
International Journal For Technological Research In Engineering

Volume 5, Issue 1, September-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 2784

Heartbleed vulnerability and CVSS: A predictive approach

for threat of exploitation

Mehak Bashir
1
, Muheet Ahmed Butt

2
, Majid Zaman

3

1
M.Tech. (CSE),

2
Scientist ‗D‘, Kashmir University,

3
Scientist ‗D‘, Kashmir University.

Abstract—. The proposed research describes

‘OpenSSL Heartbleed’ vulnerability and also proposes a

methodology that explains the severity of exploitation

posed by some common types of vulnerabilities, based on

Common Vulnerability Scoring System (CVSS), using

Naive Bayes classification algorithm.

Keywords—OpenSSL; Heartbleed; Vulnerability; CVSS;
Naive Bayes classification.

I. INTRODUCTION

A. OpenSSL Heartbleed

 The OpenSSL is an open source implementation
of the Secure Sockets Layer (SSL) and the Transport
Layer Security (TLS) [7].The OpenSSL platform provides
security when data is transferred from one point of the
internet to another part [1]. The Secure socket layer (SSL)
is the most popular protocol used on the Internet for secure
transfer of data [4]. The OpenSSL protocol is used in two-
thirds of all websites to prevent hackers from stealing
sensitive information like passwords or credit card data
[5]. If the data being transferred is edited/changed/
updated along the way, data integrity is compromised and
if the data is accessed and falls into the wrong hands,
confidentiality of data is lost. Data Integrity and
confidentiality should be maintained as data moves from
point to point. The OpenSSL protocol works by
authenticating the server to the client and client to server
through the use of digital certificates signed by a trusted
third party. Private and public keys are also used in the
OpenSSL to provide security. The OpenSSL protocol is
however subject to vulnerabilities [2], [3] whether directly
or indirectly. This can be seen by the trusted third parties
who authenticate the identities of transacting individuals
have been exposed to continuous attacks/threats. [6].
various other vulnerabilities have been found within
the OpenSSL protocol and the most notable has been the
Heartbleed bug.

The name ‗Heartbleed‘ itself explains the vulnerability
– ‗Heart‘ of the Heartbleed came from Heartbeat protocol
and ‗bleed‘ stands for data leakage. That means data
leakage in the Heartbeat protocol implementation,
specifically the OpenSSL implementation of the protocol.

B. Naive Bayes Classifier

Naive Bayes is a kind of classifier which uses the
Bayes Theorem. It predicts membership probabilities for
each class such as the probability that given record or data
point belongs to a particular class. The class with
the highest probability is considered as the most likely
class. This is also known as Maximum A Posteriori
(MAP).

The MAP for a hypothesis is:

MAP(H) = max(P(H|E))
 = max((P(E|H)*P(H))/P(E))
 = max(P(E|H)*P(H))

P (E) is evidence probability, and it is used to
normalize the result. It remains same so, removing it
won‘t affect.

Naive Bayes is a classification algorithm for binary
(two-class) and multi-class classification problems. The
technique is easiest to understand when described using
binary or categorical input values [8].

C. Vulnerability

Vulnerability, in information technology (IT), is a flaw
in code or design that creates a potential point of security
compromise for an endpoint or network.

Vulnerabilities create possible attack vectors, through
which an intruder could run code or access a target
system‘s memory. The means by which vulnerabilities
are exploited are varied and include code injection and
buffer overruns; they may be conducted through hacking
scripts, applications and free hand coding.

Vulnerabilities are constantly being researched and
detected by the security industry, software companies,
cybercriminals and other individuals. Some companies
offer bug bounties for these discoveries. Nevertheless,
when vulnerability disclosure is considered, the question
of how much information to provide and when to make it
public is a contentious issue.

Some people argue for full and immediate disclosure,
including the specific information that could be used to
exploit the vulnerability; others believe that vulnerability
information should not be published at all because the
information can be used by an intruder. A zero-day

International Journal For Technological Research In Engineering

Volume 5, Issue 1, September-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 2785

exploit, for example, takes place as soon as vulnerability
becomes generally known. To mitigate risk, many experts
believe that limited information should be made available
to a selected group after some specified amount of time
has elapsed since detection.

Both black hats and white hats regularly search for
vulnerabilities and test exploits, however, and if a
cybercriminal finds a useful and unreported security hole,
he is likely to take advantage of it. Proponents of
disclosure maintain that it leads to more patching of
vulnerabilities and more secure software [2].

