
International Journal For Technological Research In Engineering

Volume 5, Issue 10, June-2018 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2018.All rights reserved. 3981

A STUDY ON CACHE REPLACEMENT POLICIES IN COHERENT

CHIP MULTIPROCESSOR SYSTEMS (CMPs)

Deeksha Satish
1
, Dr. Manimala S

2

2
Assistant Professor,

1,2
Department of Computer Science and Engineering,

JSS Science and Technological University, Mysuru, India

ABSTRACT: Computers usually store data in terms of

hierarchy of memoriesranging from the most expensive fast

memories to low-cost andslower memories. It is very much

prevailing to store data in fastmemories to try to avert

requests to the slowerones and the same is referred to as

caching. But whenthe fastest memory becomes adequate

enough and a new data must be interpolated, some other

data has to be recovered. There are various methods to

decide which data to remove and these methods are

oftencalledcache replacement algorithms. A miss in the last

level caches causes hundreds of stall cycles due to the need

for a memory access. Therefore, last level caches are

designed to reduce the possibility for cache misses. Since

last level caches absence of temporal locality, the Least

Recently Used policy leads to bad performance for them.

Hence, many replacement policies were suggested to

improve the miss rate for last level caches while

maintaining low hardware aerial and minimum design

changes. Various algorithms have been studied andtheir

performance often depends on the workload.This paper

provides an overview of some much studied cache

algorithms – Least recently used (LRU), Most recently used

(MRU) and Quad-age replacement policy in a coherent

chip multiprocessor system.

Keywords: LRU, MRU, CMP, Quad-age, Request to

response latency, Hit rate.

I. INTRODUCTION

Caches play a critical role in the reduction of delay of

memory accesses by giving a temporary fast-access storage

unit for the data that is being accessed by the CPU. On a

cache miss, data is fetched from the memory and placed in its

analogous locale in the cache. A productive cache

replacement policy can naturally reduce the cache miss rate

and thus reducing the risk of a penalty of hundreds of cycles

expenditure due to memory accesses.The concept of cache is

to store data from a slow memory in a faster memory. This

isdone in order to minimize the number of requeststo the

slower memory and hence resulting in the reduction of

memory accesslatency. Cache is used in various applications

such as, the harddisks, web servers, databases and CPUs to

name afew.Computers contain different memories which

form a hierarchy (as shown in Figure 1) with respect to

speed, cost andcapacity. A classic CPU today contains at

least 3cache blocks, which are called L1, L2 and L3.

Theseare the fastest memories. The Random Access Memory

is slower than the CPU cache but faster than anyHard Disk

Drive. An overview of access times in computer hardware is

shown in Table 1. As can be seenfrom this overview, it is

more than a million timesfaster to retrieve data from the L1

cache than froma hard disk. It is therefore useful to cache

frequentlyused data.

Figure 1: Representation of Multilevel cache hierarchy

Figure 2: Representation of memory hierarchy

Table 1: Read access latency of computer hardware

II. LITERATURE SURVEY

Belady in [1] proposed the optimal replacement policy

(OPT) which provided an upper limit on the hit rate that can

be ever achieved. OPT states that “the optimal candidate for

replacement is the one that is accessed farthest in the future”.

This policy cannot be implemented since it requires knowing

which lines will be accessed in the future and when they are

going to be accessed. The traditional replacement policies

well known in the literature includes: LRU, LFU, random

replacement and FIFO, with the LRU policy being the

International Journal For Technological Research In Engineering

Volume 5, Issue 10, June-2018 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2018.All rights reserved. 3982

standard for today’s on-chip caches. Improvements on

replacement policies have been static for a long time for two

main reasons: the suggested solutions required significant

additional hardware, and the assumption that LRU works

sufficiently, which is the case for L1 caches only. [9] The

fact that the LRU policy has bad performance when used

with last level caches, led to the emergence of a lot of studies

that attempt other optimized solutions that may achieve a

performance as close as possible to OPT while maintaining

low hardware overhead. Qureshi et al. [5] [6] proposed anti-

thrashing policies that performs well for memory intensive

workloads and proposed a dynamic policy that adaptively

chooses either LRU or the proposed anti-thrashing policy

depending on the workload.

