Improving Privacy Preserving Collaborative Filtering Based Recommendation Systems

Vidhya Raval¹, Mrs. Risha Tiwari²
Post Graduate Student, Professor, Dept. of Computer Engg., Hasmukh Goswami Collage of Engineering, Ahmedabad, Gujarat, India.

Abstract: Collaborative filtering (CF) systems are being widely used in E-commerce applications to provide recommendations to users regarding products that might be of interest to them. The prediction accuracy of these systems is dependent on the size and accuracy of the data provided by users. However, the lack of sufficient guidelines governing the use and distribution of user data raises concerns over individual privacy. Users often provide the minimal information that is required for accessing these E-commerce services. In this project, we propose a framework for obfuscating sensitive information in such a way that it protects individual privacy and also preserves the information content required for collaborative filtering. An experimental evaluation of the performance of different collaborative filtering systems on the obfuscated data proves that the proposed technique for privacy preservation does not impact the accuracy of the predictions.

Keywords: Accuracy, privacy.

I. INTRODUCTION
Recommender Systems are software tools and techniques providing suggestions for items to be of use to a user [21]. The suggestions relate to various decision-making processes, such as what items to buy, what music to listen to, or what online news to read. “Item” is the general term used to denote what the system recommends to users. A RS normally focuses on a specific type of item (e.g., CDs, or news) and accordingly its design, its graphical user interface, and the core recommendation technique used to generate the recommendations are all customized to provide useful and effective suggestions for that specific type of item. In their simplest form, personalized recommendations are offered as ranked lists of items. In performing this ranking, RSs try to predict what the most suitable products or services are, based on the user’s preferences and constraints. In order to complete such a computational task, RSs collect from users their preferences, which are either explicitly expressed, e.g., as ratings for products, or are inferred by interpreting user actions. For instance, a RS may consider the navigation to a particular product page as an implicit sign of preference for the items shown on that page.

II. LITERATURE SURVEY & ANALISIS
Collaborative Filtering
The term 'Collaborative Filtering' (CF) was first introduced in the Tapestry system [21], for filtering electronic documents through e-mail and Usenet postings. In this system, user explicitly requests recommendations based on reviews of a specific set of known individuals. The drawback of this system is that it requires a close-knit group of people who are aware of each other's interests. The lack of scalability of this system for larger networks led to the development of more Automated Collaborative Filtering systems (ACF) [54]. The GroupLens CF system [52] pioneered the research on ACF by using pseudonymous usersto provide ratings for movies and Usenet news articles. Some of the other recommendations systems such as the e-mail based music recommendation system [66], Ringo, and the web-based movie recommendation [30], Video Recommender, also developed ACF algorithms for recommendations. All three systems use neighborhood-based prediction algorithms such as Pearson's correlation and vector similarity. These algorithms are referred to as memory-based algorithms because they use the raw data in the database to make recommendations. Model-based approaches such as Bayesian network models and cluster-based models were proposed in [16]. These algorithms first develop cluster-based models or Bayesian network models on the database. The models are then used for making predictions for user items that have not yet been rated by them. This makes model-based CF algorithms faster and less memory-intensive. Hybrid memory-model based approaches have also been developed to improve accuracy of predictions [49].

Data Obfuscation Techniques
The abundance of information available online has resulted in the loss of individual privacy [18]. Several methods have been proposed and implemented for privacy preservation of sensitive data sets [32]. The term data obfuscation [7] is used as a generalization of all approaches that involve distorting the data for privacy preservation and other purposes. One of the more common techniques is cryptography, where sensitive data is encrypted with a key and is accessible only to an authenticated user. In several applications, it is necessary to provide different levels of precision of data, based on the type of user requesting access. The encryption of data does not provide this capability. The usability of the data is therefore restricted only to a narrow set of users. Secure multi-party encryption techniques propose to perform computations on data in the encrypted form [55].

