
International Journal For Technological Research In Engineering

Volume 6, Issue 7, March-2019 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2019.All rights reserved. 5173

INTROSPECTION INTO DISTRIBUTED DEEP LEARNING ON HPC

PLATFORM

Shyamji A. Pandey
1
, Dr. Suvanam Sasidhar Babu

2
, Gardas Naresh Kumar

3
, Samrit Kumar Maity

4

1,2
Dept. of Computer Engineering Sandip University, Nashik, India,

4
HPC Tech,

3,4
CDAC ACTS, Pune, India

Abstract: Distributed deep learning systems place precise

requirement on the communication bandwidth during its

model training with wide range of input data processing

and training parameter exchange. Usually the

communication take place in between cluster of different

worker nodes for training data and master parameter node

servers for maintaining a global trained model. For

immediate convergence the worker nodes and parameter

servers(PS) or master node have to frequently exchange

huge number of parameters to quickly transmit updates and

minimize previous parameters. Hence programming model

based on distributed memory Message Passing Interface

(MPI) becomes limited to satisfy high bandwidth, low

latency, small size but frequent data exchange requirement.

Demand on the bandwidth rate gets even higher with the

inclusion of dedicated Graphical Processing Units (GPU’s)

in computing process. Here in this paper we have studied

different programming framework suitable for Distributed

Deep Learning computation, powered by High Performance

Computing (HPC) environment and also aligned with

shared memory programming approaches. Recent work on

unsupervised feature learning and deep learning has shown

that being able to train a large models can dramatically

improve the performance. In this paper, we consider

different platforms that are involved in implementing high

scale distributed network training and parameter sharing.

Also virtual memory model based DNN algorithms has been

discussed.

Keywords: Deep neural network, Distributed deep learning,

High performance computing, distributed computing,

shared memory, soft memory box.

I. INTRODUCTION

High Performance Computing (HPC) is crucial in enabling,

technology for the advancement of science and engineering.

It supports multi-scale simulations and experiments that leads

to breakthroughs discoveries in an ever-broadening range of

scientific fields.

In modern Artificial Intelligence (AI) research, Deep Neural

Network (DNN) is an approach, introduced to improve

machine learning performance even with complicated input

data features. The power of DNN has been verified through

many applications, especially in visual perception where it

showed even better accuracy than human vision system. The

success of deep learning in the areas of voice recognition and

object recognition is realized because of the availability of

massive training data sets, distributed - parallel high

performance computing (HPC) architectures and availability

of accelerated software framework for the same domain.

General purpose graphic processing unit (GPGPUs) has

played an important role in HPC architecture evolution and

eventually, acceleration of AI Innovation. Even though it is

possible to build more accurate learning models with more

training data and large Deep Neural Network models, the

computation requirement increases exponentially with the

multiplication of model sizes & training data volumes [2]

[4].

The success of Deep Learning technology is an effect of

three major factors, (i) Evolution of accelerators architecture

in the form of GPGPUs [2], (ii) availability of large-scale

real time datasets and (iii) invention of various Deep

Learning algorithms like back-propagation [2]. Training a

Deep Neural Networks (DNNs) is compute intensive and

time consuming process. It can take many days or weeks,

even on the powerful hardware with GPUs. In pursuit of fast

training performance, researchers have resorted to massive

parallel GPU devices to conduct network training on a single

node over the past few years [4][5].

In deep learning training, it has been observed that increasing

the size of deep learning models in terms of number of

training examples and the number of model parameters can

drastically improve classification accuracy of the particular

model with respect to datasets and previous results [1]. To

achieve that goal, one prominent approach is to train the

model on large distributed memory system like HPC

clusters. There

are many distributed DL framework [1, 2, 3]. In distributed

DNN training, each worker share parameters located on

parameter server (PS). After minute modification in

gradients, each worker sends updated gradients to PS,

receives the updated parameters from parameter server

repeatedly until the training process is completed. This

communication pattern generates a large amount of network

traffic. The larger network models are, more communication

between PS and workers per iteration. This causes massive

communication overhead in the whole process. This

overhead is a major performance bottleneck in distributed

Deep Neural Network training. Therefore, performing

efficient parameter sharing has become a worthy goal to

chase in distributed DL.

