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Abstract: Distributed deep learning systems place precise 

requirement on the communication bandwidth during its 

model training with wide range of input data processing 

and training parameter exchange. Usually the 

communication take place in between cluster of different 

worker nodes for training data and master parameter node 

servers for maintaining a global trained model. For 

immediate convergence the worker nodes and parameter 

servers(PS) or master node have to frequently exchange 

huge number of parameters to quickly transmit updates and 

minimize previous parameters. Hence programming model 

based on distributed memory Message Passing Interface 

(MPI) becomes limited to satisfy high bandwidth, low 

latency, small size but frequent data exchange requirement. 

Demand on the bandwidth rate gets even higher with the 

inclusion of dedicated Graphical Processing Units (GPU’s) 

in computing process. Here in this paper we have studied 

different programming framework suitable for Distributed 

Deep Learning computation, powered by High Performance 

Computing (HPC) environment and also aligned with 

shared memory programming approaches. Recent work on 

unsupervised feature learning and deep learning has shown 

that being able to train a large models can dramatically 

improve the performance. In this paper, we consider 

different platforms that are involved in implementing high 

scale distributed network training and parameter sharing. 

Also virtual memory model based DNN algorithms has been 

discussed. 

Keywords: Deep neural network, Distributed deep learning, 

High performance computing, distributed computing, 
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I.    INTRODUCTION 

High Performance Computing (HPC) is crucial in enabling, 

technology for the advancement of science and engineering. 

It supports multi-scale simulations and experiments that leads 

to breakthroughs discoveries in an ever-broadening range of 

scientific fields. 

In modern Artificial Intelligence (AI) research, Deep Neural 

Network (DNN) is an approach, introduced to improve 

machine learning performance even with complicated input 

data features. The power of DNN has been verified through 

many applications, especially in visual perception where it 

showed even better accuracy than human vision system. The 

success of deep learning in the areas of voice recognition and 

object recognition is realized because of the availability of 

massive training data sets, distributed - parallel high 

performance computing (HPC) architectures and availability  

of accelerated software framework for the same domain.  

 

General purpose graphic processing unit (GPGPUs) has 

played an important role in HPC architecture evolution and 

eventually, acceleration of AI Innovation. Even though it is 

possible to build more accurate learning models with more 

training data and large Deep Neural Network models, the 

computation requirement increases exponentially with the 

multiplication of model sizes & training data volumes [2] 

[4]. 

The success of Deep Learning technology is an effect of 

three major factors, (i) Evolution of accelerators architecture 

in the form of GPGPUs [2], (ii) availability of large-scale 

real time datasets and (iii) invention of various Deep 

Learning algorithms like back-propagation [2]. Training a 

Deep Neural Networks (DNNs) is compute intensive and 

time consuming process. It can take many days or weeks, 

even on the powerful hardware with GPUs. In pursuit of fast 

training performance, researchers have resorted to massive 

parallel GPU devices to conduct network training on a single 

node over the past few years [4][5]. 

In deep learning training, it has been observed that increasing 

the size of deep learning models in terms of number of 

training examples and the number of model parameters can 

drastically improve classification accuracy of the particular 

model with respect to datasets and previous results [1]. To 

achieve that goal, one prominent approach is to train the 

model on large distributed memory system like HPC 

clusters. There 

are many distributed DL framework [1, 2, 3]. In distributed 

DNN training, each worker share parameters located on 

parameter server (PS). After minute modification in 

gradients, each worker sends updated gradients to PS, 

receives the updated parameters from parameter server 

repeatedly until the training process is completed. This 

communication pattern generates a large amount of network 

traffic. The larger network models are, more communication 

between PS and workers per iteration. This causes massive 

communication overhead in the whole process. This 

overhead is a major performance bottleneck in distributed 

Deep Neural Network training. Therefore, performing 

efficient parameter sharing has become a worthy goal to 

chase in distributed DL. 

There are two main strategies for parallelizing distributed 

training method, namely data parallelism and model 

parallelism [3] [4]. While model parallelism can work well in 

practice, data parallelism is the preferred approach for 

distributed DNN training. It has been the focus of more 

research, because it can be easily implemented and has good 

performance record. Data parallelism uses multiple replicas 

of a model, and distributes the training data across multiple 
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workers. Thereafter DL workers calculate gradients and send 

them to PS for model update [4]. 

There are two different approaches for parameter updating of 

distributed DNN training: Synchronous and Asynchronous. 

