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ABSTRACT: We demonstrate the usefulness of utilizing a 

segmentation step for improving the performance of 

sparsity based image reconstruction algorithms. In specific, 

we will focus on retinal optical coherence tomography 

(OCT) reconstruction and propose a novel segmentation 

based reconstruction framework with sparse representation, 

termed segmentation based sparse reconstruction (SSR). 

The SSR method uses automatically segmented retinal layer 

information to construct layer-specific structural 

dictionaries. In addition, the SSRmethod efficiently exploits 

patch similarities within each segmented layer to enhance 

the reconstruction performance. Our experimental results 

on clinical-grade retinal OCT images demonstrate the 

effectiveness and efficiency of the proposed SSR method for 

both denoising and interpolation of OCT images. 

 

I. INTRODUCTION 

MELANOMAS 

The Four Basic Types Melanomas fall into four Optical 

coherence tomography (OCT) is a non-invasive imaging 

modality which is employed in diverse medical applications 

especially for diagnostic ophthalmology. Automated remote 

analysis of ophthalmologic OCT images is becoming more 

prevalent for the diagnosis and study of ocular diseases [3]. 

However, sample-based speckle and detector noise corrupts 

OCT images. On another front, to accelerate the acquisition 

process, relatively low spatial sampling rate is often used in 

capturing clinical OCT images. Both the heavy noise and low 

spatial sampling rate negatively affect automated and even 

manual OCT image analysis performance, necessitating 

utilization of effective denoising and interpolation 

techniques, respectively. Denoising and interpolation are two 

well-known reconstruction problems in the image processing. 

In the past decade, various models have been proposed to 

reconstruct high quality OCT images for various 

applications. In the context of biomedical imaging analysis 

and computer-assisted diagnosis, segmentation analysis is an 

intense field of research and development. The most difficult 

part of medical image analysis is the automated localization 

and delineation of structures of interest. Automated data 

evaluation is one way of enhancing the clinical utility of 

measurements. In particular, medical image segmentation 

extracts meaningful information and facilitate the display of 

this information in a clinically relevant way. A crucial role 

for automated information extraction in medical imaging 

usually involves the segmentation of regions of the image in 

order to quantify volumes and areas of interest of biological 

tissues for further diagnosis and localization of pathologies. 

Optical coherence tomography (OCT) is a  

 

powerful imaging modality used to image various aspects of 

biological tissues, such as structural information, blood flow, 

elastic parameters, change of polarization states and 

molecular content (Huang et al., 1991). OCT uses the 

principle of low coherence interferometry to generate two or 

three dimensional imaging of biological samples by 

obtaining high-resolution cross-sectional backscattering 

profiles. A variety of successful algorithms for computer-

aided diagnosis by means of OCT image analysis are 

presented in the literature, but robust use in clinical practice 

is still a major challenge for ongoing research in OCT image 

analysis. There are, therefore, efforts being made to improve 

clinical decision making based on automated analysis of 

OCT data. Particularly, in ophthalmology, efforts have been 

made to characterize clinically important features, such as 

damage to the fovea and optic nerve, automatically. The 

transfer of image analysis models from algorithmic 

development into clinical application is currently the major 

bottleneck due to the complexity of the overall process. For 

example, the process to establish an application for OCT 

medical image analysis requires difficult and complex tasks 

that should considers the following actions: 1) to define the 

OCT image data structures representing relevant biomedical 

features and the algorithms determining a valid example for 

given image values, 2) to select meaningful values for all 

technical parameters of the image data structures and 

algorithms and, as a result, to configure such a method to 

operate on specific OCT clinical data, 3) to run the algorithm 

with the selected parameters to find the individual model 

instance that best explains the input image and 4) to validate 

the procedure to ensure a trustworthy result from an 

automated segmentation algorithm even if a gold standard is 

unavailable. 

 

II. RELATED WORKS 

Fast Acquisition and Reconstruction of Optical Coherence 

Tomography Images via Sparse Representation 

Present a novel technique, based on compressive sensing 

principles, for reconstruction and enhancement of multi-

dimensional image data. Our method is a major improvement 

and generalization of the multi-scale sparsity based 

tomographic denoising (MSBTD) algorithm we recently 

introduced for reducing speckle noise. Our new technique 

exhibits several advantages over MSBTD, including its 

capability to simultaneously reduce noise and interpolate 

missing data. 

