
International Journal For Technological Research In Engineering

Volume 5, Issue 8, April-2018 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2018.All rights reserved. 3343

FPGA IMPLEMENTATION OF SORTING ALGORITHMS

Magesh.V
1
, Megavarnan.S

2
, Pragadish.A

3
, Saravanan.S

4

1
Assistant Professor,

2,3,4
U.G. Scholar,

Department of ECE, Velammal Engineering College,

Abstract: As sorting is one of the most fundamental

concepts. An efficient sorting network as to be designed

which need to be feasible. This paper focuses on the

architecture which sorts values much faster such that the

delay is reduced. In this paper, the sorting networks are

functionally verified using Verilog HDL. All the network

models which are discussed in the paper are simulated with

Xilinx ISE. The sorting networks are designed, synthesized,

timing summary is analyzed and their RTL diagrams are

examined. Based on the results , the comparison is made

between the existing sorting network designs and the

proposed network design. The experimental results show

that the delay is reduced and the speed is increased in the

proposed sorting network design.

Keywords: Sorting, area, speed, delay, FPGA

implementation, VLSI.

I. INTRODUCTION

1.1 Introduction to Sorting

Sorting is, without doubt, the most fundamental algorithmic

problem that was faced in the early days of computing. In

fact, most of the computer science research was centered on

finding the best way to sort a set of data. There is probably a

good reason to make sorting that important.

Supposedly, 25% of all CPU cycles are spent sorting

 Sorting is fundamental to most other algorithmic

problems, for example binary search.

 Many different approaches lead to useful sorting

algorithms, and these ideas can be used to solve

many other problems.

1.2 The Process of Sorting

Given a data set {x1, x2, …xn} we need to find a permutation

such that the set is sorted in increasing or decreasing order.

However, if we look for all permutations of {x1, x2, …xn},

then there are n! of them around. Needless to say, n! is huge

even for a small n such as n=20. However, if you can find all

permutations of the data set, then we can determine if any of

those lists are sorted in O(n) time. Therefore we need to

think of sorting a list as a different activity other than finding

a permutation that is sorted. Let us make some definitions

first.

A pair of elements is inverted if xi> xj for i < j . Therefore a

non-sorted list has at least one inverted pair. Now we can

define the act of sorting as removing all inverted pairs in the

list. In other words, if you can prove that the number of

inverted pairs in a list of elements is zero, then the list is

sorted. Hence our goal is to study algorithms that remove

inverted pairs from a list of elements.

1.3 Issues in Sorting

There are many issues that need to be considered when

sorting a list. We need to consider whether we need to sort

the list in increasing or decreasing order. Clearly we can use

the same algorithm in both cases. All we need to do is to

change the comparison criteria from > to < or vice versa.

What about equal keys? Do we change their order or leave

them wherever they are? How about non-numerical keys

such as Strings? How do we sort them? What if we want to

sort a list of names by two criteria's? First by the last name,

then by the first name?

There is one thing that we assume for any list that needs to

be sorted. We assume that keys in the list can be “compared”

by some criteria.

1.4 Applications of Sorting

There are many applications of sorting. Once a list is sorted

many questions about the list can be answered easily. We

can efficiently find an element in a sorted list using Binary

Search. Binary search requires only O(log n) operations in

finding an element. We can also determine in O(n) if a sorted

list has duplicates. We can construct a frequency distribution

of the list if the list is sorted, or find the median and mode of

the list in O(1) and O(n) respectively. We can find the k
th

largest element in a list in O(1) time.The sorting of a series

of numbers is a very important task, which embraces many

different applications, from banking , signal processing

techniques, such as order statistics, non-linear filtering to

communication switching systems to image processing or

pattern recognition techniques . In this paper the VHDL

design of an elementary sorting unit is presented. The main

contribution of this paper is to describe a case study of a

simple and general approach to VLSI sorting device. Both

ascending and descending ordering can be implemented in

the proposed architecture.