Data anonymization [34] attempts to classify data into fixed or variable intervals. The usefulness of the obfuscated data and the privacy factor are dependent on the choice of the interval. A large interval makes the data less useful, while an interval that is too small does not provide sufficient privacy protection of the data. In [62], the author proposes a generalization and suppression approach to obtaining the
required anonymity level: generalization replaces a value with a less specific value, while suppression does not release a value at all. This guarantees that each data item will relate to at least k other entries, even if the records are directly linked to external information. K-anonymization has been proven to be an NP-hard problem [39]. Various algorithms, such as the k-optimal anonymization algorithm [62], the simulated annealing technique [68], and the condensation-based k-anonymization [2], have been proposed to optimize and solve the generalization/suppression problem, but even the most optimum algorithm that uses an approximation technique now has a polynomial complexity. The other drawback of the anonymization technique is the loss of information. The generalization approach categorizes quantitative information into intervals, thus reducing the granularity of the information. Furthermore, data entries that are not possible to generalize are suppressed. This leads to a complete loss of information regarding certain fields.

III. PROPOSED WORK

Our proposed method for privacy preservation deals with the limitations of Nearest Neighbour Data Substitute ion (NeNDS) algorithm. The framework for privacy preserving collaborative filtering uses a centralized CF server that eliminates cold start problem.

Privacy Preserving Framework for proposed method

![Privacy Preserving framework for Collaborative filtering](image)

The privacy framework serves as a wrapper that obfuscates the relevant fields of data before they are fed to the CF engine. A diagrammatic view of the model is shown in Figure 6.1 using an example having three meta-store fronts [MS1, MS 2, MS3] such as Amazon, C-net, Yahoo that wish to share information in a privacy preserving way. Each MSi’s has three databases, a User-info database that stores demographic information of its users, an Item-info database that stores information regarding the items in its inventory, and a Rating s-info database that stores information regarding the ratings provided by the users on the items purchased. The databases are obfuscated and sent to the central CF server. The CF engine combines the information from all three meta-store fronts and creates three aggregated databases as shown.

Recommendations are made for all the unrated items for each record in the ratings database. The aggregate database is then divided back into the three individual databases, which are now populated with recommendations for unrated items. The databases are then sent back to the meta-store fronts. The stores provide recommendations to their users based on the results obtained from the CF engine. Since the databases are dynamic in nature, the MSi obfuscate the updated databases periodically and send them to the CF server so that the recommendations are made on the most recent ratings of individuals. This type of framework allows different e-commerce vendors to share proprietary information about their customers without violating their privacy.

Flowchart of the Proposed System

![Flow chart of proposed system](image)

Algorithm of NeNDS:

\[\text{NeNDS}(c) \]

For each \(i \in [1,m] \) do

1. \(\Sigma_{in} = (NH_1, NH_2 \ldots NH_{\text{NHsize}}) \)
2. For each \(NH_j \in \Sigma_{in} \) do
 - Tree = Create Tree(NHj, 0, NHsize)
 - \(d_j \) = depth(Tree)
 - For each path in Tree, length \(d_j - 1 \) Candidate Set = Candidate Set + (path)
 - \(NH_{j'} = \min(\text{Candidate Set}) \)
 - \(\Sigma_{out} = (NH_1', NH_2' \ldots NH_{\text{NHsize}}) \)
 - Create Tree (NH, Tree, Size)
 - If Tree = 0 then Tree = NH[0]
 - If NH = 0 then Return Tree
 - Children Tree = NH - Ancestors(Tree) - Identical(Parent, NH)
 - Child(Tree) = Sort(Children Tree)
 - Tree = Child(Tree)
IV. IMPLEMENTATION

Data set Details

Dataset: MovieLens (100K, 1M)
- The dataset contains 100,000 ratings from 1000 users on 1700 movies.
- The dataset contains 1 million ratings from 6000 users on 4000 movies.

Accuracy of the algorithm will be checked against both the datasets.

Description of Dataset:

The dataset with 100k ratings (4.8 MB):
This data set consists of:
- 100,000 ratings (1-5) from 943 users on 1682 movies.
- Each user has rated at least 20 movies.
- Simple demographic info for the users (age, gender, occupation, zip)

The dataset having 1m ratings (5.8 MB):
This dataset consists of:
- There are 1000054 ratings, 95580 tags applied to 10681 movies.
- There are 71567 users which have rated the movies.
- All users have rated at least 20 movies.

Work Done So Far
- Collected and Analyzed Movielens Datasets to be exercised
- Converted the dataset files into .csv files to be used in Mahout.
- Installed Eclipse Kepler (Service Release 2).
- Configured Apache Mahout Distribution 5.0 with Eclipse.
- Practiced some sample run in the environment to understand the behavior inside the environment.