 

Automated Mosaicing of Feature-Poor Optical Coherence 

Tomography Volumes With an Integrated White Light 
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Imaging System 

Demonstrate the first automated, volumetric mosaicing 

algorithm for optical coherence tomography (OCT) that both 

accommodates 6-degree-of-freedom rigid transformations 

and implements a bundle adjustment step amenable to 

generating large fields of view with endoscopic and freehand 

imaging systems.  Our mosaicing algorithm exploits the 

known, rigid connection between a combined white light and 

OCT imaging system to reduce the computational complexity 

of traditional volumetric mosaicing pipelines. 

 

Automated 3-D Retinal Layer Segmentation of Macular 

Optical Coherence Tomography Images With Serous 

Pigment Epithelial Detachments 

Automated retinal layer segmentation of optical coherence 

tomography (OCT) images has been successful for normal 

eyes but becomes challenging for eyes with retinal diseases if 

the retinal morphology experiences critical changes. We 

propose a method to automatically segment the retinal layers 

in 3-D OCT data with serous retinal pigment epithelial 

detachments (PED), which is a prominent feature of many 

chorioretinal disease processes. 

 

Current retinal imaging modalities Millions of people 

worldwide live with retinal disease and the accompanying 

threat of severe vision loss or blindness. During the last few 

years, the retinal research field has undergone a dramatic 

change in terms of diagnostic tools and therapies that have 

resulted in substantial benefits for patients suffering from 

retinal disease. Traditionally the retina has been observed 

either directly via an ophthalmoscope or similar optical 

devices such as the fundus camera. The field of 

ophthalmology was revolutionized in 1851 with the invention 

of the ophthalmoscope by Hermann von Helmholtz (von 

Helmholtz, 1851) as for the first time detailed examinations 

of the interior of the eye could be made in living patients. 

 

III. EXISTING METHOD 

The emergence of ultrabroad bandwidth femtosecond laser 

technology has allowed the development of an ultra-high 

resolution OCT, which has been demonstrated to achieve 

axial resolutions of 3 µm during in vivo imaging of the 

human retina, which is two orders of magnitude higher than 

what can be achieved by conventional ultrasound imaging. 

Figure 6 shows the ultrahigh resolution OCT cross section of 

a normal human macula showing all of the major layers and 

internal structures of the retina. The ultrahigh resolution OCT 

will in effect be a microscope capable of revealing certain 

histopathological aspects of macular disease in the living eye. 

As it was previously explained, in the conventional or time 

domain OCT (TDOCT) system the length of the reference 

arm in an interferometer is rapidly scanned over a distance 

corresponding to the imaging depth range. The mechanism of 

scanning largely limits the acquisition speed and makes real-

time imaging impossible. In recent years a new model OCT 

based on Fourier domain interferometry has emerged, and it 

has been called spectral domain OCT (SDOCT) or Fourier 

domain OCT (FDOCT) (Fercher et al., 1995; Fercher et al., 

2003; Hausler & Lindner, 1998). SDOCT can avoid scanning 

of the reference, thus it can reach very high acquisition 

speed. As a matter of fact, in time domain OCT the location 

of scatters in the sample is observed by generation of 

interferometric fringes at the detector as the reference 

reflector position is axially translated. In contrast, Fourier 

domain OCT required the reference arm to be held fixed, and 

the optical path length difference between sample and 

reference reflections is encoded by the frequency of the 

interferometric fringes as a function of the source spectrum. 

 

IV. PROPOSED SYSTEM 

The wave front reconstruction is formulated as an inverse 

problem where the complex exponent or the amplitude and 

phase of this exponent are assumed to admit sparse 

representations in suitable scarifying transforms 

(dictionaries). The sparse modeling is a form of 

regularization of the inverse problem. For design of these 

overcomplete scarifying dictionaries we use Block matching 

3D (BM3D) and learning dictionary techniques. Various 

optical setups (interferometric and non-interferometric) are 

considered with algorithms developed for Gaussian and 

Poisoning noise in intensity measurements.  