1.5 Sorting technology in hardware

In hardware architecture, a sorting module is generally

composed of a series of the compare-swap unit. Two values

are compared using a comparator and the result is used to

control the two multiplexers that select certain values to

generate outputs in an increasing or decreasing order. Two

different symbols and are adopted to represent two kinds

of units. It is possible to create hardware implementations of

existing software algorithms, with or without parallelization

of the problem. The running time of the comparison-based

software sorting algorithm is asymptotically limited by the

lower bound Ω(nlog2n). However, the corresponding

hardware design may have better performance. Several

hardware sorting algorithms will be analyzed in this section.

International Journal For Technological Research In Engineering

Volume 5, Issue 8, April-2018 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2018.All rights reserved. 3344

II. EXISTING AND PROPOSED SYSTEM

2.1 Existing system

Here we discuss the most commonly used sorting units and

their designs. The basic and the most commonly used sorting

methods are the bubble sort, selection sort, odd-even merge

sort, bitonic merge sort. Among which bubble Sort is the

simplest sorting algorithm that works by repeatedly swapping

the adjacent elements if they are in wrong order. Bitonic Sort

is a classic parallel algorithm for sorting.

 Bitonic sort does O(n Log 2n) comparisons.

 The number of comparisons done by Bitonic sort are

more than popular sorting algorithms like Merge

Sort [does O(nLogn) comparisons], but Bitonic sort

is better for parallel implementation because we

always compare elements in predefined sequence

and the sequence of comparison doesn‟t depend on

data. Therefore it is suitable for implementation in

hardware and parallel processor array.

Structure of the comparator:

Fig 1.The increasing (a) and decreasing (b) comparing block.

(c) and (d) are the detail architectures.

This fig 1. shows the types of comparators used in the design

, one comparator compares and arranges the elements in

ascending order and other comparator arranges the elements

in descending order.

2.1.1Bubble Sort

For small inputs, bubble sort is a feasible solution and is also

easy to implement. In each round, the largest (or smallest)

sample is selected by a series of comparisons. The algorithm

requires M comparison and switching events in the first

round when the input size is M, M-1 events in the second

round, M-2 events in the third round and so on until the

complete sorted result is generated. The running time is O(n

log n)where M is the input size. Parallelization is a well-

known solution to enhance the performance.

Example:

First Pass:

(5 1 4 2 8) –> (1 5 4 2 8), Here, algorithm compares the

first two elements, and swaps since 5 > 1.

(1 5 4 2 8) –> (1 4 5 2 8), Swap since 5 > 4

(1 4 5 2 8) –> (1 4 2 5 8), Swap since 5 > 2

(1 4 2 5 8) –> (1 4 2 5 8), Now, since these elements are

already in order (8 > 5), algorithm does not swap them.

Second Pass:

(1 4 2 5 8) –> (1 4 2 5 8)

(1 4 2 5 8) –> (1 2 4 5 8), Swap since 4 > 2

(1 2 4 5 8) –> (1 2 4 5 8)

(1 2 4 5 8) –> (1 2 4 5 8)

Fig 2.parallel architecture of eight input bubble sort

Fig 2. shows a hardware design for parallel bubble sort,

where comparison blocks in the same column are executed in

parallel. Although the total number of comparing units is as

same as that in the sequential version, a few operations could

be executed simultaneously in a certain pipeline stage. The

overall pipeline stage is defined as 2M-3, and the runtime

can be reduced to O(M).

2.1.2 Batcher’s Odd-Even Merge Sort

The odd-even merging unit proposed by Batcher merges two

sorted sequences into a complete sorted result. A sorting

network can be recursively constructed using the merging

unit. An M-input odd-even merging unit is denoted by OE-

M, where M should be the power of two. The sorted

sequence could be generated through a series of parallel

merging units from OE-2s, OE-4s, OE-8s ... to OE-M. The

architecture is parallel and feasible for pipeline design. To

sort a data set with 2
P
 samples, there are 2

P
-1 OE-2s in the

first stage, 2
P
-2 OE-4s in the second stage, and soon, until

there is one OE-2
P
 in the final stage. Furthermore, an OE-2

P

merging unit could be subdivided into P stages. The time

complexity of an odd-even merging network with M inputs

can be represented by O(log2
2
 M) because there are 1 + 2

+…..+ log2 M stages in total, and the area complexity is

O(M ✖ log22
 M). Fig. 3 illustrates an example of an eight-

input odd-even merge sorting network composed of four

parallel OE-2s, two parallel OE-4s, and one OE-8. The

pipeline levels are 6 and there are 19 increasing comparison

blocks.