D. Types of Security Vulnerabilities

Most software security vulnerabilities fall into one of a
small set of categories:

1) buffer overflows
2) unvalidated input
3) race conditions
4) access-control problems
5) weaknesses in authentication, authorization, or

cryptographic practices

II. LITERATURE SURVEY

A. Introduction to Survey Report

In April 7, 2014 The Heartbleed Bug was
independently discovered by a team of security engineers
(Riku, Antti, and Matti, 2014) at Codenomicon and Neel
Mehta of Google Security, who first reported it to the
OpenSSL team. The security engineers did not have an
idea of the vulnerability until the team found heartbleed
bug while improving the Safeguard features. This was the
city Codenomicon‘s Defense security testing tools and
reported this bug to the NCSC-FI for vulnerability
coordination and reporting to OpenSSL team [5].

In addition, Bloomberg (2014) accused the U.S
National Security Agency (NSA) of knowing the
Heartbleed Bug for the last two years. Although, the report
says the NSA was using it to gain information instead of
disclosing it to the OpenSSL developer. After the NSA
declining to comment to report of knowing about the
Heartbleed Bug, NSA also denied that they were aware of
Heartbleed Bug until the vulnerability was made public by
the private security engineering of Google. Overall, the
questions remain about whether anyone from the NSA or
U.S government might have exploited the code for their
benefits before published to the public.

The Heartbleed Bug is not a virus, it‘s not a worm or a
malicious code, and it has nothing to do with the Man-in-
the-Middle, but it‘s a simple programming mistake.
However, the Heartbleed Bug is a serious vulnerability in
the most popular OpenSSL cryptographic software library.
This software allows anyone with little knowledge to steal
the information such as the names and passwords of the

users and the actual content protected, under normal
conditions, by the SSL/TLS encryption used to secure the
internet. In addition, the code of the Heartbleed Bug is
available to the public and there are several sites that have
tutorials to teach the use of the software, therefore this
vulnerability is most critical.

The purposes of the SSL/TLS are to provide
communication security and privacy over the internet for
applications such as web, email, VPNs and social media
[5]. Smartphones are the best practical example of client
side attack, which lead to Blackberry (Z10) products to be
vulnerable to Heartbleed Bug, in contrast of Apple‘s iOS
devices are not affected by OpenSSL. There are other
devices affected by Heartbleed such as; IP Phones,
Routers, Medical Devices and Smart TV sets. In addition,
about 34 percent of Android devices run on version 4.1.x
of the mobile OS, which according to Google millions of
Android smartphones never, or only rarely receive
available updates that patch dangerous security defects.
For that reason, Android users should download
Heartbleed Detector, a free application developed by
Lookout.

The Heartbleed Bug attack works in several steps:
First, the attacker creates a custom Heartbleed. Second,
the packet is transmitted to vulnerable OpenSSL web
server. Third web server processes packet. Fourth, the
code grabs up 64KB of extra memory and hopes of
capturing something sensitive from memory. Fifth, web
server responds by sending a packet back which
knowingly includes this extra sensitive data. Sixth,
attacker analyzes packets to see if there is anything
interesting, if not reruns attack to capture more memory.
Lastly, if web server‘s certificates private key is captured,
it can be used to decrypt current and historical user data
and credentials. Overall, is not complex to use the
Heartbleed software. As mentioned before, any Heartbleed
based attacks are not traceable, due that the problem has
existed for the past 2 years without the knowledge of the
public. Most server operators use a vulnerable method of
the OpenSSL versions 1.0.1 – 1.0.1f and likely don‘t have
enough logs/monitoring to determine whether a site was
compromised.

The Heartbleed bug reflects one of the most
catastrophic vulnerabilities during the OpenSSL history
for several reasons: it allowed attackers to retrieve private
information and user data, it was easy to exploit and
HTTPS and other TLS services have become increasingly
popular by the resulting in more affected services [6].In
addition, Stephen Solis-Reyes 19 year-old from Canada
was arrested for exploiting the Heartbleed Bug to attack
the website of the Canada Revenue Agency. As result, of
the attack, Mr. Solis-Reyes had stolen 900 social
insurances numbers (Elsevier, 2014). According, to Ivan
Ristic, director of engineering at Qualys, has claimed that
the percentage of websites vulnerable to the flaw had
dropped from 25 percent since the bug was discovered.

International Journal For Technological Research In Engineering

Volume 5, Issue 1, September-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 2786

―Assistant Research Scientist Dave Levin and
Assistant Professor of Electrical and Computer
Engineering Tudor Dumitras were part of a team that
analyzed the most popular websites in the United States-
more than one million sites were examined-to better
understand the extent to which systems administrators
followed specific protocols to fix the problem‖(NewsRx,
2014) [5].

