
International Journal For Technological Research In Engineering

Volume 6, Issue 8, April-2019 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2019.All rights reserved. 5224

DESIGN SINGLE CYCLE MICROPROCESSOR USING VHDL

Naveen Kumar Saini

Asst. Prof. EE, RTU, Shekhawati Institute Of Engineering, Sikar, India

Abstract: In this paper, a A microprocessor is a digital

electronic component with transistors on a single

semiconductor integrated circuit (IC).One or more

microprocessors typically serve as a central processing

unit(CPU) in a computer system or handheld device

.Microprocessors made possible the advent of the

microcomputer .Before this electronic CPUs were typically

made from bulky discrete switching device containing the

equivalent of only a few transistors .By integrating the

processor onto one or a very few large-scale integrated

circuit package, the cost of processor power was greatly

reduced. Since the advent of the IC in the mid-1970s, the

microprocessor has become the most prevalent

implementation of the CPU, nearly completely replacing all

others forms. This project is trying to design an 8 bit

microprocessor by using VHDL .VHDL is stand for very

high speed integrated circuit hardware description

language .It is one of the most popular design application

uses by most designers nowadays .The microprocessor will

be synthesize in VHDL using Xilinx ISE. The 8 bit

microprocessor is widely use in microcontroller devise with

specific task because it has a specific task because it has a

specific instruction where it only done a given instruction.

Keorywords: integrated circuit (IC), VHDL, Xilinx

I. INTRODUCTION

In this paper, Microprocessors are the heart of all “smart”

devices, whether they be electronic devices or otherwise.

Their smartness comes as a direct result of the decisions and

controls that microprocessors make. For example, we usually

do not consider a car to be an electronic device. However, it

certainly has many complex, smart electronic systems, such

as the anti-lock brakes and the fuel-injection system. Each of

these systems is controlled by a microprocessor. Yes, even

the black, hardened blob that looks like a dried-up and

pressed-down piece of gum inside a musical greeting card is

a microprocessor. There are generally two types of

microprocessors: general-purpose microprocessors and

dedicated microprocessors.General-purpose microprocessors,

such as the Pentium CPU, can perform different tasks under

the control of software instructions. General-purpose

microprocessors are used in all personal computers.

II. THE INTEL 486 FAMILY

When Intel finally did catch up, it did so in a big way with

the release of the 80486 processor, better known as the 486,

in 1989. In addition to adding an 8K primary cache, Intel

decided to integrate a floating-point math coprocessor (FPU)

to an improved 386 core with scalar architecture, and a full

32-bit data and address bus width. Because of the high

transistor count, which numbered 1.2 million, the infant

mortality rate was high. At first, only 30 percent of the chips

survived the testing process from start to finish. Most of the

failures occurred in the math coprocessor section, which

occupied about two-third of the chip‟s real estate.

So it took no time at all for Intel to switch to testing its 486

chips for CPU performance first, and follow up with a math

coprocessor check. Those chips that passed the first phase

but flunked the math were labeled 486SX, and went into

lower-priced, conventional desktops without math

processors. Those chips that passed their math tests went into

a higher-priced model, now called the 486DX. As yields

improved, and demand for the lower-priced 486SX

increased, the 486SX selection process was winnowed down

to testing the CPU only, with a subsequent blowing of the

fuse that fed power to the math coprocessor (just in case the

math coprocessor was functional, but flawed). Another

important feature of the 486 line was the introduction of 3.3-

volt technology — something that Motorola couldn‟t match

until two years later. Up to 1990 microprocessor logic was

based on a 5-volt power supply. However, the amount of

heat a semiconductor generates is a function of speed

multiplied by voltage. By 1990, the speed of computer chips

(both microprocessors and external logic chips) hit a heat

barrier — if they went any faster, they‟d simply burn up.

Reducing the voltage reduced the heat build-up and let the

chips run faster. By the year 2000, its expected computer

chips will run at 500 MHz using 0.9-volt power sources.

What was Motorola doing all this time? It was busy working

on the 68060, a third generation 68000 chip that introduced

the concept of superscalar pipelining, a technique again

borrowed from mainframe technology, which permits

multiple instructions to run at the same time. This chip saw

the light of day in early 1994. Motorola was also busy

developing a line of microcontroller chips, like the 68HC11.