Fig 3. architecture of an eight input Batcher's odd-even

merge sort

International Journal For Technological Research In Engineering

Volume 5, Issue 8, April-2018 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2018.All rights reserved. 3345

Fig 3. illustrates an example of an eight-input odd-even

merge sorting network composed of four parallel OE-2s, two

parallel OE-4s, and one OE-8. The pipeline levels are 6 and

there are 19 increasing comparison blocks.

2.1.3 Bitonic Merge Sort :

Bitonic sort is another sorting network proposed by Batcher .

A bitonic sequence is composed of one sequence in

increasing order and another one in decreasing order. The

bitonic merging unit merges the two sequences with equal

length into a complete sorted result. Bitonic sort has been

used widely because of its regular structure, which makes it

considerably simpler to implement than an odd-even sorting

network. Similarly, the input size of bitonic merging unit

should be a power of two. The M-input merging unit receives

an ascending and a descending sequence, and both of them

contain M/2 samples. It is called a BM-M, where M can be

represented as 2
P
. To construct a complete 2

P
-input bitonic

sorting network, a series of bitonic merging units are applied

recursively to generate the bitonic subsequence. The 2
P
-input

bitonic sorting network consists 2
P
-1 parallel BM-2s in the

first level, 2
P
-2 parallel BM-4s in the second level ... and one

BM-2
P
 in the final level. The time complexity and area cost

are the same as those of the odd-even sorting network.

Fig 4.architecture of an eight input bitonic merge sort

Fig 4. illustrates an example of an eight-input bitonic sorting

network composed of four parallel BM-2s, two parallel BM-

4s, and one BM-8. The pipeline levels are 6, and there are 24

comparison blocks. A few of the comparing blocks produce

increasing sequences, whereas others produce decreasing

results, which is the most notable difference between the

odd-even and the bitonic sorting networks.

2.2 Proposed system

The existing system is non-pipelined, so the latency and

delay will be same for it. But in our proposed system, since

we are introducing the pipeline concept the latency and delay

will differ. The Latency is the delay from input into a system

to desired outcome; the term is understood slightly

differently in various contexts and latency issues also vary

from one system to another. Here in our proposed system,

since we are dividing the execution stages into three

segments by using the registers, the delay will be considered

as the maximum time required by anyone of the

combinational block to get the data inside and to send the

data signals outside the logic block. This is explained as

follows

For a non-pipelined combinational circuit, the block

diagram is as follows

Fig 5. Eight I/O combinational logic circuit without pipeline

stages

The eight input/output combinational logic circuit without

pipeline stages is shown in the fig 5. For a combinational

circuit without pipeline stages the latency and delay are both

same.

Combinational circuit with pipelined stages

The combinational circuit is now pipelined by making use of

the registers, such that the entire combinational logic circuit

will be divided into three combinational logic blocks. This is

explained as follows in the fig 5.

Fig 6. Eight I/O combinational logic circuit with pipelined

stages

The fig 6. shows the combinational logic circuit with

pipelined stages. In this circuit we are separating the

combinational block into three segments by using the

registers in-between each comparison stage, by doing so we

are reducing the delay for each stage.

 The delay will be given as,

 delay = max (d1,d2,d3)

where d1, d2, d3 are the delay corresponding to each

combinational blocks 1,2,3 respectively .

we are taking the maximum delay out of the three delay

values, the reason for this is to avoid overloading of the

buffer storage.