B. General Survey

Who and what caused Heartbleed Bug? This question
is answered with two graphics, displaying the bad code
and the good code. The programmer Robin Seggelmann, a
31 year old based in Germany, submitted the code. The
purpose of the software was to enable a function called
―Heartbeat‖ in OpenSSL. This software package was to be
used by nearly half of all web servers to enforce the
connections. ―In one of the new features, unfortunately, I
missed validating a variable containing a length‖
(Seggelmann, 2012). In addition, the code went undetected
by several code reviewers and everyone else for over two
years. The graphics below shows the c- language code for
the Heartbeat message in the OpenSSL source code. In the
first graphic, it shows the data structure and the length of
the message is given as payload_length.

As it shows below in the Graphic 1(Figure 0), the
incoming data contains a payload length ―payload‖, the
mistake of the code is that it trusts the request without
bounds checks. OpenSSL then allocates a buffer for its
response, and copies ―payload‖ data bytes from the pointer
―pl‖ into it. As result, there‘s no ―if statement‖ to make
sure that there are actually ―payload‖ bytes in data, or that
this is in bounds. Since, there is no ―if statement‖ the
attacker gets a 64KB of data in length from main memory.
When the attacker gets the 64KB of data the connection is
no longer secure between servers and computers [7].

On the other hand, Graphic 2(Figure 0) shows the
correct code with the ―if statement‖ placed in the correct
place. However, by making the correction of the code it
does not guarantee that our server is secure and is no
longer vulnerable. In order, to have a secure server or
routers the security technician must take the following
actions; upgrade your server to the latest version of
OpenSSL, reissue and then revoke all certificates used
with the vulnerable version of OpenSSL, and upgrade
your security patches. As social media and online
shopping user such as; Facebook, Google, eBay,
Instagram and other sites that require user credentials may
have to change our password if we haven‘t change within
the past 6 months.

III. THEORETICAL EXPLAINATIONS

A. How The Heartbeat Works

The heartbeat extension protocol consists of two
message types: HeartbeatRequest message and
HeartbeatResponse message and the extension protocol
depends on which TLS protocol is being used as describe
below:

1) When Using Reliable Transport Protocol

One side of the peer connection sends a
HeartbeatRequest message to the other side. The other
side of the connection should immediately send a
HeartbeatResponse message. This makes one successful
Heartbeat and thus, keeping connection alive – this is
called ‗keep-alive‘ functionality. If no response is received
within a specified timeout, the TLS connection is
terminated.

Figure 0: Graphic 1 and 2 shows the Heartbleed code

International Journal For Technological Research In Engineering

Volume 5, Issue 1, September-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 2787

2) Unreliable Transport Protocol

One side of the peer connection sends
HeartbeatRequest message to the other side. The other
side of the connection should immediately send a
HeartbeatResponse message. If no response is received
within specified timeout another HeartbeatRequest
message is retransmitted. If expected response is not
received for specified number of retransmissions, the
DTLS (Datagram Transport Layer Security) connection is
terminated.

When a receiver receives a HeartbeatRequest message,
the receiver should send back an exact copy of the
received message in the HeartbeatResponse message. The
sender verifies that the HeartbeatResponse message is
same as what was originally sent. If it is same, the
connection is kept alive. If the response does not contain
the same message, the HeartbeatRequest message is
retransmitted for a specified number of retransmissions
[7].

B. Data Leakage Leading to Heartbleed

There is a bug in the implementation of the Heartbeat
reply to the received Heartbeat request message. Heartbeat
reply copies the received payload to the Heartbeat
response message to verify that the secured connection is
still active, without checking if the payload length is same
as the length of the request payload data.

The problem here is that the OpenSSL heartbeat
response code does not check to make sure that the
payload length field specified in the heartbeat request
message matches the actual length of the payload.

If the heartbeat request payload length field is set to a
value larger than the actual payload, it would result in a
return of the payload followed by whatever contents are
currently contained in active memory buffer, beyond the
end of the payload. A heartbeat request the payload length
can be set to a maximum value of 65535 bytes. Therefore
the bug in the OpenSSL heartbeat response code could
copy as much as 65535 bytes from the machine's memory
and send it to the requestor [6].

This bug is illustrated below in ―Figure 1: Memory
Leak.