Figure1.2:-Harvard Architecture Microprocess

International Journal For Technological Research In Engineering

Volume 6, Issue 8, April-2019 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2019.All rights reserved. 5225

Figure1.3:-Princeton Architecture Microprocessor

III. CODING OF MICROPROCESSOR MULTIPLEXER

A. 2*1 4-bit multiplexer :-

libraryieee;

use ieee.std_logic_1164.all;

useieee.std_logic_unsigned.all;

useieee.numeric_std.all;

entity mux2 is port (

s: in std_logic;

x0, x1: in std_logic_vector(3 downto 0);

y: out std_logic_vector(3 downto 0);

end mux2;

architecture imp of mux2 iss

begin

process(s, x0, x1)

begin

if(s= ‟0‟) then

 y<= x0;

else

 y<= x1;

end if;

end process;

end imp;

B. 4*1 8-bit multiplexer:-

libraryieee;

use ieee.std_logic_1164.all;

useieee.std_logic_unsigned.all;

useieee.numeric_std.all;

entity mux2 is port (

s: in std_logic_vector(1 downto 0);

x0, x1, x2, x3: in std_logic_vector(7 downto 0);

y: out std_logic_vector(7 downto

0);

end mux4;

architecture imp of mux4 is

begin

process(s, x0, x1, x2, x3)

begin

case s is

when “00” =>y <= x0;

when “01” =>y <= x1;

when “10” => y <= x2;

when “11” =>y <= x3;

when others =>y <= (others => „x‟);

end case;

end process;

end imp;

C. Full Adder:-

libraryieee;

use ieee.std_logic_1164.all;

useieee.std_logic_unsigned.all;

entity FA is port (

carryIn: in std_logic;

carryOut: out std_logic;

x, y: in std_logic;

s: out std_logic);

end FA;

architecture imp of FA is

begin

 s <= x xor y xorcarryIn;

carryout<= (x and y) or (carryIn and (x xor y));

end imp;

D. Add and Subtract:-

entity addsub8_pc is port (

A: in std_logic_vector(7 downto

0);

B: in std_logic_vector(7 downto

0);

F: out std_logic_vector(7 downto

0);

Sub: in std_logic);

end addsub8_pc;

architecture imp of addsub8_pc is

begin

process(A, B, sub)

begin

if (sub= ‟0‟) then

 F <= A+B;

else

 F<= A-B;

end if ;

end process;

end imp;

E. Opcode Definition:-

PACKAGE opcodes IS

 SUBTYPE t_cond1 IS std_logic_vector (2 DOWNTO

0);

 CONTANT sta : t_cond1 :=

“000”;

 CONSTANT lda : t_cond1 :=

“001”;

 CONSTANT movi : t_cond1 :=

“010”;

CONSTANT inp : t_cond1 := “011”;

CONSTANT outp : t_cond1 := “100”;

CONSTANT jnz : t_cond1 := “101”;

 CONSTANT adda : t_cond1 :=

“110”;

 CONSTANT suba : t_cond1 :=

International Journal For Technological Research In Engineering

Volume 6, Issue 8, April-2019 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2019.All rights reserved. 5226

“111”;

SUBTYPE t_org IS std_logic_vecter (4 DOWNTO 0);

CONSTANT A : t_oreg := “00000”;

CONSTANT B : t_oreg := “00001”;

CONSTANT C : t_oreg := “00010”;

CONSTANT D : t_oreg := “00011”;

CONSTANT E : t_oreg := “00100”;

END opcodes;

F. Program Counter:-

libraryieee;

use ieee.std_logic_1164.all;

useieee.std_logic_unsigned.all;

useieee.numeric_std.all;

entity PC is port (

clk: in std_logic;

reset: in std_logic;

load: in std_logic;

 INPUT: in std_logic_vector(7

downto 0);

 OUTPUT: out std_logic_vector(7

downto 0));

end PC;

architecture imp of PC is

component FF is Port(

clk: in std_logic;

reset: in std_logic;

load: in std_logic;

