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ABSTRACT: Computers usually store data in terms of 

hierarchy of memoriesranging from the most expensive fast 

memories to low-cost andslower memories. It is very much 

prevailing to store data in fastmemories to try to avert 

requests to the slowerones and the same is referred to as 

caching. But whenthe fastest memory becomes adequate 

enough and a new data must be interpolated, some other 

data has to be recovered. There are various methods to 

decide which data to remove and these methods are 

oftencalledcache replacement algorithms. A miss in the last 

level caches causes hundreds of stall cycles due to the need 

for a memory access. Therefore, last level caches are 

designed to reduce the possibility for cache misses. Since 

last level caches absence of temporal locality, the Least 

Recently Used policy leads to bad performance for them. 

Hence, many replacement policies were suggested to 

improve the miss rate for last level caches while 

maintaining low hardware aerial and minimum design 

changes. Various algorithms have been studied andtheir 

performance often depends on the workload.This paper 

provides an overview of some much studied cache 

algorithms – Least recently used (LRU), Most recently used 

(MRU) and Quad-age replacement policy in a coherent 

chip multiprocessor system. 

Keywords: LRU, MRU, CMP, Quad-age, Request to 

response latency, Hit rate. 

 

I. INTRODUCTION 

Caches play a critical role in the reduction of delay of 

memory accesses by giving a temporary fast-access storage 

unit for the data that is being accessed by the CPU. On a 

cache miss, data is fetched from the memory and placed in its 

analogous locale in the cache. A productive cache 

replacement policy can naturally reduce the cache miss rate 

and thus reducing the risk of a penalty of hundreds of cycles 

expenditure due to memory accesses.The concept of cache is 

to store data from a slow memory in a faster memory. This 

isdone in order to minimize the number of requeststo the 

slower memory and hence resulting in the reduction of 

memory accesslatency. Cache is used in various applications 

such as, the harddisks, web servers, databases and CPUs to 

name afew.Computers contain different memories which 

form a hierarchy (as shown in Figure 1) with respect to 

speed, cost andcapacity. A classic CPU today contains at 

least 3cache blocks, which are called L1, L2 and L3. 

Theseare the fastest memories. The Random Access Memory 

is slower than the CPU cache but faster than anyHard Disk 

Drive. An overview of access times in computer hardware is 

shown in Table 1. As can be seenfrom this overview, it is  

 

more than a million timesfaster to retrieve data from the L1 

cache than froma hard disk. It is therefore useful to cache 

frequentlyused data. 

 
Figure 1: Representation of Multilevel cache hierarchy 

 
Figure 2: Representation of memory hierarchy 

 
Table 1: Read access latency of computer hardware 

 

II. LITERATURE SURVEY 

Belady in [1] proposed the optimal replacement policy 

(OPT) which provided an upper limit on the hit rate that can 

be ever achieved. OPT states that “the optimal candidate for 

replacement is the one that is accessed farthest in the future”. 

This policy cannot be implemented since it requires knowing 

which lines will be accessed in the future and when they are 

going to be accessed. The traditional replacement policies 

well known in the literature includes: LRU, LFU, random 

replacement and FIFO, with the LRU policy being the 
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standard for today’s on-chip caches. Improvements on 

replacement policies have been static for a long time for two 

main reasons: the suggested solutions required significant 

additional hardware, and the assumption that LRU works 

sufficiently, which is the case for L1 caches only. [9] The 

fact that the LRU policy has bad performance when used 

with last level caches, led to the emergence of a lot of studies 

that attempt other optimized solutions that may achieve a 

performance as close as possible to OPT while maintaining 

low hardware overhead. Qureshi et al. [5] [6] proposed anti-

thrashing policies that performs well for memory intensive 

workloads and proposed a dynamic policy that adaptively 

chooses either LRU or the proposed anti-thrashing policy 

depending on the workload. 

Other policies that combine both LRU and LFU were 

proposed by Subramanian et al. in [9] and Megiddo and 

Modha in [3]. In [7] Qureshi et al. proposed a policy that 

takes its replacement decision in order to exploit Memory 

Level Parallelism (MLP), such that lines that may cause 

misses with high MLP cost are least probably evicted. Rajan 

and Govindarajan [8] proposed a policy that mimics Belady’s 

optimal policy [1] by producing the shepherd cache. Zebchuk 

et al. [11] modified the shepherd cache so that it has lower 

hardware overhead. 

Recent studies also include using replacement policies to 

manage shared caches in CMPs. Most of the proposed 

policies are optimizations to the proposed policies for 

uniprocessor. In Qureshi et al. modified their dynamic policy 

so that it chooses the replacement policy for each core 

individually. Kron et al. [2] proposed the notion of promotion 

policies and combines it with the dynamic policy proposed in 

[6] to form a policy that combines both dynamic replacement 

and dynamic promotion. In [10] Xie and Loh proposed a 

policy that implicitly partition the shared cache among cores 

using the insertion and promotion policies. 

 

III. CACHE REPLACEMENT POLICIES: 

The below section gives the brief idea about LRU and MRU 

policies usage and their consequences of using it in chip 

multiprocessor systems. Quad age replacement policy is one 

such less used algorithm in CMPs. The performance of 

CMPs with different replacement policies is also depicted 

with the graph. 

