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Abstract: Data Mining is the process of analyzing data from 

a different perspective and shortening it into valuable 

information It is the process of fetching unknown 

knowledge from a wide store of raw data. In this paper has 

been done portfolio optimization using a genetic algorithm. 

The selection of portfolio optimization is the central 

problem of financial investment decisions. scientifically 

talking, portfolio choice refers to the formulation of a 

purpose function that determines the weights of the 

portfolio invested in every asset as to maximize return and 

minimize risk. This paper uses the technique of genetic 

algorithm (GA) to get an optimal portfolio selection. on the 

other hand, the GA parameter is of big importance in the 

procedure of convergence of this algorithm towards the 

optimal result such as crossover. While a five asset portfolio 

example is used in this paper to demonstrate the validity 

and efficiency of genetic algorithm method, GA method can 

also be used on the other hand for a bigger number of 

portfolio work. The outcome obtains confirm before 

research studies about the validity and good organization of 

genetic algorithm in selecting optimal portfolios.  

Index Terms: Data Mining, portfolio, stock selection, 

genetic algorithm. 

 

I. INTRODUCTION 

Portfolio optimization is one of the most challenging 

problems in the field of finance. Choosing the weights of the 

portfolio to invest in each asset to meet the risk and return 

expectations make this problem more crucial. In dealing with 

this problem, Harry Markowitz 1952 developed a 

quantitative model, also called mean-variance model. The 

mean-variance model has been generally measured as either 

the minimization of an objective function presenting the 

portfolio variance (risk) for a given point of return or the 

maximization of an objective function representing the 

portfolio return for a given level of risk. In this model, 

however, cardinality and bounding constraints are not 

considered (Fernandez and Gomez, 2007). To explanation for 

the restrictions of the mean-variance model of Markowitz, 

some methods such as Constrained Optimization (CO), 

Quadratic Programming (QP), Linear Programming (LP) and 

Second-Order Cone Programming (SOCP) have been 

developed and used (Davidson, 2011). However, this 

technique has a various drawback in portfolio optimization as 

are based on linear assumption and are therefore good for 

quadratic objective functions (deterministic) with a single 

objective (Roudier, 2007). But the main question that this 

paper is trying to answer is what if the objective function is 

not quadratic and has more than one objective: Maximization 

of return and minimization of risk simultaneously. 

 

just, a various technique based on artificial intelligence such 

as Genetic algorithm has been applied to overcome this 

problem. GAs are stochastic, heuristic techniques based on 

the natural choice principles, and they can deal with 

nonlinear optimization problems with non-smooth and even 

non-continuous objective, and continuous and/or integer 

variables (Lin et al; 2005). However, the choice of GA 

factors such as the mutation and crossover technique can 

manipulate the GA performance (Bakhtyar et al, 2012).  For 

the application of GA, three crossover procedures which are: 

Single point, two points, and arithmetic have been applied, 

while other procedures such as mutation and selection could 

be applied also. The procedures of crossover are applied in 

order to know their impact on the convergence time of GA 

towards the optimal solution. GAs derives most of their 

power from a crossover. Crossover, in combination with 

survival of the fittest structures, allows the best components 

of differing solutions to combine to form even superior 

solutions (Mahfoud and Mani, 1996. even as the function of  

GAs has progress glowing in a different field like health, 

engineering, electronics, robotic and so, such progress, 

however, is still not well advanced in the field of finance, 

especially in portfolio optimization problems. As such, this 

paper will discard more light on the contribution that GA can 

make in solving portfolio optimization problems. 

 

II. PORTFOLIO OPTIMIZATION MODELS 

Markowitz [1] had proposed a mean-variance model for 

portfolio optimization in which weighted mean returns of the 

stocks in the portfolio were considered as a return of the 

portfolio 

and variance of these stocks from mean return was 

considered 

as a risk. Markowitz model can be described using Equation 

1, Equation 2, Equation 3 and Equation 4. 