―Figure 1: Memory leak‖ shows that when the request
payload data is ‗ma‘ and payload length is ‗2‘ then 2 bytes
from source (i.e. ‗ma‘) is copied to the ‗destination‘
memory area. But when the request payload data is ‗ma‘
and payload length falsely indicates that it is 8 bytes
instead of 2, 8 bytes (i.e. ‗madadbro‘) from the ‗source‘
memory area to the ‗destination‘ memory area. This
‗destination‘ data is finally sent to the requestor, causing
the memory leak that is now known as the Heartbleed bug
[9].

C. Code Fix

―Figure 2: The OpenSSL code fix for the Heartbleed
bug‖ shows the change in OpenSSL's file t1_lib.c between
version 1.0.1 and OpenSSL version 1.0.1g that was made
to fix the Heartbleed bug [7].

This code fix has two tasks to perform:

First, it checks to determine if the length of the
payload is zero or not. It simply discards the message if
the payload length is 0.

The second task performed by the bug fix makes sure
that the heartbeat payload length field value matches the
actual length of the request payload data. If not, it discards
the message.

The official notice about the bug was published by the
OpenSSL group at
https://www.openssl.org/news/secadv_20140407.txt and is
reproduced in ―Figure 3: OpenSSL Security Advisory.‖

D. Real-World Impact of Heartbleed

By exploiting the Heartbleed vulnerability, an attacker
can send a Heartbeat request message and retrieve up to 64
KB of memory from the victim's server. The contents of
the retrieved memory depends on what's in memory in the
server at the time, but could potentially contain usernames,
passwords, session IDs or secret private keys or other
sensitive information. Following figure illustrates how an
attacker can exploit this vulnerability. This attack can be
made multiple times without leaving any trace of it.
"Figure 4: Exploiting the Heartbleed vulnerability"
illustrates how an attacker can exploit the Heartbleed
vulnerability.

E. Factors to Determine Severity of a Vulnerability-

Common Vulnerability Scoring System (CVSS)

The data used in this section comes from many
different sources. The main reference source is the
National Vulnerability Database (NVD), which includes
Information for all Common Vulnerabilities and
Exposures (CVEs). As of May 2015, there are close to
69,000 CVEs in the database. Connected to each CVE is
also a list of external references to exploits, bug trackers,
vendor pages, etc. Each CVE comes with some Common
Vulnerability Scoring System (CVSS) metrics and
parameters, which can be found in Table 1. A CVE-
number is of the format CVE-Y-N, with a four number
year Y, and a 4-6 number identifier N per year. Major
vendors are pre-assigned ranges of CVE-numbers to be
registered in the oncoming year, which means that CVE-
numbers are not guaranteed to be used or to be registered
in consecutive order [9].

International Journal For Technological Research In Engineering

Volume 5, Issue 1, September-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 2788

Figure 1: Memory Leak

Figure 2: The OpenSSL code fix for the Heartbleed bug

International Journal For Technological Research In Engineering

Volume 5, Issue 1, September-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 2789

F. Naive Bayes Classification

Naive Bayes is a classification algorithm for binary
(two-class) and multi-class classification problems. The
technique is easiest to understand when described using
binary or categorical input values [8].

It is called naive Bayes or idiot Bayes because the
calculation of the probabilities for each hypothesis is
simplified to make their calculation tractable. Rather than
attempting to calculate the values of each attribute value P
(d1, d2, d3|h), they are assumed to be conditionally
independent given the target value and calculated as P
(d1|h) * P (d2|H) and so on.

This is a very strong assumption that is most unlikely
in real data, i.e. that the attributes do not interact.
Nevertheless, the approach performs surprisingly well on
data where this assumption does not hold.

1) Representation Used By Naive Bayes Models

The representation for naive Bayes is probabilities.

A list of probabilities is stored to file for a learned
naive Bayes model. This includes:

 Class Probabilities—the probabilities of

each class in the training dataset.

 Conditional Probabilities—the

conditional probabilities of each input

value given each class value.

2) Learn a Naive Bayes Model from Data

Learning a naive Bayes model from training data is
fast. Training is fast because only the probability of each
class and the probability of each class given different input
(x) values need to be calculated. No coefficients need to
be fitted by optimization procedures.

1) Calculating Class Probabilities

The class probabilities are simply the frequency of
instances that belong to each class divided by the total
number of instances.

For example in a binary classification the probability
of an instance belonging to class 1 would be calculated as:

P(class=1) = count(class=1) / (count(class=0) +
count(class=1))

In the simplest case each class would have the
probability of 0.5 or 50% for a binary classification
problem with the same number of instances in each class.