 
Figure 3: Representation of cache miss in the CMP system 

 

3.1 MLP-Aware replacement policies  

 

Memory Level Parallelism (MLP) refers to the process of 

serving multiple memory operations due to cache misses in 

parallel. MLP reduces the number of stall cycles due to 

memory accesses. Multiple cache misses may occur 

concurrently because modern processors are speculative 

superscalar processors with pre-fetching capabilities. [7]  

In [7] Qureshi et al. proposed the idea of optimizing 

replacement policies so that they exploit memory level 

parallelism, these are called MLP-aware replacement 

policies. 

Instead of reducing the number of misses, MLP-aware 

policies aim to reduce the number of memory stalls by 

avoiding misses that occur in isolation. Such misses do not 

exploit MLP since they will be served individually. When a 

replacement decision is to be made, lines that may cause 

isolated misses will be replaced with the least probability. 

 

 

3.2 Pros and Cons of Least Recently Used(LRU) and Most 

Recently Used (MRU) Policies: 

The Least Recently Used (LRU) Policy is one of the standard 

replacement policies used for multilevel caches (L1, L2 and 

L3 caches). The LRU policy works sufficiently with L1 

caches since they benefit the most from temporal locality 

because of their direct interface with the processor. In 

addition the LRU policy is perfect for the simplicity required 

in the 3 design of L1 caches.  

However, references to L2 caches (and last level caches in 

general) lack temporal locality, since lines that are 

referenced recently are kept in the L1 cache and they will not 

be requested from the L2 cache again. LRU will cause these 

lines to be kept in the cache until they travel all their way 

from the MRU (Most Recently Used) position to the LRU 

used position, and only then they will be evicted. In the 

worst case these lines may never be reused during their 

residence in the cache, these lines are called zero-reused 

lines. Moreover, for workloads that have working sets that 

are larger than the L2 cache, LRU causes thrashing.  

These workloads are called memory intensive workloads. 

When the LRU policy is used for such workloads, lines that 

are inserted in the cache will be referenced in the future but 

due to the capacity misses, they will be replaced by new lines 

before being re-referenced.  

Thus, LRU causes a 0 hit rate for these workloads since all 

of the cache lines will be zero-reused lines. In addition to 

what stated so far, the deign goal in L2 and last level caches 

is to minimize the possibility of long accesses to the memory 

that would be caused by a cache miss.  

Besides, last level caches are of larger sizes and higher 

associativity. All these factors made recent studies attempt to 

find optimized replacement policies that can work better than 

the LRU poor performance with last level caches.  

The fact that replacement policies can be optimized to gain 

more control over the cache, motivated the researchers to 

extend their work to consider the problem of shared cache 

management in chip multiprocessors (CMPs). 

For all the proposed replacement policies, there are multiple 

design issues that must be taken in consideration. First, the 

additional required hardware should be as minimal as 

possible. Second, the policy should work efficiently with 

different types of workloads. It must not perform worse than 

LRU for a wide range of workloads. Finally, it should 
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produce minimum changes to the existing cache design. 

 
Figure 4: Flow diagram of LRU 

 

3.3 Quad age Replacement Policy: 

Quad age replacement works based on the ages assigned to a 

cache-line. Any cache-line can have age between 0 and 3, 0 

being the least recently used and 3 being the most recently 

used. A cache-line is installed at an age of 1 to avoid 

thrashing and a hit promotes the cache-line age to 3. This is 

an independent piece of logic implemented in the cache. The 

performance of quad-age policy can be known by running the 

system with increasing the number of rows of core to 1 in 

every run. All these are depicted in the below study. 

 

IV. EXPERIMENTAL RESULTS 

This section gives the brief idea and performance of CMP 

system with three different cache replacement policies 

namely LRU, MRU and quad -age replacement. 

Case 1: 

Size of cache = 1 MB 

Associativity of cache = 16 way 

Number of sets = 4 

Address stride = 64 

Cache-line width = 256 

 

Case 2: 

Size of cache = 1 MB 

Associativity of cache = 16 way 

Number of sets = 4 

Address stride = 128 

Cache-line width = 256 

 

Case 3: 

Size of cache = 1 MB 

Associativity of cache = 16 way 

Number of sets = 4 

Address stride = 64 

Cache-line width = 512 

 

Case 4: 

Size of cache = 1 MB 

Associativity of cache = 16 way 

Number of sets = 4 

Address stride = 128 

Cache-line width = 512 

 

All the above mentioned cases are run one at a time for 

10000 Read requests. 

Run 1: 10,000 Requests with two cores and a memory in one 

row 

Run 2: 10,000 Requests with two cores and a memory in one 

row and two cores with a memory in second row 

Run 3: 10,000 Requests with two cores and a memory in one 

row, two cores with a memory in second row and one core 

with memory in the third row. 

 

 
Figure 5: Performance graph with different replacement 

policies. 
 

V. CONCLUSION 

It’s now concluded that LRU produces comparatively good 

result for first case. MRU for third and Quad age for the 

second. Overall, it’s now clear that the cache replacement 

policies are to be chosen as per the requirements of number 

of cores. 
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