  

                 n    n 

minimize ∑   ∑ Wz Wj Ꝺij               (1) 

             i=1 j=1 

 

                  n 

such that   ∑ Wi Ui >= Up            (2) 

                i=1 

 

                 n 

                ∑ Wi = 1                     (3) 

               i=1 

 

              0 ≤  Wi ≤ 1; i = 1.....n    (4) 

where, 
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n = number of stocks in a dataset, 

Ui = the expected return of the asset i, 

σij = the covariance between asset i and j, 

Wi = proportion of capital invested in asset i, 

Up = desired return from portfolio 

 

Equation 1 represents the objective function of the 

optimization problem which aims to minimize the risk of a 

portfolio while Equation 2 enforces the portfolio to achieve 

desired return Up. Equation 3 and Equation 4 are constraints 

on portfolio, assuring that 100% of the investors’ capital is 

invested and no short selling is performed, respectively. 

 

The Markowitz model has been used extensively for portfolio 

optimization. This model uses historical mean return and co-

variance of stocks to optimize a portfolio. Markowitz model 

selects stocks which have minimum co-variance between 

them to ensure diversified risk, i.e., to minimize chances of 

loss. It is easy to understand from statistics that low co-

variance stocks do not move together, so if some stocks in 

portfolio are not performing well, then other stocks (having 

low co-variance with poorly performing stocks) in portfolio 

can cover the loss. Adding cardinality constraint to 

Markowitz model turns the model from a QP problem to a 

MIQP (Mixed Integer Quadratic Programming) problem, 

which is a NP-Hard problem. Other constraints like, sector 

capitalization, minimum transaction lots, etc. make the 

problem even harder to solve.  

 

MAD (Mean Absolute Deviation) model proposed by Konno 

and Yamazaki [2] is another popular model which is 

frequently used to solve portfolio selection problem.  It 

solves the problem through linear programming. It is to be 

noticed that mean in MAD refers to the mean return of the 

assets in portfolio. Some of the other models used include 

Exponential Decay Model [3], Extended Markowitz Model 

[4], [5], Mean- Variance-Skewness Model [6] and Robust 

MAD Model [7]. 

 

III. PORTFOLIO OPTIMIZATION PROBLEM AS A 

QUADRATIC PROGRAMMING PROBLEM AND 

HEURISTICS FOR PORTFOLIO OPTIMIZATION 

Basic Markowitz model can easily be implemented as a 

Quadratic Programming problem. Equation 5, Equation 6 and 

Equation 7 represents Markowitz model as a QP problem. 

 

Minimize       1     t                t   

                     ─  W   H W ─ M  W              (5) 

                      2      

                                     t 

   Subject to   E  W = 1                               (6)  

 

 and        0 ≤ W ≤ 1                                   (7) 

 
where, 

W = weight vector of all stocks, 

H = co-variance matrix of mean return of all stocks, 

E= vector of ones, 

M = mean return vector of all stocks. 

The above formulation restricts short selling; however, 

portfolio optimization problem can be formulated 

considering short selling as well. Further, if the cardinality 

constraint is added to the (quadratic programming) model 

presented above then the problem becomes Mixed Integer 

Quadratic Programming problem, which is NP-Hard and 

considerably more difficult to solve than the original 

problem. Instead of solving NP-Hard optimization problem, 

researchers have proposed various heuristics approaches to 

get the near optimal results for portfolio optimization. These 

heuristic approaches are implemented through various 

Artificial Intelligence and Soft Computing techniques. 

Different techniques that are widely used by researchers are 

mentioned in the next section. 

 

 

IV. A COMPARATIVE STUDY 

This section compares literature in the domain of stock 

market portfolio optimization across three dimensions: 

techniques used. 

 

A. Techniques Used 

Survey of the existing literature reveals that Genetic 

Algorithm, Fuzzy Theory and Particle Swarm Optimization 

are extensively used techniques for portfolio optimization. 