There are two main strategies for parallelizing distributed

training method, namely data parallelism and model

parallelism [3] [4]. While model parallelism can work well in

practice, data parallelism is the preferred approach for

distributed DNN training. It has been the focus of more

research, because it can be easily implemented and has good

performance record. Data parallelism uses multiple replicas

of a model, and distributes the training data across multiple

International Journal For Technological Research In Engineering

Volume 6, Issue 7, March-2019 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2019.All rights reserved. 5174

workers. Thereafter DL workers calculate gradients and send

them to PS for model update [4].

There are two different approaches for parameter updating of

distributed DNN training: Synchronous and Asynchronous.

With synchronous method, a parameter server aggregates

gradients of all workers then updates the model parameters at

the end of training iteration. With asynchronous method, the

parameter server immediately updates the model parameters

whenever gradient arrives from a worker, without waiting to

aggregate them collectively. The asynchronous method is

advantageous because it can be performed faster without

sacrificing accuracy compared to the synchronous method [1]

[5]. This paper focuses on the study of parallelization

techniques based on asynchronous fashioned data parallelism

approaches.

Figure - 1.1 Asynchronous distributed stochastic gradient

descent.

Asynchronous distributed stochastic gradient descent model

with some model replicas and common parameter server are

explained in Figure-1.1. Data shared between the model

replicas and updates, relayed to parameter server throughout

the process asynchronously.

II. RELATED WORK

Because of high memory footprint, to achieve better accuracy

during training, considering very large-scale DNN model

might be impossible to handle by a single computing node.

Many ongoing research work are exploring distributed

processing platforms such as High Performance Cluster for

DNN training [13].

In Deep Learning model training Asynchronous SGD

(ASGD) is one of the most widely used asynchronous

distributed variants of Stochastic Gradient Decent algorithm.

The ASGD has been proposed to address the disadvantage of

Synchronous SGD where, workers have to wait until the

slowest worker finishes calculating gradient [11, 12].

However, result of ASGD does not always guarantee a linear

speedup of performance with increasing number of workers.

Asynchronous SGD is limited in improving the actual

training performance due to the delayed gradient problem.

ASGD uses a parameter server to share parameters

asynchronously in between workers. The Elastic Averaging

Stochastic Gradient Decent (EASGD) method was proposed

to maximize the benefits of DNN exploration. It allows each

deep learning worker to maintain its own model replica as in

any other Asynchronous SGD methods. The distributed

training is performed by updating the global model with the

moving average dynamically. In this method, unlike the

Asynchronous SGD, the parameter server and the workers

exchange the weight parameter learned by them and

calculate the difference between the two weights vector

concurrently, hence updating their own weight parameters by

adding the scaled difference to it [2]. So far this method

performs better than the Downpour SGD by decreasing the

delay time of global weight updating between the parameter

server and local working nodes.

Among the distributed deep learning optimization schemes

based on the stochastic gradient descent (SGD), the Hogwild

[16] showed that deep learning processes with same weight

and different data set can train Deep Neural Network through

asynchronous SGD model on shared memory architecture

without locking. In addition, Dogwild framework an

extension of the Hogwild framework, performs Deep Neural

Network training by exchanging weights and gradients

asynchronously between the master and worker node

processes. The master process updates the global weights

whenever it receives gradients from the slave processes

concurrently, and shares the updated weights with all the

slave processes at once. Each slave process updates the most

recently received weights with the gradients which is

explored by itself, and sends the gradients to the master

[2][12]. Every time in each iteration worker node updates its

parameter with master node or parameter server.

2.1 Parallel Programming:

In this section we explore the basics of parallel programming

techniques. To implement neural network in distributed

fashion, understanding background of parallel programming

is a pre-requisite. Parallel Programming is a technique to

implement parallel algorithms on computers depending on

the target architecture to exploit highest compute capability

of the architecture available. They may range from simple

threaded implementations to OpenMP on single machines.

Accelerators or hardware like FPGAs are usually

programmed with special languages such as CUDA, OpenCL

etc. Yet, the details are often hidden behind library that

implement the optimized programming primitives on these

platforms. On machines with multiple node and distributed

memory, one can either use simple communication

mechanisms such as TCP/IP or Remote Direct Memory

Access (RDMA) for internode communication. One can also

use more convenient libraries such as the Message Passing

Interface (MPI) [14].