Comparison for Various Datasets

Fig 5.4. Comparison for various dataset

MAE for Anonymized Dataset

<table>
<thead>
<tr>
<th>Prediction Accuracy</th>
<th>Collaborative Filtering Algorithm</th>
<th>Original Data</th>
<th>Obfuscated Data</th>
<th>Anonymized Data</th>
<th>Error %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson Correlation</td>
<td>MovieLens 5K</td>
<td>1.083</td>
<td>1.084</td>
<td>1.085</td>
<td>0.2</td>
</tr>
<tr>
<td>Vector Similarity</td>
<td>MovieLens 5K</td>
<td>1.095</td>
<td>1.096</td>
<td>1.097</td>
<td>0.2</td>
</tr>
<tr>
<td>Pearson Correlation</td>
<td>MovieLens 100K</td>
<td>0.198</td>
<td>0.198</td>
<td>0.197</td>
<td>0.1</td>
</tr>
<tr>
<td>Vector Similarity</td>
<td>MovieLens 100K</td>
<td>0.241</td>
<td>0.242</td>
<td>0.243</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Fig 5.5. Mean absolute error

Comparison of Execution Time

Fig 5.6. Comparison of execution time

Comparison of Memory Usage

Fig 5.7. Comparison of memory usage
V. CONCLUSION
This thesis proposes privacy preserving framework for collaborative filtering applications. The problem of privacy is still not a well-understood one. While there is a definite need for privacy, there is no clear-cut answer to the question of what information is considered private and when a database is considered to be breached. In general, if any information about an individual revealed from a database can be obtained in any other way without access to the database, the information is no considered as private. Gaining access to such information is not considered as a privacy breach.

NeNDS-based transformations obfuscate individual records by permuting each dataset individually. Any query made to the database is guaranteed to reveal an answer that is close to the truth but different from the exact truth.

Anonymized NeNDS takes privacy a step further by generalization and suppression of the data to a state where the values in the database are clearly different from the original values. The inter-relationship among the data items are preserved, which makes this approach an excellent candidate for data mining applications. The privacy preserving framework can be used to share information among multiple meta-store fronts for information for mutual gain. New sellers suffer an initial setback, referred to as cold-start, because of the lack of a data pool to provide recommendations to its users. The cold start problem can be averted by the presence of a shared CF engine. The experimental results indicate that the accuracy of CF engines remains nearly the same in spite of the preliminary data obfuscation process. Although the rank scoring metric indicated that the utility of the ranking order is decreased by the obfuscation process. Although the rank scoring metric remains nearly the same in spite of the preliminary data obfuscation. The inter-relationship among the data items are preserved, which makes this approach an excellent candidate for data mining applications. The privacy preserving framework can be used to share information among multiple meta-store fronts for information for mutual gain. New sellers suffer an initial setback, referred to as cold-start, because of the lack of a data pool to provide recommendations to its users. The cold start problem can be averted by the presence of a shared CF engine. The experimental results indicate that the accuracy of CF engines remains nearly the same in spite of the preliminary data obfuscation process. Although the rank scoring metric indicated that the utility of the ranking order is decreased by the obfuscation process, the error is only about 5% on average, which is an acceptable trade-off, given the benefits of a robust privacy-preserving mechanism.

VI. FUTURE WORK
Some interesting problems for future work are listed below. Anonymized NeNDS-based Data Obfuscation can be performed only on static databases. For dynamic databases, or databases that undergo constant changes, the algorithm can be applied to the database periodically. However, this could be time-intensive for some applications because the entire database has to be obfuscated and anonymized each time. An interesting problem is to study ways in which data obfuscation and anonymization can be applied only to the parts of the database that have been modified without losing clustering information of the data. The collaborative filtering framework proposed here assumes that the users of the E-commerce sites are valid users and are not malicious. The framework does not include mechanisms to avoid shilling or targeted attacks on the CF system. Methods such as building a web of trust, and trust-aware CF have been proposed to counter such targeted attacks. An evaluation of the performance of the NeNDS-based CF framework that incorporates trust-based techniques is an interesting future work.

REFERENCE
Data Mining: Concepts and Techniques, Second Edition
Jiawei Han and Micheline Kamber University of Illinois at Urbana-Champaign

[2] Privacy-Preserving Data Mining Models and Algorithms Charu C. Aggarwal, IBM T.J. Watson Research Center, USA Philip S. Yu, University of Illinois at Chicago, USA

WEB

PAPERS