Other techniques that are used frequently for optimizing the 

portfolio include; multi-objective evolutionary algorithms 

(MOEA). NSGA-II (Nondominated Sorting Genetic 

Algorithm II), SPEA-2 (Strength Pareto Evolutionary 

Algorithm- 2), PESA-II (Pareto Envelope Based Selection-

II) and PAES (Pareto Archived Evolution Strategy) are some 

of the multiobjective evolutionary algorithms that have been 

used. Table I summarizes various techniques used for 

portfolio optimization  problem by the researchers around the 

globe. 

 

Abbreviations used in Table I are enlisted below: 

 

AES = Adaptive Exponential Smoothing, 

AHP = Analytical Hierarchy Process, 

ARIMA = Autoregressive Integrated Moving Average, 

ARM = Association Rule Mining, 

ARMS = Autoregressive Markov-Switching Model, 

ARX = Autoregressive Exogenous, 

EA = Evolutionary Algorithm, 

ES = Exponential Smoothing, 

FT = Fuzzy Theory, 

GA = Genetic Algorithm, 

GBM = Geometric Brownian Motion, 

GMM = Generalized Method of Moments, 

MOEA = Multi-Objective Evolutionary Algorithm, 

MPM = Minimal Probability Machine, 

NCP = Nadir Compromising Programming, 

NSGA-II = Non-dominated Sorting Genetic Algorithm II, 

PESA-II = Pareto Envelope Based Selection, 

PQP = Parametric Quadratic Programming, 

PSO = Particle Swarm Optimization, 

RBF = Radial Basis Function, 

RS = Rough Set, 
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SA = Simulated Annealing, 

SMO = Sequential Minimal Optimization, 

SOM = Self Organising Maps, 

SPEA-2 = Strength Pareto Evolutionary Algorithm, 

SVM = Support Vector Machine, 

SVR = Support Vector Regression, 

TS = Tabu Search, 

TSD = Time Series Decomposition, 

XCS = Extended Classifier System, 

Y = Yes. 

       

V. GENETIC ALGORITHM 

Genetic algorithm used in portfolio optimization. in this 

algorithm under many methods; GA manipulates a 

population with the constant size. This population consists of 

applicant points called chromosomes. This algorithm leads to 

an opposition phenomenon between the chromosomes. Each 

chromosome is the indoctrination of a possible solution for 

the problem to be solved, it ready for a set of elements called 

genes, which can take some values. At each iteration 

(generation) a new population is created with the same size. 

This generation consists of the better chromosomes "adapted" 

to their environment as represented by the selective function. 

regularly, the chromosomes will be inclined in the direction 

of the optimum of the selective function. The formation of 

the latest population is ready by applying the genetic 

operators which are selection, crossover, and mutation. 

 

1. Selection: The new individual's selection is made as 

follows: Calculate the 

reproduction probability for each individual 

 

 

                            fi 

                 Ri =     

                            n 

                            ∑ fi 

                           i=1 

 

Where: fi is the Fitness of the individual i. (a fitness function 

is needed to evaluate the quality of each candidate solution 

with regard to the task to be performed). 

 

n is the size of the population. every time an only 

chromosome is selected for the new population. This is 

achieved by generating a casual number r from the interval 

[0, 1]. If 

r < R1 then choose the 1st  chromosome, otherwise choose 

the ith  chromosome such as Ri-1 < r ≤ Ri. 

 

2. crossover:-  

The crossover operator as follows: Population resulting from 

choice is split into two components. Each pair fashioned will 

go through the crossover with a certain chance Pi. Many 

special types of crossover exist in the literature for example 

single point crossover, two-point crossover, and mathematics 

crossover. 

 

3. Mutation:- 

individuals in the population after crossover will then 

undertake a method of mutation; this procedure is to 

randomly change several bits, with a certain probability Pm  

 

Genetic algorithms are more flexible than most search 

methods because they require only information concerning 

the quality of the solution produced by each factor set 

(objective function values) and not like a lot of optimization 

technique which calls for derivative information, or yet 

other, complete knowledge of the problem structure and 

parameters (Bouktir et al, 2004). 