2.2 Parallel Computing:

In general parallel computing is a wide concept and refers to

the process of computation where multiple calculations are

carried out simultaneously with help of certain tools,

technologies and hardware. In parallel computing large

number of problems can often be divided into smaller sub

problems which can then be solved simultaneously with help

of independent compute component. There are several

International Journal For Technological Research In Engineering

Volume 6, Issue 7, March-2019 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2019.All rights reserved. 5175

different types of parallel computing techniques such as

instruction-level, bit-level, data, and task parallelism.

Parallelism has long been employed in high performance

computing (HPC), but it's gaining huge interest due to the

physical constraints of building more advance processor due

associated limitation of frequency scaling and power

dissipation. Power consumption by computer system is a

major concern; therefore parallel computing has become the

dominant paradigm in computer architecture, mainly in the

form of multi-core processors and new generation’s

commodity hardware components [19].

2.3 DistBelief Model:

The DistBelief framework proposed Downpour SGD, which

supports a large number of model replicas, as a technique of

asynchronous SGD. Within DistBelief, the developers

proposed Sandblaster batch optimization method [3],

supporting various distributed models. Each DNN training

worker in an asynchronous SGD can learn weights at

different speeds without synchronization overhead therefore

maximize the utilization of computing and network

resources. Specifically, the resources of a heterogeneous

HPC system consisting of CPUs and GPUs of heterogeneous

specifications (clock rate, the number of cores, etc.) can be

utilized effectively to take advantage of the maximum

computational performance [4].

So far the Distributed deep learning platforms such as

Petuum [19] and Microsoft Cognitive Toolkit (CNTK) [18]

uses distributed key-value repositories developed specifically

for parameter servers [4][10]. Under this environment,

parameter server manages asynchronous parameter updates

among deep learning workers and provides the advantage of

supporting an elastic coherence model, flexible scalability

and fault tolerance. Virtual shared memory framework can

accelerate the parameter sharing in distributed deep learning

platform therefore can supports asynchronous SGD through

experiments [7].

2.4 SMB (Soft Memory Box):

Soft Memory Box enables sharing the memory of remote

node among distributed processes on the computing

nodes so as to improve communication performance via

parameter sharing. The SMB consists of an SMB Server and

SMB client components: SMB Library, SMB Device Driver,

and Infiniband Communication Layer module. The SMB

Server run on memory node and provides shared memory to

distributed processes. A SMB client component runs on

computing node. SMB Library, which is a user-level static

library, provides application programming interfaces for

distributed application processes and statically linked with

the executable during compile time. SMB Device Driver and

Infiniband Communication Layer (ICL) module are kernel-

level modules and is loaded before the execution of

application processes. The SMB Server make available a

portion of physical memory of the memory node as shared

memory buffer over the high speed RDMA enabled network

by pooling it in advance, as well as on-demand by the client

process [1,4,5].

2.5 Caffe:

Caffe is designed by Berkeley AI Research (BAIR) and the

Berkeley Vision and Learning Center (BVLC) at UC

Berkeley to provide expressive architecture and GPU support

for deep learning applications [11]. It is based on C++,

CUDA and can be operated through command line and

Python. It runs on CUDA based devices, mobile platforms

and additionally been extended for use in the Apache

Hadoop ecosystem with Spark. Caffe employs a mini-batch-

based stochastic gradient for training optimization: mini-

batch Standard Gradient Descent (SGD) can perform training

on independent data samples and then update the network

parameters at the end of every N training samples [15].

2.6 SHMCAFFE:

ShmCaffe is a distributed deep-learning platform that uses

remote shared memory based on SMB for parameter sharing,

by extending BVLC Caffe (version 1.0.0). ShmCaffe does

not only implements ASGD, but a hybrid method that

combines Inter-node Asynchronous SGD and Intra-node

Synchronous SGD. ShmCaffe memory model runs on

distributed deep learning clusters with multiple nodes and

exchanges initialization messages between the distributed

processes using Message Passing Interface(MPI). In order to

exchange parameters between the distributed Inter-node

workers, the asynchronous EASGD algorithm is modified to

use remote shared memory buffer [2].

III. LARGE SCALE SHARED MEMORY ON HPC

PLATFORM

In this section we inspect various programming paradigms,

libraries, technologies already available and that may

become strong alternative of SMB, and henceforth can

support distributed deep learning algorithms like EASGD on

HPC Clusters.

