VIDEO STABILIZATION: AN IN-DEPTH SURVEY

Nitin Kumar¹, Neelabh Gupta², Yogesh Tiwari³
¹,²M.Tech Scholar, ³Assistant Professor HOD(ECE),
²³Digital Communication, CGI Bharatpur Rajasthan.

Abstract: Video stabilization is a video processing technique to enhance the quality of input video by removing the undesired camera motions. There are various approaches used for stabilizing the captured videos. Most of the existing methods are either very complex or do not perform well for slow and smooth motion of hand held mobile videos. Hence it is desired to synthesis a new stabilized video sequence, by removing the undesired motion between the successive frames of the hand held mobile video. Various 2D and 3D motion models used for the motion estimation and stabilization. The paper presents the review of the concept video stabilization, its approaches and applications. Keywords: Video Stabilization, digital video,

I. INTRODUCTION

Due to advancement in the technology, it is now possible to take videos from cheaper multimedia devices like mobile phones. But, due to handshaking of user, the cameras on moving things (global motion) or vibration produced due to moving objects in the scene (local motion), the captured video becomes unstable.

Video stabilization is an algorithm used to improve the video quality by removing unwanted camera shakes and jitters. The removal of unwanted vibrations in a video sequence induced by camera motion is an essential part of video acquisition in industry, military and consumer applications.

The video stabilization can either be achieved by hardware or post image processing approach. Hardware approach can be further classified as mechanical or optical stabilization. Mechanical stabilizer uses gyroscopic sensor to stabilize entire camera. Optical stabilization activates an optical system to adjust camera motion sensors [1]. These techniques are not suited for small camera modules embedded in mobile phones due to lack of compactness and also due to the associated cost. In the image post processing algorithm, there are typically three major stages constituting a video stabilization process viz. camera motion estimation, motion smoothing and motion compensation. There are various algorithms proposed for stabilizing videos taken under different environment from different camera systems by modifying these three stages. Image post processing techniques are favorable over mechanical or optical approaches since modern VLSI techniques will allow a more compact camera design.

To stabilize the video the approaches proposed can be classified as mechanical, optical and digital video stabilization techniques. [1] So, instead of holding camera in hand, mechanical stabilization proposes putting camera on some mechanical devices. This is probably simplest, cheapest and obvious method. The mechanical devices on which camera are to be put has included tripod, steadicam. But, the mechanical device mostly used is gyroscopic sensor. Due to handshaking of user, the light rays which are supposed to fall on image sensor, actually falls somewhere else. So, optical image stabilization technique ensures that the light rays fall properly on image sensor even if handshaking of user or camera movements takes place [2].

But, digital video stabilization technique processes video, frame by frame, post whole video is taken. Also, as mechanical and optical stabilization technique require some hardware it obviously needs some space to accommodate that hardware and is unsuitable in small devices like mobile phones. Also, optical stabilization is much expensive method compared to digital technique. The digital stabilization technique considers motion estimation and motion smoothing. Motion estimation compares the current frame with previous frame to find best matching block and calculates motion vectors for that block and motion smoothing removes motion vectors due to unintentional. Video stabilization is an algorithm used to improve the video quality by removing unwanted camera shakes and jitters. The removal of unwanted vibrations in a video sequence induced by camera motion is an essential part of video acquisition in industry, military and consumer applications.

The video stabilization can either be achieved by hardware or post image processing approach. Hardware approach can be further classified as mechanical or optical stabilization. Mechanical stabilizer uses gyroscopic sensor to stabilize entire camera. Optical stabilization activates an optical system to adjust camera motion sensors [1]. These techniques are not suited for small camera modules embedded in mobile phones due to lack of compactness and also due to the associated cost. In the image post processing algorithm, there are typically three major stages constituting a video stabilization process viz. camera motion estimation, motion smoothing and motion compensation. There are various algorithms proposed for stabilizing videos taken under different environment from different camera systems by modifying these three stages. Image post processing techniques are favorable over mechanical or optical approaches since modern VLSI techniques will allow a more compact camera design.

II. BASIC CONCEPT OF VIDEO STABILIZATION

The goal of any video stabilization algorithm is to create a new video sequences where the motion between the frames has effectively removed. In general any digital video stabilization algorithm consists of three stages Motion Estimation (ME), Motion Smoother (MS) and Motion Compensation (MC) as in Fig. 1 ME estimate the motion between the frames, and sends the motion parameters to MS, which removes the unwanted camera motions. MC then
computes the global transformation necessary to stabilize the current frame.

III. VIDEO STABILIZATION APPROACHES

The Video stabilization can either be achieved by hardware or post image processing approaches which are described as below:

A. Hardware Approach

1. MECHANICAL STABILIZATION

In the first category we use hardware motion sensors or mechanical devices such as gyros, accelerometers and mechanical dampers. Thus instead of holding camera in hand, mechanical stabilizers such as tripod, Steadicam are used which reduce platform vibration and in turn provide stabilization. [1]

2. OPTICAL IMAGE STABILIZATION

In optical image stabilization(OIS) CCD/CMOS sensors, microcontrollers, Hall sensors are used. Optical stabilization is much expensive than digital technique but its computational complexity is low as it is concerned with light rays falling on the camera’s lens.[1] In these approaches detection and correction steps are applied before acquisition so as to avoid post processing computation.

B. Post Image Processing Approach

1. OBJECT TRACKING VIDEO STABILIZATION

The second category is of object tracking [2, 3]where objects such as person, vehicle, and road signs are the targets to track. This is also known as video tracking. The objective of video tracking is to associate target objects in consecutive video frames.

2. DIGITAL VIDEO STABILIZATION

This is the estimation based approach. In this category, a video stabilization pipeline usually comprises three stages: motion estimation, motion smoothing, and motion compensation [5].

IV. APPLICATIONS OF VIDEO STABILIZATION

There is a vast list of applications of video stabilization, ranging from cell phones to critical defense equipment’s. All three defense services can use this algorithm to stabilize the video. Army can use it in tank systems to stabilize against irregular, uneven path and terrain. Air force can use it to stabilize against atmospheric turbulences & engine vibrations. Navy can use it in naval ships to stabilize against high amplitude, low frequency waves and particularly low rate is taken care by our method’s ability to provide sub-pixel motion compensation. Due to its low computational cost, it can be easily implemented in consumer electronics like handheld camera and video recorders, mobiles having camera for recording videos. Hand held wireless video communication equipments also fall in the domain of presented algorithm.

V. CONCLUSION

This paper reviews about the concept of the Video Stabilization ,its Basic System , its structure and components and also about the applications of the Video Stabilization.

REFERENCES