 

There is some difference between Gas and traditional 

searching algorithms (Augusto et al, 2006). They could be 

summarized as follows: 

1. they work with a coding of the parameter set and not the 

parameters themselves; 

2. they search from a population of points and not a single 

point; 

3. they use information concerning of (payoff) and not 

derivatives or other auxiliary knowledge; 

4. they use probabilistic transition rules and not deterministic 

rules. 

 

VI. LITERATURE  REVIEW 

Paper Source 

of 

publica

tion 

Year Author Technique 

Portfolio 

optimization 

based on funds 

standardization 

and genetic 

algorithm 

Journal 2017 YAO-

HSIN 

CHOU, 

SHU-YU 

KUO 

Portfolio, 

stock 

selection, 

funds 

standardiza

tion, low 

volatility, 

Genetic 

algorithm 

(GA), 

modern 

portfolio 

theory. 

Robust Median 

Reversion 

Strategy 

For Online 

Portfolio 

Selection 

Journal 2016 Dingjian

g Huang, 

Junlong 

Zhou, 

Portfolio 

selection, 

Online 

learning, 

Mean 

Reversion, 

Robust 

Median 

Reversion, 

L1-

median. 

Portfolio 

approaches for 

constraint 

optimization 

problems 

Journal 2015 Roberto 

Amadini.

Maurizio 

Gabbriell

i1 

Algorithm 

portfolio · 

Artificial 

intelligenc

e · 

Combinato
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rial 

optimizatio

n · 

Constraint 

programmi

ng · 

Machine 

learning 

Loan Portfolio 

Optimization 

using Genetic 

Algorithm: A 

case of credit 

constraints 

Journal 2015 Noura 

Metawal, 

Mohame

d 

Elhoseny

2, 

Bank 

Lending, 

Genetic 

Algorithm, 

Credit 

Constraints

, 

Bank 

Profit 

 

Prediction 

based mean-

variance model 

for constrained 

portfolio assests 

selection using 

multiobjective 

evolutionary 

algorithm 

journal 2016 Shudhans

u kumar 

mishra, 

babita 

majhi 

Constraine

d 

portfolioop

timization 

Multiobjec

tiveoptimiz

ation 

Functional 

linkartifici

al 

neuralnetw

ork 

Efficient 

frontier 

Non-

dominated

sorting 

Nonparam

etricstatisti

caltest 

Surveying 

Stock Market 

Portfolio 

Optimization 

Techniques 

 

Confer

ence 

2015 Mukesh 

Kumar 

Pareek 

Stock 

Market, 

Stock 

Market 

Portfolio 

Optimizati

on, 

Risk 

Models, 

Stock 

Market 

Portfolio 

Optimizati

on 

Techniques 

A Robust 

Statistics 

Approach to 

Minimum 

Variance 

Portfolio 

Optimization 

journal 2016 Dingjian

g Huang, 

Junlong 

Zhou, 

Bin Li 

Portfolio 

selection, 

Online 

learning, 

Mean 

Reversion, 

Robust 

Median 

Reversion, 

L1-median 

Multi-Objective 

Portfolio 

Optimization 

and 

Rebalancing 

Using Genetic 

Algorithms 

with Local 

Search 

Journal 2012  Vishal 
Soam, 
Leon 
Palafox 

Portfolio 

optimizatio

n 

 Internal Regret 

in On-Line 

Portfolio 

Selection 

Journal 2005 GILLES 

STOLTZ 

individual 

sequences, 

internal 

regret, on-

line 

investment

, universal 

Portfolio, 

EG 

strategy 

Portfolio 

optimization 

using multi-

objective 

genetic 

algorithm 

Journal 2007 Prisadain

g 

skolpadu

ngket 

Portfolio 
optimizati
on, 
genetic 
algorithm 

Loan Portfolio 

Optimization 

using Genetic 

Algorithm: A 

case of credit 

constraints 

Journal 2016 Noura 

Metawal, 

Mohame

d 

Elhoseny

2 

 