PGAS:

Partitioned global address space (PGAS) languages offers a

programming abstractions similar to shared memory model,

but with the control over data layout that is critical to high

performance and scalability. Most common PGAS based

languages include Unified Parallel C, Titanium (a scientific

computing dialect of Java) and Co-Array FORTRAN (CAF).

Under PGAS, compilers uses a source-to-source translation

strategy that converts parallel programming constructs to C

with calls to communication layer like GASNet or MPI [14].

Fig. 3.1 PGAS Memory Model

A. Programming Languages with PGAS

3.1 UPC:

UPC is an extension of ISO C language that implements

PGAS Programming model, defined by a consortium and

supported by multiple proprietary and open source

International Journal For Technological Research In Engineering

Volume 6, Issue 7, March-2019 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2019.All rights reserved. 5176

compilers. Unified Parallel C exposes global shared address

space to the computing instances which is logically divided

among many threads and each thread is associated or shows

affinity to a part of the shared memory. UPC also provides a

private memory space per thread for local computations, as

shown in PGAS memory model. Therefore each thread in the

compute node has access to both its private memory and to

the global shared space. In UPC, memory specification

combines the advantages of both the shared and distributed

memory programming models. Global shared memory space

facilitates the development of parallel codes, where multiple

parallel threads can access global shared memory space

through high speed read/write protocol.

UPC is designed to perform best on large-scale parallel

machines like HPC clusters. So far it combines the

programmability advantages of the shared memory

programming along with control over data layout without

sacrificing performance aspect of MPI [13, 14].

Fig. 3.2 : Unified Parallel C architecture

3.2 UPC++:

Unified Parallel C++ offer an easy on-ramp to PGAS

programming through interoperability with other existing

parallel programming systems. UPC++ comprise of

following features such as Remote memory access (RMA),

Remote Procedure Call (RPC), View based Serialization,

Shared objects. It Expose useful asynchronous parallel

programming expressions which are unavailable in

traditional Single Program Multiple Data (SPMD) model

such as remote function invocation, and continuation based

operation completion for supporting complex scientific

applications. Unified Parallel C++ follows object oriented

programming model with PGAS memory model. Unified

Parallel C++ covers so many features in parallel computing

environment and it includes useful parallel programming key

functions unavailable in UPC, for example this programming

platform provides an asynchronous remote function

invocation and multidimensional arrays also it is used to

support complex scientific applications [20].

GASNet:

GASNet stands for "Global Address Space Networking". It is

a language-independent networking middleware layer that

provides, high-performance communication primitives

including Remote Memory Access and Active Messages. It

has been used to avail underlying networking mechanism for

the programming models and libraries such as UPC, UPC++,

Co-Array Fortran, Chapel, and Legion.

The design of GASNet middleware is partitioned into two

layers to ease the porting experience without sacrificing

performance. The lower layer is a narrow but very generic

interface implementation, called GASNet core API. It is

heavily based on Active Messages, and it is implemented

directly on top of each individual network communication

layer. The top level is a wider and more expressive interface

which is called the GASNet extended API and provides high

level operations such as remote memory access and various

collective operations [14].

Fig. 3.3: GASNet Communication System

IV. CONCLUSION

In this paper we have studied various distributed deep

learning platform implementation on high performance

computing system. This includes different virtual shared

memory Framework, Libraries and Network Protocol. We

also discussed parameter sharing approach with ASGD

algorithm between master and worker nodes. Through this

study, it is clear that to realize Distributed Deep Learning on

HPC Platform, the De Facto programming framework like

MPI may not suffice. To exchange frequent messages, which

are a primary requirement of DDL, we require a software

eco-system and programming framework like UPC. In this

context PGAS programming model and associated

implementation seems to have promising prospects. We also

studied SMB Framework, which is a significant development

towards DDL. In future we wish to do more detail study of

PGAS-UPC and SMB to perform a comparative study of

their prominent features. Networking middleware like

GASNet is going to be another candidate of our future study.

SMB Framework implements high performance network

communication primitives over RDMA, whereas similar

communication primitives like RMA & Active Messages

(AM) has already been implemented in GASNet. A detail

study into these aspects of SMB and GASNet would reveal

more insight into how frequent parameter sharing can be

achieved to make DDL possible. When computing is moving

to exascale era, there is revived interest towards PGAS-UPC

like global address space programming techniques. In our

future work, we wish to see how the same techniques opens

up new direction in Distributed Deep Learning

implementation.