Other policies that combine both LRU and LFU were

proposed by Subramanian et al. in [9] and Megiddo and

Modha in [3]. In [7] Qureshi et al. proposed a policy that

takes its replacement decision in order to exploit Memory

Level Parallelism (MLP), such that lines that may cause

misses with high MLP cost are least probably evicted. Rajan

and Govindarajan [8] proposed a policy that mimics Belady’s

optimal policy [1] by producing the shepherd cache. Zebchuk

et al. [11] modified the shepherd cache so that it has lower

hardware overhead.

Recent studies also include using replacement policies to

manage shared caches in CMPs. Most of the proposed

policies are optimizations to the proposed policies for

uniprocessor. In Qureshi et al. modified their dynamic policy

so that it chooses the replacement policy for each core

individually. Kron et al. [2] proposed the notion of promotion

policies and combines it with the dynamic policy proposed in

[6] to form a policy that combines both dynamic replacement

and dynamic promotion. In [10] Xie and Loh proposed a

policy that implicitly partition the shared cache among cores

using the insertion and promotion policies.

III. CACHE REPLACEMENT POLICIES:

The below section gives the brief idea about LRU and MRU

policies usage and their consequences of using it in chip

multiprocessor systems. Quad age replacement policy is one

such less used algorithm in CMPs. The performance of

CMPs with different replacement policies is also depicted

with the graph.

Figure 3: Representation of cache miss in the CMP system

3.1 MLP-Aware replacement policies

Memory Level Parallelism (MLP) refers to the process of

serving multiple memory operations due to cache misses in

parallel. MLP reduces the number of stall cycles due to

memory accesses. Multiple cache misses may occur

concurrently because modern processors are speculative

superscalar processors with pre-fetching capabilities. [7]

In [7] Qureshi et al. proposed the idea of optimizing

replacement policies so that they exploit memory level

parallelism, these are called MLP-aware replacement

policies.

Instead of reducing the number of misses, MLP-aware

policies aim to reduce the number of memory stalls by

avoiding misses that occur in isolation. Such misses do not

exploit MLP since they will be served individually. When a

replacement decision is to be made, lines that may cause

isolated misses will be replaced with the least probability.

3.2 Pros and Cons of Least Recently Used(LRU) and Most

Recently Used (MRU) Policies:

The Least Recently Used (LRU) Policy is one of the standard

replacement policies used for multilevel caches (L1, L2 and

L3 caches). The LRU policy works sufficiently with L1

caches since they benefit the most from temporal locality

because of their direct interface with the processor. In

addition the LRU policy is perfect for the simplicity required

in the 3 design of L1 caches.

However, references to L2 caches (and last level caches in

general) lack temporal locality, since lines that are

referenced recently are kept in the L1 cache and they will not

be requested from the L2 cache again. LRU will cause these

lines to be kept in the cache until they travel all their way

from the MRU (Most Recently Used) position to the LRU

used position, and only then they will be evicted. In the

worst case these lines may never be reused during their

residence in the cache, these lines are called zero-reused

lines. Moreover, for workloads that have working sets that

are larger than the L2 cache, LRU causes thrashing.

These workloads are called memory intensive workloads.

When the LRU policy is used for such workloads, lines that

are inserted in the cache will be referenced in the future but

due to the capacity misses, they will be replaced by new lines

before being re-referenced.

Thus, LRU causes a 0 hit rate for these workloads since all

of the cache lines will be zero-reused lines. In addition to

what stated so far, the deign goal in L2 and last level caches

is to minimize the possibility of long accesses to the memory

that would be caused by a cache miss.

Besides, last level caches are of larger sizes and higher

associativity. All these factors made recent studies attempt to

find optimized replacement policies that can work better than

the LRU poor performance with last level caches.

The fact that replacement policies can be optimized to gain

more control over the cache, motivated the researchers to

extend their work to consider the problem of shared cache

management in chip multiprocessors (CMPs).

For all the proposed replacement policies, there are multiple

design issues that must be taken in consideration. First, the

additional required hardware should be as minimal as

possible. Second, the policy should work efficiently with

different types of workloads. It must not perform worse than

LRU for a wide range of workloads. Finally, it should

International Journal For Technological Research In Engineering

Volume 5, Issue 10, June-2018 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2018.All rights reserved. 3983

produce minimum changes to the existing cache design.

Figure 4: Flow diagram of LRU

3.3 Quad age Replacement Policy:

Quad age replacement works based on the ages assigned to a

cache-line. Any cache-line can have age between 0 and 3, 0

being the least recently used and 3 being the most recently

used. A cache-line is installed at an age of 1 to avoid

thrashing and a hit promotes the cache-line age to 3. This is

an independent piece of logic implemented in the cache. The

performance of quad-age policy can be known by running the

system with increasing the number of rows of core to 1 in

every run. All these are depicted in the below study.