With synchronous method, a parameter server aggregates 

gradients of all workers then updates the model parameters at 

the end of training iteration. With asynchronous method, the 

parameter server immediately updates the model parameters 

whenever gradient arrives from a worker, without waiting to 

aggregate them collectively. The asynchronous method is 

advantageous because it can be performed faster without 

sacrificing accuracy compared to the synchronous method [1] 

[5]. This paper focuses on the study of parallelization 

techniques based on asynchronous fashioned data parallelism 

approaches. 

 
Figure - 1.1 Asynchronous distributed stochastic gradient 

descent. 

Asynchronous distributed stochastic gradient descent model 

with some model replicas and common parameter server are 

explained in Figure-1.1. Data shared between the model 

replicas and updates, relayed to parameter server throughout 

the process asynchronously. 

 

II.    RELATED WORK 

Because of high memory footprint, to achieve better accuracy 

during training, considering very large-scale DNN model 

might be impossible to handle by a single computing node. 

Many ongoing research work are exploring distributed 

processing platforms such as High Performance Cluster for 

DNN training [13]. 

In Deep Learning model training Asynchronous SGD 

(ASGD) is one of the most widely used asynchronous 

distributed variants of Stochastic Gradient Decent algorithm. 

The ASGD has been proposed to address the disadvantage of 

Synchronous SGD where, workers have to wait until the 

slowest worker finishes calculating gradient [11, 12]. 

However, result of ASGD does not always guarantee a linear 

speedup of performance with increasing number of workers. 

Asynchronous SGD is limited in improving the actual 

training performance due to the delayed gradient problem. 

ASGD uses a parameter server to share parameters 

asynchronously in between workers. The Elastic Averaging 

Stochastic Gradient Decent (EASGD) method was proposed 

to maximize the benefits of DNN exploration. It allows each 

deep learning worker to maintain its own model replica as in 

any other Asynchronous SGD methods. The distributed 

training is performed by updating the global model with the 

moving average dynamically. In this method, unlike the 

Asynchronous SGD, the parameter server and the workers 

exchange the weight parameter learned by them and 

calculate the difference between the two weights vector 

concurrently, hence updating their own weight parameters by 

adding the scaled difference to it [2]. So far this method 

performs better than the Downpour SGD by decreasing the 

delay time of global weight updating between the parameter 

server and local working nodes. 

Among the distributed deep learning optimization schemes 

based on the stochastic gradient descent (SGD), the Hogwild 

[16] showed that deep learning processes with same weight 

and different data set can train Deep Neural Network through 

asynchronous SGD model on shared memory architecture 

without locking. In addition, Dogwild framework an 

extension of the Hogwild framework, performs Deep Neural 

Network training by exchanging weights and gradients 

asynchronously between the master and worker node 

processes. The master process updates the global weights 

whenever it receives gradients from the slave processes 

concurrently, and shares the updated weights with all the 

slave processes at once. Each slave process updates the most 

recently received weights with the gradients which is 

explored by itself, and sends the gradients to the master 

[2][12]. Every time in each iteration worker node updates its 

parameter with master node or parameter server. 

 

2.1 Parallel Programming: 

In this section we explore the basics of parallel programming 

techniques. To implement neural network in distributed 

fashion, understanding background of parallel programming 

is a pre-requisite. Parallel Programming is a technique to 

implement parallel algorithms on computers depending on 

the target architecture to exploit highest compute capability 

of the architecture available. They may range from simple 

threaded implementations to OpenMP on single machines. 

Accelerators or hardware like FPGAs are usually 

programmed with special languages such as CUDA, OpenCL 

etc. Yet, the details are often hidden behind library that 

implement the optimized programming primitives on these 

platforms. On machines with multiple node and distributed 

memory, one can either use simple communication 

mechanisms such as TCP/IP or Remote Direct Memory 

Access (RDMA) for internode communication. One can also 

use more convenient libraries such as the Message Passing 

Interface (MPI) [14]. 

2.2 Parallel Computing: 

In general parallel computing is a wide concept and refers to 

the process of computation where multiple calculations are 

carried out simultaneously with help of certain tools, 

technologies and hardware. In parallel computing large 

number of problems can often be divided into smaller sub 

problems which can then be solved simultaneously with help 

of independent compute component. There are several 
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different types of parallel computing techniques such as 

instruction-level, bit-level, data, and task parallelism. 