International Journal For Technological Research In Engineering

Volume 6, Issue 7, March-2019 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2019.All rights reserved. 5177

REFERENCES

[1] “Soft Memory Box: A Virtual Shared Memory

Framework for Fast Deep Neural Network

Training in Distributed High Performance

Computing”, Shinyoung Ahn 1,2, Joongheon Kim 3,

(Senior Member, Ieee), Eunji Lim2, And Sungwon

Kang4, (Member, Ieee), 2018

[2] “ShmCaffe: A Distributed Deep Learning Platform

with Shared Memory Buffer for HPC Architecture”,

ShinyoungAhn, Joongheon Kim, 2018

[3] “Large Scale Distributed Deep Networks”, Greg S.

Corrado, Jeffrey Dean, RajatMonga, Kai Chen,

Andrew Y. Ng, Matthieu Devin, Quoc V. Le, Mark

Z. Mao, Marc AurelioRanzato, Andrew Senior, Paul

Tucker, Ke Yang, Google

[4] “Deep learning with COTS HPC systems”, Adam

Coates, David J. Wu, Andrew Y. Ng, Brody Huval,

Tao Wang, NVIDIA Corporation.

[5] “Parallel I/O optimizations for scalable deep

learning”, SarunyaPumma, Min Si, Wu-chun Feng,

and PavanBalaji, 2017IEEE

[6] “iRDMA: Efficient Use of RDMA in Distributed

Deep Learning”, Systems Yufei Ren∗, Xingbo Wu†,

Li Zhang∗, Yandong Wang∗, Wei Zhang, 2017

IEEE

[7] “A- Distributed Deep Reinforcement Learning on

the Cloud for Autonomous Driving”, Mitchell

Spryn,Aditya Sharma, 2018 ACM

[8] “UPC++: A PGAS Extension for C++”, Yili Zheng,

Amir Kamil, Michael B. Driscoll, Hongzhang Shan,

Katherine Yelick,
[9] “Big Data and Deep Learning”, B.M. Wilamowski,

Bo Wu, 2016 IEEE

[10] “Acelerating Training of DNN in Distributed

Machine Learning system with Shared Memory”,

Eun-jin Lim 2013, Shin Young Ahn, 2017IEEE.

[11] "BAIPAS: Distributed Deep Learning Platform with

Data Locality and Shuffling", Mikyoung Lee,

Sungho Shin, Seungkyun Hong, Sa-kwang Song,

2017, ECEECS.

[12] "Distributed Deep Learning Framework based on

Shared Memory for Fast Deep Neural Network

Training", Eun-Ji Lim, Shin-Young Ahn, Yoo-Mi

Park, Wan Choi, 2018 IEEE.

[13] "Performance Modeling and Evaluation of

Distributed Deep Learning Frameworks on GPUs",

Shaohuai Shi, Qiang Wang, Xiaowen Chu, 2018

IEEE.

[14] "Productivity and Performance Using Partitioned

Global Address Space Languages", Katherine

Yelick, Dan Bonachea1, Wei-Yu Chen, Phillip

Colella.

[15] “NUMA-Caffe: NUMA-Aware Deep Learning

Neural Networks”, Probir Roy, Shuaiwen Leon

Song, Sriram Krishnamoorthy, Abhinav Vishnu,

Intel Labs XU LIU, College of William and Mary,

2018 ACM.

[16] “HogWild++: A New Mechanism for

Decentralized Asynchronous Stochastic Gradient

Descent” Huan Zhang, Cho-Jui Hsieh, Venkatesh

Akella, 2018.

[17] “Re-designing CNTK Deep Learning Framework

on Modern GPU Enabled Clusters”, Dip Sankar

Banerjee, Khaled Hamidouche, and Dhabaleswar K.

(DK) Panda, IEEE 2016.

[18] “Petuum: A New Platform for Distributed Machine

Learning on Big Data”, Eric P. Xing, Qirong Ho,

Wei Dai, Jin Kyu Kim, Jinliang Wei, Seunghak

Lee, Xun Zheng.

[19] “Evaluating and Modeling Power Consumption of

Multi-Core Processors”, Robert Basmadjian,

Hermann de Meer, 2012, ACM.