2.2.1 Pipelined Bitonic merge sort

Therefore to reducing the delay , we have used the pipeline

concept in our proposed system. The design for our system is

as follows,

International Journal For Technological Research In Engineering

Volume 5, Issue 8, April-2018 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2018.All rights reserved. 3346

Fig 7. The architecture of an eight-input pipelined bitonic

merge sorting network .

The architecture of the pipelined bitonic sorting network is

shown in the fig 7. In our proposed system, we are applying

the pipeline concept to the existing bitonic merge system. For

making the proposed system we are providing adequate

buffering storage between the pipeline stages , and this is

done by making use of registers. As we are use pipeline in

the circuit, which leads to increase in latency but our main

aim is to decrease the delay. In this proposed system the

registers are placed at respective positions at the pipelined

stages.

III. 3. RESULTS AND DISCUSSION

3.1 General

VERILOG HDL is a hardware description language (HDL).

A hardware description language is a language used to

describe a digital system, for example, a computer or a

component of a computer. One may describe a digital system

at several levels. For example, an HDL might describe the

layout of the wires, resistors, and transistors on an integrated

circuits (IC) chip, i.e., the gate level. An even high level

describes the register and the transfer of vector of

information between the registers. This is called as Register

Transfer Level (RTL). VERILOG supports at all these levels.

However, this handout focuses on only the portion of

VERILOG support the RTL level.

We have synthesized , implemented our proposed sorting

network design in Xilinx ISE 9.2 , and simulated the design

in ModelSim ALTERA 6.5b.

3.2 pipelined bitonic merge sort

The pipelined bitonic merge sort which we designed has been

synthesized and implemented in Xilinx ISE design suite. The

RTL view is produced using the schematic viewer which is a

tool provided by Xilinx ISE . And the simulation is carried

out using ModelSim.

The obtained results will be as follows,

3.2.1 pin configuration

Fig 8. Pin diagram for pipelined bitonic merge sort

The fig 8. shows the pin diagram of pipelined bitonic merge

sort network, in which the s1,s2,...,s8 are the input pins and

p1,p2,...,p8 are the output pins. This pin diagram enable you

to view the list of input and output ports available in the

design.

3.2.2 RTL schematic

This schematic is generated after the HDL synthesis phase of

the synthesis process. It shows a representation of the pre-

optimized design in terms of generic symbols, such as

adders, multipliers, counters, AND gates, and OR gates, that

are independent of the targeted Xilinx device. RTL View is a

Register Transfer Level graphical representation of your

design. This representation (.ngr file produced by Xilinx

Synthesis Technology (XST)) is generated by the synthesis

tool at earlier stages of a synthesis process when technology

mapping is not yet completed. The goal of this view is to be

as close as possible to the original HDL code. In the RTL

view, the design is represented in terms of macroblocks, such

as adders, multipliers, and registers.

Fig 9. RTL view for pipelined bitonic merge sort

The fig 9. shows the RTL view for the Pipelined bitonic

merge sort network design. This RTL view is produced after

the synthesis process. From the obtained RTL view, we can

able to view the design flow of the digital signal between

hardware registers and also the logical operations performed

on those signals. Through this RTL view, we can able to

analyse our design from various perspectives.

Expanding blocks

By clicking on the blocks in the RTL view, we can able to

see the detailed view of the internal configuration in each of

the blocks.

(a)

International Journal For Technological Research In Engineering

Volume 5, Issue 8, April-2018 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2018.All rights reserved. 3347

(b)

Fig 10 (a) and (b) are the comparator block diagrams

The fig 10. (a) and (b) shows the comparator blocks , where

the fig(a) comparator block is intended to do the comparison

in ascending order and the fig(b) comparator block is

intended to do the comparison in descending order.

3.2.3 simulation results

We are using ModelSim Altera 6.5b starter edition to

simulate our Verilog code, to determine our thinking is right.

By simulation we can take into account the time delay . From

the simulation we can able to see how the input signals move,

get compared by the comparators and then till generation of

the final sorted output signals.

Fig 11. Wave diagram for eight-input pipelined bitonic merge

sort

The fig 11. shows the wave diagram for eight input pipelined

bitonic merge sort, this is generated by using ModelSim.