Parallelism has long been employed in high performance 

computing (HPC), but it's gaining huge interest due to the 

physical constraints of building more advance processor due 

associated limitation of frequency scaling and power 

dissipation. Power consumption by computer system is a 

major concern; therefore parallel computing has become the 

dominant paradigm in computer architecture, mainly in the 

form of multi-core processors and new generation’s 

commodity hardware components [19]. 

2.3 DistBelief Model: 

The DistBelief framework proposed Downpour SGD, which 

supports a large number of model replicas, as a technique of 

asynchronous SGD. Within DistBelief, the developers 

proposed Sandblaster batch optimization method [3], 

supporting various distributed models. Each DNN training 

worker in an asynchronous SGD can learn weights at 

different speeds without synchronization overhead therefore 

maximize the utilization of computing and network 

resources. Specifically, the resources of a heterogeneous 

HPC system consisting of CPUs and GPUs of heterogeneous 

specifications (clock rate, the number of cores, etc.) can be 

utilized effectively to take advantage of the maximum 

computational performance [4]. 

So far the Distributed deep learning platforms such as 

Petuum [19] and Microsoft Cognitive Toolkit (CNTK) [18] 

uses distributed key-value repositories developed specifically 

for parameter servers [4][10]. Under this environment, 

parameter server manages asynchronous parameter updates 

among deep learning workers and provides the advantage of 

supporting an elastic coherence model, flexible scalability 

and fault tolerance. Virtual shared memory framework can 

accelerate the parameter sharing in distributed deep learning 

platform therefore can supports asynchronous SGD through 

experiments [7]. 

2.4 SMB (Soft Memory Box): 

Soft Memory Box enables sharing the memory of remote 

node among distributed processes on the computing 

nodes so as to improve communication performance via 

parameter sharing. The SMB consists of an SMB Server and 

SMB client components: SMB Library, SMB Device Driver, 

and Infiniband Communication Layer module. The SMB 

Server run on memory node and provides shared memory to 

distributed processes. A SMB client component runs on 

computing node. SMB Library, which is a user-level static 

library, provides application programming interfaces for 

distributed application processes and statically linked with 

the executable during compile time. SMB Device Driver and 

Infiniband Communication Layer (ICL) module are kernel-

level modules and is loaded before the execution of 

application processes. The SMB Server make available a 

portion of physical memory of the memory node as shared 

memory buffer over the high speed RDMA enabled network 

by pooling it in advance, as well as on-demand by the client 

process [1,4,5]. 

2.5 Caffe: 

Caffe is designed by Berkeley AI Research (BAIR) and the 

Berkeley Vision and Learning Center (BVLC) at UC 

Berkeley to provide expressive architecture and GPU support 

for deep learning applications [11]. It is based on C++, 

CUDA and can be operated through command line and 

Python. It runs on CUDA based devices, mobile platforms 

and additionally been extended for use in the Apache 

Hadoop ecosystem with Spark. Caffe employs a mini-batch-

based stochastic gradient for training optimization: mini-

batch Standard Gradient Descent (SGD) can perform training 

on independent data samples and then update the network 

parameters at the end of every N training samples [15]. 

2.6 SHMCAFFE: 

ShmCaffe is a distributed deep-learning platform that uses 

remote shared memory based on SMB for parameter sharing, 

by extending BVLC Caffe (version 1.0.0). ShmCaffe does 

not only implements ASGD, but a hybrid method that 

combines Inter-node Asynchronous SGD and Intra-node 

Synchronous SGD. ShmCaffe memory model runs on 

distributed deep learning clusters with multiple nodes and 

exchanges initialization messages between the distributed 

processes using Message Passing Interface(MPI). In order to 

exchange parameters between the distributed Inter-node 

workers, the asynchronous EASGD algorithm is modified to 

use remote shared memory buffer [2]. 

 

III. LARGE SCALE SHARED MEMORY ON HPC 

PLATFORM 

In this section we inspect various programming paradigms, 

libraries, technologies already available and that may 

become strong alternative of SMB, and henceforth can 

support distributed deep learning algorithms like EASGD on 

HPC Clusters. 

PGAS: 

Partitioned global address space (PGAS) languages offers a 

programming abstractions similar to shared memory model, 

but with the control over data layout that is critical to high 

performance and scalability. Most common PGAS based 

languages include Unified Parallel C, Titanium (a scientific 

computing dialect of Java) and Co-Array FORTRAN (CAF). 

