EDGE DETECTION IN IMAGE USING K-MEANS CLUSTERING

Dr. Mridul Kumar Mathur¹, Manesh Singh²
1. Asst. Prof. (Selection Grade), Dept. of Comp. Sc., LMCST, Jodhpur (Raj.)
2. Ph.D. Research Scholar, Dept. of Comp. Engineering, Jodhpur National University (JNU), Jodhpur (Raj.)

ABSTRACT: In this work, K-means image clustering technique is also used for edge detection in an image. This K-means clustering method is suitable to find various segments of images very clearly. As the number of clusters is increased it is possible to find the different part of the image which can be used to perform different experiments on an image.

Keywords: K-means, edge detection, image segmentation

I. INTRODUCTION
In this paper, edge detection method named k-means clustering to find out edges in an image to segment it.

1.1 K-Means Clustering Algorithm:
The main idea is to define k centroids, one for each cluster. These centroids should be placed in a cunning way because of different location causes different result. The next step is to take each point belonging to a given data set and associate it to the nearest centroid. When no point is pending, the first step is completed and an early group is done. At this point, it is needed to re-calculate k new centroids as centers of the clusters resulting from the previous step. After these k new centroids, a new binding has to be done between the same data points and the nearest new centroid. A loop has been generated. As a result of this loop it may notice that the k centroids change their location step by step until no more changes are done.

This algorithm aims at minimizing an objective function, e.g. a squared error function. The objective function is expressed as:

\[\sum_{j=1}^{k} \sum_{i=1}^{n} \| x_i^{(j)} - c_j \|^2 \]

Where \(\| x_i^{(j)} - c_j \| \) is a chosen distance measure between a \(x_i^{(j)} \) data point and the cluster centre \(c_j \), is an indicator of the distance of the \(n \) data points from their respective cluster centers.

This produces a separation of the objects into groups from which the metric to be minimized can be calculated.

II. METHODOLOGY AND RESULTS
2.1 Algorithm and working of K-means clustering algorithm:
Colour image is constituted with 3 dimensional colour space to enhance its image quality. This method segments the colours in in an S*p*q colour space and K-means clustering. The steps of this methods are as follows:

Step 1: Input the color image and convert it into a three dimensional matrix using MATLAB.

Step 2: The Decorrelation stretching is applied for colour separation of an image.

Step 3: Convert Image from RGB Color Space to S*p*q Color Space.

Step 4: Classify the Colors in 'p*q' Space Using K-Means Clustering. In this, K-means to cluster the objects into three clusters using the Euclidean distance metric.

Step 5: Every pixel is labelled in the Image Using the Results from K-MEANS.

Step 6: Create Images that Segment the Image by Color.

Step 7: Nuclei is separated into a Separate Image.

2.2 Experimental Results:
Different types of edges of image are detection by varying number of centres in the images. This centres varies according to clusters presented in that image. The more number of colours and images which is shown in figure 2 to
III. CONCLUSION

Above figures shows different segments in the image. This K-means clustering method is suitable to find various segments of images very clearly. As the number of clusters is increased it is possible to find the different part of the image which can be used to perform different experiments on an
image.

REFERENCES