Segmentation based sparse reconstruction (SSR) model to 

develop a fast and accurate reconstruction algorithm. Then, 

for each layer, SSR constructs a dedicated structural 

dictionary to better represent the anatomic and pathologic 

structures within this layer. Finally, instead of searching the 

whole image, SSR efficiently searches for the similar patches 

within each layer and exploits the patches’ similarities within 

each layer to improve the sparse decomposition. 

 

Nonlocal Means Reconstruction Model 

For the image denoising and interpolation problems, another 

very effective reconstruction model is the nonlocal means, 

which exploits the self-similarities inherent to images. In the 

sparse reconstruction model, the sparse coefficient 

estimations are affected by the noise in observation image, 

thus leading to suboptimal reconstruction.To suppress noise 

interference, recent works including incorporate the nonlocal 

means into the sparse reconstruction model. Specifically, the 

nonlocal sparse model first conducts the similar patch search 

in the whole image and then jointly exploits correlations 

among similar patches by decomposing them on the same 

atoms of the dictionary to improve the sparse coefficient 

solution. 

 

MODULES DESCRIPTION 

The SSR method, which utilizes the layer specific structural 

information to enhance the effectiveness and cost efficiency 

of our previous sparse reconstruction techniques. The SSR 

method is composed of three main parts: 

a) layer segmentation 

b) layer segmentation based dictionary construction 

c) layer segmentation based sparse reconstruction. 

 

LAYER SEGMENTATION 

For all the testing and training retinal images, we utilize the 

popular graph theory and dynamic programming (GTDP) 

method to automatically segment these images into R layers 
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Layer Segmentation Based Dictionary Construction 

In the retinal OCT image, different layers contain various 

types of anatomic and pathologic structures (e.g., vessels, 

drusen, edema, and fovea), and different thicknesses and 

speckle structures.Therefore, to well represent complex 

structures in varied layers, we utilize the segmented layer 

information to train multiple structural dictionaries (each 

corresponding to one layer), rather than one general 

dictionary. 

 

Layer Segmentation Based Sparse Reconstruction 

As noted, the anatomic and pathologic structures, intensities, 

and speckle patterns within each layer are expected to have 

strong similarities. Therefore, instead of searching the whole 

image.Proposed to seek the similar patches in a searching 

window within each segmented layer, which can greatly 

reduce the search space. 

 

Joint Sparse Reconstruction for Denoising 

In denoising, simultaneous decomposition of the nearby 

averaged Patches in the r -th layer of nearby images with the 

joint sparse technique amounts 

 
 

V. RESULTS AND DISCUSSIONS 

 
Figure 5.1 shows the Noisy Image with an under sampling 

factor of 5. Shows the original images and noise generated 

image and filtered image and last image is residual of the 

difference image between the reference image with filtered 

images are shown at the right of each denoised image 

 
Figure 5.2 SSR reconstruction results using two different 

layer segmentations. 

To artificially create more severe segmentation errors, we 

intentionally introduced errors in segmentation of the inner 

nuclear layer in the black box region (manually induced 

error), resulting in the images . 

The next step is Image Filtering. By using SRAD, Lee, Kaun 

and Wavelet Denoising the Image Filtering Can be done. 

COMPARISION TABLE FOR ALL FILTERS 

After Filter the Image Quality Measure (PSNR, MSE, NCC, 

NAE) Can be calculated between the original image and 

filtered image. 

Peak Signal to Noise Ratio (PSNR): 

           PSNR(I,Î) = 10log ( 
max (I²)

MSE(I,Î)
) 

Mean Squared Error (MSE): 

           MSE (I,Î) = 1

NM
   Ii,j − Îi,j 

2M
j=1

N
i=1  

Normalized Absolute Error (NAE): 

            NAE (I,Î) =
  |Ii ,j−Ii ,j |

M
j=1

N
i=1

  |Ii ,j |
M
j=1

N
i=1

 

Normalized Cross-Correlation (NCC):  

            NCC(I,Î) = 
  (Ii ,j .Ii ,j)

M
j=1

N
i=1

  (Ii ,j)²
M
j=1

N
i=1

 

 
Figure 5.3 Shows the LEE filtered Image 

A  Lee filter using MATLAB for despeckling of an image. 