2) Calculating Conditional Probabilities

The conditional probabilities are the frequency of each
attribute value for a given class value divided by the
frequency of instances with that class value.

For example, if a ―weather‖ attribute had the values
―sunny‖ and ―rainy‖ and the class attribute had the class
values ―go-out‖ and ―stay-home―, then the conditional
probabilities of each weather value for each class value
could be calculated as:

P(weather=sunny|class=go-out) = count(instances with
weather=sunny and class=go-out) / count(instances with
class=go-out)

P(weather=sunny|class=stay-home) = count(instances
with weather=sunny and class=stay-home) /
count(instances with class=stay-home)

P(weather=rainy|class=go-out) = count(instances with
weather=rainy and class=go-out) / count(instances with
class=go-out)

P(weather=rainy|class=stay-home) = count(instances
with weather=rainy and class=stay-home) /
count(instances with class=stay-home)

1) Make Predictions with a Naive Bayes Model

Given a naive Bayes model, you can make predictions
for new data using Bayes theorem.

MAP(h) = max(P(d|h) * P(h))

Using our example above, if we had a new instance
with the weather of sunny, we can calculate:

go-out = P(weather=sunny|class=go-out) * P(class=go-
out)
stay-home = P(weather=sunny|class=stay-home) *
P(class=stay-home)

We can choose the class that has the largest calculated
value. We can turn these values into probabilities by
normalizing them as follows:

P(go-out|weather=sunny) = go-out / (go-out + stay-
home)
P(stay-home|weather=sunny) = stay-home / (go-out +
stay-home)

If we had more input variables we could extend the
above example. For example, pretend we have a ―car‖
attribute with the values ―working‖ and ―broken―. We can
multiply this probability into the equation.

International Journal For Technological Research In Engineering

Volume 5, Issue 1, September-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 2790

Figure 3: OpenSSL Security Advisory

Figure 4: Exploiting the Heartbleed vulnerability

International Journal For Technological Research In Engineering

Volume 5, Issue 1, September-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 2791

TABLE 1 CVSS (version 2) Base Metrics, with definitions from Mell et al. (2007).

For example below is the calculation for the ―go-out‖
class label with the addition of the car input variable set to
―working‖:

go-out = P(weather=sunny|class=go-out) *
P(car=working|class=go-out) * P(class=go-out)

IV. PROPOSED WORK

A. Algorithm for Predicting Severity/Threat Of

Exploitation Using Naive Bayes Approach

 Convert the data set into a frequency table.

 Create Likelihood table by finding the probabilities,

like probability of High threat of exploitation is (4/7)

= 0.57 and probability of Low threat of exploitation is

(3/7) = 0.43.

 Now, use Naive Bayesian equation to calculate the

posterior probability for each class. The class with the

highest posterior probability is the outcome of

prediction.

B. Frequency Table for Some Common

Vulnerabilities Based on CVSS (Version2)

Parameters

The values for CVSS (Version2) parameters: CVSS
Score, Access Vector, Access, Complexity,
Authentication, Confidentiality, Integrity and Availability

for some common types of vulnerabilities such as
PhpMyAdmin Reflected cross- Site Scripting
Vulnerability (CVE-2013-1937), MySQL Stored SQL
Injection (CVE-2013-0375), SSL v3 POODLE
Vulnerability (CVE_2014-3568), VMWare Guest to Host
Escape Vulnerability (CVE-2012-1516), Apache Tomcat
XML Parser Vulnerability (CVE-2009-0783), OpenSSL
Heartbleed Vulnerability (CVE-2014-0160) etc. are
tabulated in table 2.

C. Likelihood Table for Finding the Probabilities(P)

Of Various CVSS (version 2) Parameters

The likelihood table for finding the probabilities of
various CVSS parameters : CVSS Score, Access Vector,
Access, Complexity, Authentication, Confidentiality,
Integrity and Availability, as defined in table 1, using the
data presented in above frequency table (table 2) is
depicted in table 3.

Parameter Values Description

CVSS Score

0-10

[Low (0.1 -3.9),

Medium (4.0 – 6.9),

High (7.0 – 8.9),

Critical (9.0 – 10.0)]

This value is calculated based on the next six parameters, with a formula

(Mell et al., 2007).

Access Vector

Local

Adjacent

Network

The access vector (AV) determines how vulnerability can be exploited.

A local attack requires physical access to the computer or a shell account. Vulnerability with

Network access is also called remotely exploitable.

Access

Complexity

Low

Medium

High

The access complexity (AC) classifies the difficulty to exploit the vulnerability.