Under PGAS, compilers uses a source-to-source translation 

strategy that converts parallel programming constructs to C 

with calls to communication layer like GASNet or MPI [14]. 

 
Fig. 3.1 PGAS Memory Model 

 

A. Programming Languages with PGAS 

3.1 UPC: 

UPC is an extension of ISO C language that implements 

PGAS Programming model, defined by a consortium and 

supported by multiple proprietary and open source 
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compilers. Unified Parallel C exposes global shared address 

space to the computing instances which is logically divided 

among many threads and each thread is associated or shows 

affinity to a part of the shared memory. UPC also provides a 

private memory space per thread for local computations, as 

shown in PGAS memory model. Therefore each thread in the 

compute node has access to both its private memory and to 

the global shared space. In UPC, memory specification 

combines the advantages of both the shared and distributed 

memory programming models. Global shared memory space 

facilitates the development of parallel codes, where multiple 

parallel threads can access global shared memory space 

through high speed read/write protocol. 

UPC is designed to perform best on large-scale parallel 

machines like HPC clusters. So far it combines the 

programmability advantages of the shared memory 

programming along with control over data layout without 

sacrificing performance aspect of MPI [13, 14]. 

 
Fig. 3.2 : Unified Parallel C architecture  

 

3.2 UPC++: 

Unified Parallel C++ offer an easy on-ramp to PGAS 

programming through interoperability with other existing 

parallel programming systems. UPC++ comprise of 

following features such as Remote memory access (RMA), 

Remote Procedure Call (RPC), View based Serialization, 

Shared objects. It Expose useful asynchronous parallel 

programming expressions which are unavailable in 

traditional Single Program Multiple Data (SPMD) model 

such as remote function invocation, and continuation based 

operation completion for supporting complex scientific 

applications. Unified Parallel C++ follows object oriented 

programming model with PGAS memory model. Unified 

Parallel C++ covers so many features in parallel computing 

environment and it includes useful parallel programming key 

functions unavailable in UPC, for example this programming 

platform provides an asynchronous remote function 

invocation and multidimensional arrays also it is used to 

support complex scientific applications [20]. 

 

GASNet: 

GASNet stands for "Global Address Space Networking". It is 

a language-independent networking middleware layer that 

provides, high-performance communication primitives 

including Remote Memory Access and Active Messages. It 

has been used to avail underlying networking mechanism for 

the programming models and libraries such as UPC, UPC++, 

Co-Array Fortran, Chapel, and Legion. 

 

The design of GASNet middleware is partitioned into two 

layers to ease the porting experience without sacrificing 

performance. The lower layer is a narrow but very generic 

interface implementation, called GASNet core API. It is 

heavily based on Active Messages, and it is implemented 

directly on top of each individual network communication 

layer. The top level is a wider and more expressive interface 

which is called the GASNet extended API and provides high 

level operations such as remote memory access and various 

collective operations [14]. 

 
Fig. 3.3: GASNet Communication System 

 

IV.   CONCLUSION 

In this paper we have studied various distributed deep 

learning platform implementation on high performance 

computing system. This includes different virtual shared 

memory Framework, Libraries and Network Protocol. We 

also discussed parameter sharing approach with ASGD 

algorithm between master and worker nodes. Through this 

study, it is clear that to realize Distributed Deep Learning on 

HPC Platform, the De Facto programming framework like 

MPI may not suffice. To exchange frequent messages, which 

are a primary requirement of DDL, we require a software 

eco-system and programming framework like UPC. In this 

context PGAS programming model and associated 

implementation seems to have promising prospects. We also 

studied SMB Framework, which is a significant development 

towards DDL. In future we wish to do more detail study of 

PGAS-UPC and SMB to perform a comparative study of 

their prominent features. Networking middleware like 

GASNet is going to be another candidate of our future study. 

SMB Framework implements high performance network 

communication primitives over RDMA, whereas similar 

communication primitives like RMA & Active Messages 

(AM) has already been implemented in GASNet. A detail 

study into these aspects of SMB and GASNet would reveal 

more insight into how frequent parameter sharing can be 

achieved to make DDL possible. When computing is moving 

to exascale era, there is revived interest towards PGAS-UPC 

like global address space programming techniques. In our 

future work, we wish to see how the same techniques opens 

up new direction in Distributed Deep Learning 

implementation. 
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