IV. EXPERIMENTAL RESULTS

This section gives the brief idea and performance of CMP

system with three different cache replacement policies

namely LRU, MRU and quad -age replacement.

Case 1:

Size of cache = 1 MB

Associativity of cache = 16 way

Number of sets = 4

Address stride = 64

Cache-line width = 256

Case 2:

Size of cache = 1 MB

Associativity of cache = 16 way

Number of sets = 4

Address stride = 128

Cache-line width = 256

Case 3:

Size of cache = 1 MB

Associativity of cache = 16 way

Number of sets = 4

Address stride = 64

Cache-line width = 512

Case 4:

Size of cache = 1 MB

Associativity of cache = 16 way

Number of sets = 4

Address stride = 128

Cache-line width = 512

All the above mentioned cases are run one at a time for

10000 Read requests.

Run 1: 10,000 Requests with two cores and a memory in one

row

Run 2: 10,000 Requests with two cores and a memory in one

row and two cores with a memory in second row

Run 3: 10,000 Requests with two cores and a memory in one

row, two cores with a memory in second row and one core

with memory in the third row.

Figure 5: Performance graph with different replacement

policies.

V. CONCLUSION

It’s now concluded that LRU produces comparatively good

result for first case. MRU for third and Quad age for the

second. Overall, it’s now clear that the cache replacement

policies are to be chosen as per the requirements of number

of cores.

REFERENCES

[1] Belady L. (1966). A Study of Replacement

Algorithms for a Virtual Storage Computer. IBM

Systems Journal, vol.5, pp. 78-101.

[2] Kron J., Prumo B. & Loh G. (2008). Double-DIP:

Augmenting DIP with Adaptive Promotion Policies

to Manage Shared L2 Caches. In the 2nd Workshop

on CMP Memory Systems and Interconnects (CMP-

MSI), Georgia Institute of Technology.

[3] Megiddo, N. & Modha, D.S. (2004). Outperforming

LRU with an Adaptive Replacement Cache

Algorithm. Proceedings of the USENIX Annual

Technical Conference 2005 on USENIX Annual

Technical Conference.

[4] Qureshi M., Jaleel A., Hasenplaugh W., Sebot J., Jr.

S. &Emer J. (2008). Adaptive Insertion Policies for

Managing Shared Caches. Proceedings of the 17th

international conference on Parallel architectures

and compilation techniques (PACt’08), pp. 208-

219.

[5] Qureshi M., Jaleel A., Patt Y., Jr. S. &Emer J.

(2008). Set-Dueling-Controlled Adaptive Insertion

International Journal For Technological Research In Engineering

Volume 5, Issue 10, June-2018 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2018.All rights reserved. 3984

for High-Performance Caching. IEEE Micro, pp. 91-

98.

[6] Qureshi M., Jaleel A., Patt Y., Jr. S. &Emer J.

(2007). Adaptive Insertion Policies for High

Performance Caching. Proceedings of the 34th

annual international symposium on Computer

architecture (ISCA’07), pp. 381-391.

[7] Qureshi M., Lynch D., Mutlu O. &Patt Y. (2006). A

Case for MLP-Aware Cache Replacement.

Proceedings of the 33th annual international

symposium on Computer architecture (ISCA’06).

pp. 167-178.

[8] Rajan K. &Ramaswamy G. (2007). Emulating

Optimal Replacement with a Shepherd Cache. In

Proceedings of the 40th International Symposium on

Microarchitecture (Micro’07), pp. 445-454.

[9] Subramanian R., Smaragdakis Y. & Loh G. (2006).

Adaptive Caches: Effective Shaping of Cache

Behavior to Workloads. Proceedings of the 39th

Annual IEEE/ACM International Symposium on

Microarchitecture (Micro’06), pp. 385-396. [10] Xie

Y. & Loh G. (2009). PIPP: Promotion/Insertion

Pseudo-Partitioning of Multi-Core Shared Caches.

Proceedings of the 36th Annual International

Symposium on Computer Architecture (ISCA’09),

pp. 174-183.

[10] EJO Neil, PEO Neil, G Weikum. The LRU-K page

replacement algorithm for database disk buffering.

[C] ACM SIGMOD Int.lConf on Management of

Data, Washington, DC, 1993