Authentication

None

Single

Multiple

The authentication (Au) categorizes the number of times that an attacker must authenticate to a

target to exploit it, but does not measure the difficulty of the authentication process itself.

Confidentiality

None

Partial

Complete

The confidentiality (C) metric assorts the impact of the confiden-

tiality, and amount of information access and disclosure. This may

include partial or full access to file systems and/or database tables.

Integrity

None

Partial

Complete

The integrity (I) metric categorizes the impact on the integrity of the

exploited system. For example, if the remote attack is able to partially

or fully modify information in the exploited system.

Availability

None

Partial

Complete

The availability (A) metric categorizes the impact on the availability of the target system. Attacks

that consume network bandwidth, processor cycles, memory or any other resources affect the

availability of a system.

International Journal For Technological Research In Engineering

Volume 5, Issue 1, September-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 2792

TABLE 2 Frequency table for some common vulnerabilities using CVSS (version 2) Base Metrics.

Vulnerability

CVSS V2

Base

score

Access

Vector

Access

Complexity

Authentic

ation

Confidentiality

Integrity

Impact

Availability

Impact

Severity/

Threat of

Exploitation

PhpMyAdmin

Reflected cross- Site

Scripting Vulnerability

(CVE-2013-1937)

Medium Network Medium None None Partial None Low

MySQL Stored SQL

Injection

(CVE-2013-0375)

Medium Network Low Single Partial Partial None High

SSL v3 POODLE

Vulnerability

(CVE_2014-3568)

Medium Network Medium None Partial None None Low

VMWare Guest to Host

Escape Vulnerability

(CVE-2012-1516)

Critical Network Low Single Complete Complete Complete High

Apache Tomcat XML

Parser Vulnerability

(CVE-2009-0783)

Medium Local Low None Partial Partial Partial High

Cisco IOS Arbitrary

Command Execution

Vulnerability

(CVE-2012-0384)

High Network Medium Single Complete Complete Complete High

Apple iWork Denial of

Service Vulnerability

(CVE-2015-1098)

Medium Network Medium None Partial Partial Partial Low

OpenSSL Heartbleed

Vulnerability

(CVE-2014-0160)

Medium Network Low None Partial None None High

GNU Bourne-Again

Shell(Bash)

‘ShellShock’

Vulnerability

(CVE-2014-6271)

Critical Network Low None Complete Complete Complete High

DNS Kaminsky Bug

(CVE-2008-1447)

Medium Network Low None None Partial None Low

International Journal For Technological Research In Engineering

Volume 5, Issue 1, September-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 2793

TABLE 2 (continued)

Vulnerability

CVSS V2

Base

score

Access

Vector

Access

Complexity

Authentic

ation

Confidentiality

Integrity

Impact

Availability

Impact

Severity/

Threat of

Exploitation

Joomla Directory

Traversal Vulnerability

(CVE-2010-0467)

Medium Network Low None Partial None None Low

Cisco Access Control

ByPass Vulnerability

(CVE-2012-1342)

Medium Network Low None None Partial None Low

Juniper Proxy ARP

Denial of Service

Vulnerability

(CVE-2013-6014)

Medium Adjacent Low None None Complete None High

DokuWiki Reflected

Cross-Site Scripting

Attack

(CVE-2014-9253)

Medium Network Medium None None Partial None Low

Adobe Acrobat Buffer

Overflow Vulnerability

(CVE-2009-0658)

Critical Network Medium None Complete Complete Complete High

Microsoft Windows

Bluetooth Remote Code

Execution Vulnerability

(CVE-2011-1265)

High Network Low None Complete Complete Complete High

Apple ios Security

control Bypass

vulnerability

(CVE-2014-2019)

Medium Local Low None None Complete None High

SearchBlox Cross-Site

Request Forgery

Vulnerability

(CVE-2015-0970)

Medium Network Medium None Partial Partial Partial Low

SSL/TLS MITM

Vulnerability

(CVE-2014-0224)

Medium Network Medium None Partial Partial Partial Low

Google Chrome ByPass

Vulnerability (CVE-

2012-5376)

Critical Network Low None Complete Complete Complete High

International Journal For Technological Research In Engineering

Volume 5, Issue 1, September-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 2794