Since it’s a patch based processing, the computation cost will 

be high. 

 

This function takes the reference image, speckled/noisy 

image and the window size as input and performs the 

following steps. 
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1.     The variance of the reference image is found. Variance 

can be found either by using MATLAB built-in function or 

user defined function. Here in this case, a user defined 

function is used to find the variance. 

2.     Based on the size of the kernel, the noisy image is 

padded with zeros on all sides. 

3.     The center index of the kernel is found 

4.     The noisy image is processed patch by patch. 

 
Figure 5.4 Shows the KUAN Filter Image 

Kuan filter were the earliest filters working directly on the 

intensity of the image using local statistics and is based on 

the minimum mean square error (MMSE), which produce the 

speckle free image governed by the relationship 

 
Figure 5.5 Shows the Wavelet Denoising Filter Image 

To denoise signals and images. Because wavelets localize 

features in your data to different scales, you can preserve 

important signal or image features while removing noise. The 

basic idea behind wavelet denoising, or wavelet thresholding, 

is that the wavelet transform leads to a sparse representation 

for many real-world signals and images. What this means is 

that the wavelet transform concentrates signal and image 

features in a few large-magnitude wavelet coefficients. 

Wavelet coefficients which are small in value are typically 

noise and you can "shrink" those coefficients or remove them 

without affecting the signal or image quality. After you 

threshold the coefficients, you reconstruct the data using the 

inverse wavelet transform. 

 
This figure 5.6 shows the Quality measures from denoised to 

original image. 

Classification models in machine learning are evaluated for 

their performance by common performance measures. This 

function calculates the following performance measures 

PSNR , MSE , NAE , NCC 

 
This figure 5.7 shows the Binaries Image. 

BW = im2bw(I,level) converts the grayscale image I to 

binary image BW, by replacing all pixels in the input image 

with luminance greater than level with the value 1(white) 

and replacing all other pixels with the value 0 (black). 

This range is relative to the signal levels possible for the 

image's class. Therefore, a level value of 0.5 corresponds to 

an intensity value halfway between the minimum and 

maximum value of the class. 

 
Fig 5.8  SMALLER PIXELS REMOVED IMAGE 
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Next step is smaller filer image using Image Morphological 

operators. Final Step is thickness detection. 

 
Fig .5.9 Impact of SSR reconstruction on automatic layer 

segmentation performance. 

SSR denoised image using the segmentation results. 

Automatic segmentation of the image Thresholding 

technique is shown, where the accuracy of segmentation is 

improved for the previous erroneously segmented region. 

 

EXISTING SYSTEM 

 
This figure 5.8 shows the Quality measures from denoised to 

original image. 

 

PROPOSED SYSTEM 

 
This figure 5.9 shows the Quality measures from denoised to 

original image. 

TABULTATION 

IMAGE 

NAME 

EXISTING SYSTEM PROPOSED 

SYSTEM 

TIME PSNR TIME PSNR 

1.tif 104.51 47.28 72.35 47.31 

2.tif 108.44 47.273 74.83 47.295 

3.tif 102.97 47.28 67.15 47.295 

4.tif 106.77 47.32 72.72 47.391 

Table 5.1 Shows the Performance Comparison of Existing 

and Proposed Method 

 

VI. CONCLUSION 

In contrast to OCT technology development which has been 

a field of active research since 1991, OCT image 

segmentation has only being fully active explored during the 

last decade. However, it continues to be one of the more 

difficult and at the same time most commonly required steps 

in OCT image analysis, therefore, there does not and can not 

exist a typical segmentation method that can be expected to 

work equally well for all tasks. The works cited in this 

review spread from the 1997’s until September 2010. Of 

course, the citation in this review is by no means complete. 

For example, an early active research topic such as manual 

tools for image segmentation has not been covered. It is also 

worthy the mentioning that it was difficult to assess the 

robustness of the various segmentation approaches because 

of many authors have used different OCT imaging setups 

and reported limited quantitative. 
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