparison. There is advantage and

disadvantage in algorithms. To find the running time of each

algorithm I used one Program for comparing the running time

(in Microseconds). After running the same program on five

different runs (for each different value of N=5, 10, 50, 100,

500, 1000), I calculated the average running time for each

algorithm and then showed the result with the help of a chart.

From the chart I can conclude that for a small number of

nodes (N=5, 10) Bellman Ford the most efficient algorithm to

find out the shortest path.

For N = 50, Dijkstra’s Algorithm is the efficient algorithm.

For N=100,again Dijkstra’s algorithm, there is a very big

difference in running time of Bellman Ford running time and

algorithm.

For N = 500, 1000, Dijkstra’s Algorithm is the efficient

algorithm in comparison to Bellman-Ford Algorithm.

International Journal For Technological Research In Engineering

Volume 5, Issue 1, September-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 2755

By these all charts, we can conclude that for small number of

nodes (N < 50) Bellman Ford perform

better than Dijkstra’s algorithm. Dijkstra’s algorithm takes

twice the running time of Bellman Ford algorithm. But a

large number of nodes (N>50) Dijkstra’s algorithm becomes

more efficient. For N=50, Bellman Ford algorithm is three

times to Dijkstra’s running time. For N=100, Bellman Ford is

11 times to Dijkstra’s algorithm.

For N=500, 1000, Dijkstra’s algorithm outperforms in

comparison to Bellman Ford algorithm.

REFERENCES

[1] Faramroze Engineer, Fast Shortest Path Algorithms

for Large Networks

[2] Kairanbay Magzhan, Hajar Mat Jani Shortest Path

Algorithms

[3] http://en.algoritmy.net/article/45514/Dijkstras

Algorithm

[4] http://en.algoritmy.net/article/47389/Bellman Ford

Algorithm

http://en.algoritmy.net/article/45514/Dijkstras
http://en.algoritmy.net/article/47389/Bellman