Bank 
Lending, 
Genetic 
Algorithm, 
Credit 
Constraint
s 
Bank 
Profit 

 

1) Dingjiang Huang, Junlong Zhou, et al. (2016) have found 

that  Robust Median  Reversion Strategy for Online Portfolio 

Selection. In this paper, we plan to use the reversion 

phenomenon by using robust L1-median estimators and plan 

a novel online portfolio selection approach named “Robust 

Median Reversion” (RMR), which build optimal portfolios 

based on the improved reversion estimator. We observe the 

presentation of the planned algorithms on various real 

markets with extensive experiments. Empirical results show 

that RMR can overcome the drawbacks of existing mean 

reversion algorithms and get significantly better solutions. 

Finally, RMR runs in linear time and thus is suitable for 

large-scale real-time algorithmic trading applications. 

 

(2) Roberto Amadini1 • Maurizio Gabbrielli1l et al. (2015) 

found that Portfolio approaches for constraint optimization 

problems. Within the Constraint Satisfaction Problems (CSP) 

perspective, a technology that has established to be mostly 

per formant consists of using a portfolio of dissimilar 

constraint solvers. other than, relatively little studies and 

examination have been done in the world of Constraint 
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Optimization Problems (COP). In this work, we award an 

overview to COP as well as an experiential evaluation of the 

different state of the art existing CSP portfolio approaches 

accurately adapted to deal with COP. The results obtained by 

determining several evaluation metrics confirm the 

effectiveness of portfolios even in the optimization field and 

could give rise to some interesting future research. 

 

(3) WEI LIt, JI-CHUN GAN2. al(2013) found that portfolio 

optimization model based on synthesizing effect. This paper 

to study the investment portfolio problem for the first time. 

The SEPO model is a crisp programming model and obtained 

from a class of stochastic programming problems by 

constructing a class of synthesis effect functions. The SEPO 

model can further be shown to contain expectation value 

model by choosing different synthesis effect functions. A 

synthetically improved genetic algorithm based on real 

coding and random simulation is used in an illustrative 

example. It shows that the solutions of the SEPO model are 

richer than other solution models, and can be aware of 

different decision making in real life. 

 

(4) Chao Gong, Chunhui Xu, al. (2016) published Portfolio 

optimization in single-period under cumulative prospect 

theory using genetic algorithms and bootstrap method. in this 

paper present an approach to solving the portfolio 

optimization in single-period under cumulative prospect 

theory, based upon the coupling of genetic algorithms with 

bootstrap method. The computational experiments show that 

the behavior characteristics of CPT investors when they 

faced the portfolio composed of risky assets by using the 

method we proposed. Finally, these phenomena are discussed 

in this paper. 

 

(5) Vishal Soam, Leon Palafox, et. al. (2012) has proposed 

Multi-Objective Portfolio Optimization and Rebalancing 

Using Genetic Algorithms with Local Search,  in this paper 

introduced a new “greedy coordinate ascent mutation 

operator” and we have also included the trading volumes 

concept. We performed simulations with the past data of 

NASDAQ100 and DowJones30, concentrating mainly on the 

2008 recession period for portfolio optimization,  firstly 

select the assets from a pool of them available in the market 

and then assign proper weights to them to maximize the 

return and minimize the risk associated with the Portfolio, 

and compared results with the indices and the simple Genetic 

Algorithms approach.   

 

VII. CONCLUSION 

Portfolio optimization is one of the most challenging 

problems in the field of finance. Choosing the weights of the 

portfolio to invest in each asset to meet the risk and return 

expectations make this problem more crucial. In dealing with 

this problem. This paper uses the technique of genetic 

algorithm (GA) to get an optimal portfolio selection in future 

we are select the one genetic algorithm method and 

implement this technique. 
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