TABLE 3 Likelihood table for calculation of

probabilities of CVSS (version 2) parameters

Severity/Threat of Exploitation

P (High) = 12/21 = 4/7 P (Low) = 9/ 21 = 3/7

CVSS V2 Base score

P (Low/ High) = 0/12 = 0 P(Low/ Low) = 0/9 = 0

P (Medium/ High) = 6/12 =1/2 P(Medium/ Low) = 9/9 = 1

P (High/ High) = 2/12 = 1/6 P(High/ Low) = 0/9 = 0

P (Critical/ High) = 4/12 = 1/3 P(Critical/ Low) = 0/9 = 0

Access Vector (AV)
P (Local/ High) = 3/12 = 1/4 P (Local/ Low) = 0/9 = 0

P (Adjacent/ High)= 1/12 P (Adjacent/ Low) = 0/9 = 0

P (network/ High) = 8/12 = 2/3 P (Network/ Low) = 9/9 = 1

Access Complexity (AC)
P (Low/ High) = 9/12 = 3/4 P (Low/ Low) = 3/9 = 1/3

P (Medium/ High)= 3/12 = 1/4 P (Medium/ Low) = 6/9 = 2/3

P (High/ High) = 0/12 = 0 P (High/ Low) = 0/9 = 0

Authentication (Au)
P (None/ High) = 9/12 = 3/4 P (None/ Low) = 9/9 = 1

P (Single/ High)= 3/12 = 1/4 P (Single/ Low) = 0/9 = 0

P (Multiple/ High) = 0/12 = 0 P (Multiple/ Low) = 0/9 = 0

Confidentiality Impact (C)
P (None/ High) = 2/12 = 1/6 P (None/ Low) = 4/9

P (Partial/ High)= 3/12 = 1/4 P (Partial/ Low) = 5/9

P (Complete/ High) = 7/12 P (Complete/ Low) = 0/9 = 0

Integrity Impact (I)
P (None/ High) = 1/12 P (None/ Low) = 2/9

P (Partial/ High)= 2/12 = 1/6 P (Partial/ Low) = 7/9

P (Complete/ High) = 9/12 = 3/4 P (Complete/ Low) = 0/9 = 0

Availability Impact (A)

P (None/ High) = 4/12 = 1/3 P (None/ Low) = 6/9 = 2/3

P (Partial/ High)= 1/12 P (Partial/ Low) = 3/9 = 1/3

P (Complete/ High) = 7/12 P (Complete/ Low) = 0/9 = 0

D. Using Naive Bayes Equation to Calculate the

Posterior Probability for a Sample Class of

Vulnerability, to Predict its Severity of

Exploitation

Let A be a sample vulnerability with CVSS parameters as:
<Medium, Local, Low, None, Partial, Partial, Partial>

The posterior probability of sample class A, for given set
of CVSS parameters, is calculated from table 3 as:

P (A/High) × P (High)

= P (Medium/High) × P (Local/High) ×
 P (Low/High) × P (None/High) ×
 P (Partial/High) × P (Partial/High) ×
 P (Partial/High) × P (High)

P (A/High) × P (High)
= (1/2) × (1/4) × (3/4) × (3/4) ×

 (1/4) × (1/6) × (1/12) × (4/7)

P (A/High) × P (High) = 36/258048

 P (A/High) × P (High) = 0.0001395089

 Now we will calculate P (A/Low) × P (Low) as:

P (A/Low) × P (Low)

= P (Medium/Low) × P (Local/Low) ×
 P (Low/Low) × P (None/Low) ×
P (Partial/Low) × P (Partial/Low) ×

 P (Partial/Low) × P (Low)

P (A/Low) × P (Low)
 = (9/9) × (0) × (1/3) × (1) × (5/9) × (7/9) ×
 (1/3) × (3/7)

 P (A/Low) × P (Low) = 0

 Now the highest posterior probability is calculated to
be:

 MAX {P (A/High) × P (High), P (A/Low) ×
 P (Low)} = MAX {0.0001395089, 0}

 MAX {P (A/High) × P (High), P (A/Low) ×
 P (Low)} = 0.0001395089

Since {P (A/High) × P (high)} is evaluated to be

greater than {P (A/Low) × P (Low)}, hence the sample
vulnerability class A with the CVSS parameters as:
< Medium, Local, Low, None, Partial, Partial, Partial> is
predicted to pose high threat of exploitation and thus
should quickly be reported for immediate remediation, to
prevent the hackers from stealing the valuable data.