3.2.4 AREA AND DELAY COMPARISON

Table 1. Comparison between the existing system and

proposed system in terms of area and delay

Description AREA DELAY

Bubble sort 179 slices 64.345ns

Batcher’s odd-even sort 126 slices

31.630ns

Bitonic merge sort 157 slices 32.436ns

Pipelined bitonic merge

sort

154 slices

7.290ns

The table 1 shows the area and delay comparison between

the existing system and the proposed system. From the

comparison table , we can see the variation of values in terms

of area and delay between the existing system and our

proposed system.

IV. CONCLUSION

The design and implementation of delay optimized and

efficient sorting network is described in this paper. From the

obtained results the values are tabulated and from which we

can find the improvement in performance of the proposed

sorting unit based on speed and the area which we get from

the summary . Since the proposed system uses pipeline

concept the delay is reduced to 7.290ns which is a very much

less when compared to the existing sorting network systems,

the area is 154 slices which is less when compared to the

bitonic merge sort which occupies 156 slices . But when

compared to bitonic odd-even merge sort, the area of

pipelined bitonic merge sort is greater , since Batcher's odd-

even merge sort occupies just 126 slices. When compared to

bubble sort our proposed system is efficient in terms of area

and delay. The proposed system has a reduced delay when

compared to all other discussed sorting networks which we

obtain from the tabulated values. Our results show that there

is reduction of „delay' and „area', and improvement of the

„speed' in the proposed sorting network.

REFERENCE

[1] R. C. H. Chang, et al., “Implementation of a high-

throughput modified merge sort in MIMO detection

systems,” IEEE Trans. Circuits Syst. I, vol. 61, no.

9, pp. 2730–2737, Sep. 2014.

[2] J. Chhugani, et al., “Efficient implementation of

sorting on multi- core SIMD CPU architecture,”

Proc. VLDB Endow., vol. 1, no. 2, pp. 1313–1324,

Aug. 2008.

[3] A. Farmahini-Farahani, A. Gregerson, M. Schulte,

and K. Compton, “Modular high-throughput and

low-latency sorting units for FPGAs in the large

hadron collider,” in Proc. IEEE Int. Symp. Appl.

Specific Process., Jun. 2011, pp. 38–45.

[4] D. Koch and J. Torresen, “FPGA Sort: A high

performance sorting architecture exploiting run-

time reconfiguration on FPGAs for large problem

sorting,” in Proc. Int. Symp. Field Programmable

Gate Arrays, Feb. 2011, pp. 45–54.

[5] K. E. Batcher, “Sorting networks and their

applications,” in Proc. AFIPS Proc. Spring Joint

Computer Conf., 1968, pp. 307–314.

[6] A. Farmahini-Farahani, H. J. Duwe III, M. J.

Schulte, and K. Compton, “Modular design of high-

throughput, low-latency sorting units,” IEEE Trans.

Comput., vol. 62, no. 7, pp. 1389–1402, Jul. 2013.

[7] R. Chen, S. Siriyal, and V. Prasanna, “Energy and

memory efficient mapping of bitonic sorting on

FPGA,” in Proc. ACMISIGDA Int. Symp. Field-

Programmable Gate Arrays, 2015, pp. 240–249.

International Journal For Technological Research In Engineering

Volume 5, Issue 8, April-2018 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2018.All rights reserved. 3348

[8] J. Matai, et al., “Resolve: Generation of high-

performance sorting architectures from high-level

synthesis,” in Proc. ACM/SIGDA Int. Symp. Field-

Programmable Gate Arrays, 2016, pp. 195–204.

[9] M. Zuluaga, P. Milder, and M. Peschel, “Streaming

sorting networks,” ACM Trans. Design Autom.

Electron. Syst., vol. 21, no. 4,pp. 1–30, Jun. 2016.

[10] D. E. Knuth, “Sorting and Searching,” in The Art of

Computer Pro-gramming. Reading, MA, USA:

Addison-Wesley, 1998.