International Journal For Technological Research In Engineering

Volume 5, Issue 1, September-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 2795

V. CONCLUSION AND

RECOMMENDATIONS

A. Conclusions

All Heartbleed-vulnerable systems should immediately
upgrade to OpenSSL 1.0.1g. If we are not sure whether an
application we want to access is Heartbleed vulnerable or
not – we should try any one of the Heartbleed detector
tools. No action required, if application that we are using,
is not vulnerable. But if the application is vulnerable, wait
for it to be patched with OpenSSL 1.0.1g. Once the patch
is applied, all the users of such applications should follow
the application's release documents from the service
providers. Typically, steps to follow once the patch is
applied are:

1) changing our password
2) generating private keys again
3) certificate revocation and replacement

An important step is to restart the services that are
using OpenSSL (like HTTPS, SMTP etc.). Before
accessing any SSL/TLS application such as HTTPS, check
to see if the application is vulnerable. Do not access or
login to any affected sites. Ensure all such vendors or
enterprises related to your business have applied this
security patch. Keep your eyes open on such news of
security vulnerabilities[7].

The Heartbleed bug has shaken the Internet
community on its dependency on the open source
software. Even though OpenSSL is a very popular library,
it was not properly scrutinized. One reason might be
because of lack of resources and funds. The organizations
and developers using open source software should
contribute back to these open source communities in terms
of donations, reviewing the code, testing and designing.
Amazon, Facebook, Google have recently come forward
to donate funds to improve open-source security systems
[6].

Naive Bayes Classification enables us to prioritize
vulnerabilities for remediation. The type of vulnerabilities
which are classified as highly exploitable by the proposed
methodology ,can be easily exploited with minimum
efforts by the hackers, therefore the particular
vulnerability needs headlong attention and should be
remediated & fixed as early as possible, to prevent the
exploitation of any kind.

B. Recommendations

To obtain the fix in your application simply upgrade to
OpenSSL 1.0.1g.

If upgrading is not practical, we can rebuild our current
version of OpenSSL from source without

TLS Heartbeat support by adding the following
compile switch:

-DOPENSSL_NO_HEARTBEATS
This switch ensures that the defected code never gets

executed.
An effective vulnerability assessment and remediation

program must be able to prevent the exploitation of
vulnerabilities by detecting and remediating vulnerabilities
in covered devices in a timely fashion. Proactively
managing vulnerabilities on covered devices will reduce
or eliminate the potential for exploitation and save on the
resources otherwise needed to respond to incidents after
exploitation has occurred. Information Security and
Policy (ISP) provides a centrally managed campus
service that campus units can use to comply with this
requirement [2].

REFERENCES

[1]. Yogesh Joshi, Debabrata Das, Subir Saha, ―Mitigating Man in the
Middle Attack over Secure Sockets Layer,‖ IEEE, pp 1-5, 2009.

[2]. Eman Salem Alashwali , ―Cryptographic Vulnerabilities in Real-
Life Web Servers,‖ In Proceedings of the The 3rd International
Conference on Communication and Information
Technology(ICCIT-2013):Digital Information Management and
Security Beirut, pp 6-11, 2013.

[3]. Krishna Kant and Ravishankar Iyer, Prasant Mohapatra,
―Architectural Impact of Secure Socket Layer on Internet
Servers: A Retrospect,‖ IEEE pp 25-26, 2012.

[4]. Neal Leavitt ―Internet Security under Attack: The Undermining of
Digital Certificates,‖ IEEE Computer Society, pp 17-20, 2011.

[5]. University of Maryland; cybersecurity experts discover lapses in
heartbleed bug fix. (2014). NewsRx Health & Science, Retrieved
from http://search.proquest.com.
jproxy.lib.ecu.edu/docview/1626397458?accountid=10639

[6]. OpenSSL Team‖ OpenSSL Project,‖ openssl.org, 2014 [Online].
Available: https://www.openssl.org/ [Accessed: June. 12, 2014]

[7]. CODENOMICON ―The Heartbleed Bug,‖ heartbleed.com , 29
April 2014 [Online]. Available: http://heartbleed.com/. [Accessed:
June. 12, 2014].

[8]. Rish, Irina (2001). An empirical study of the naive Bayes
classifier(PDF). IJCAI Workshop on Empirical Methods in AI.

[9]. "Common Vulnerability Scoring System, V2 Development
Update". First.org, Inc. Retrieved November 13, 2015.

[10]. My paper publication links (OpenSSL Heartbleed vulnerability &
prediction of severity of exploitation posed by some of the common types
of vulnerabilities, based on Common Vulnerability Scoring System
(CVSS), using Naive Bayes classification algorithm):

https://archive.org/details/MehakBashir

http://www.ijtre.com/images/scripts/201704091

7.pdf
Google Scholar link:

http://scholar.google.co.in/scholar?hl=en&q=M

ehak+Bashir