 D: in std_logic;

 Q: in std_logic);

end component;

begin

 U0: FF port map (clk, reset, load, INPUT(0),

OUTPUT(0));

 U1: FF port map (clk, reset, load, INPUT(1),

OUTPUT(1));

 U2: FF port map (clk, reset, load, INPUT(2),

OUTPUT(2));

 U3: FF port map (clk, reset, load, INPUT(3),

OUTPUT(3));

 U4: FF port map (clk, reset, load, INPUT(4),

OUTPUT(4));

 U5: FF port map (clk, reset, load, INPUT(5),

OUTPUT(5));

 U6: FF port map (clk, reset, load, INPUT(6),

OUTPUT(6));

 U7: FF port map (clk, reset, load, INPUT(7),

OUTPUT(7));

end imp;

G. Control Unit:-

entity controller is port (

clk: in std_logic;

reset: in std_logic;

Aeq0: in std_logic;

IR: in std_logic_vector(7

downto 5);

ALUSel: out std_logic_vector(1

downto 0);

Asel: out std_logic_vector(1

downto 0);

writeAcc: out std_logic;

IRload: out std_logic;

PCload: out std_logic;

Oload: out std_logic;

jmpMux: out std_logic;

opfetch: out std_logic;

we: out std_logic;

rbe: out std_logic;

end controller;

architecture imp of controller is

Type state_type is (

s_start,

s_fetch,

s_decode,

s_jnz,

s_in,

s_out,

s_add,

s_sub,

s_store,

s_load,

s_mov);

signal state: state_type := s_start;

signalclkcount: std_logic_vector(7 downto 0);

begin

NEXT_STATE_LOGIC: process(reset, clk)

begin

if(reset= ‟1‟) then

state<= s_start;

clkcount<= X”00”;

elsif(clk „ event and clk=‟1‟) then

clkcount<= clkcount + 1;

case state is

whens_start => state <= s_fetch:

whens_fetch => state <= s_decode;

whens_decode =>

case IR(7 downto 5) is

when “000” => state <= s_store;

when “001” => state <= s_load;

when “010” => state <= s_mov;

when “011” => state <= s_in;

when “100” => state <= s_out;

when “101” => state <= s_jnz;

when “110” => state <= s_add;

when “111” => state <= s_sub;

when others => state <= s_start;

end case;

when others => state <= s_fetch;

end case;

end if;

end process;

OUTPUT_LOGIC: process (state)

begin

International Journal For Technological Research In Engineering

Volume 6, Issue 8, April-2019 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2019.All rights reserved. 5227

case state is

whens_start =>jmpMux<= „0‟;

writeAcc<= „0‟;

whens_fetch =>IRload<= „1‟;

PCload<= „1‟;

Jmpmux<= „0‟;

opfetch<= „1‟;

ALUSel<= “XX”;

Asel<= “XX”;

Oload<= „0‟;

we<= „0‟;

writeAcc<= ‟0‟;

rbe<= „X‟;

whens_decode =>

IRload<= „0‟;

PCload<= „0‟;

Jmpmux<= „0‟;

opfetch<= „0‟;

ALUSel<= “XX”;

Asel<= “XX”;

Oload<= „0‟;

we<= „0‟;

writeAcc<= ‟0‟;

rbe<= „X‟;

whens_jnz =>

IRload<= „0‟;

PCload<= „Aeq0‟;

Jmpmux<= „1‟;

opfetch<= „0‟;

ALUSel<= “XX”;

Asel<= “XX”;

Oload<= „0‟;

we<= „0‟;

writeAcc<= ‟0‟;

rbe<= „X‟;

whens_in =>

IRload<= „0‟;

PCload<= „0‟;

Jmpmux<= „0‟;

opfetch<= „0‟;

ALUSel<= “00”;

Asel<= “01”;

Oload<= „0‟;

we<= „1‟;

writeAcc<= ‟0‟;

rbe<= „1‟;

whens_add =>

IRload<= „0‟;

PCload<= „0‟;

Jmpmux<= „0‟;

opfetch<= „0‟;

ALUSel<= “01”;

Asel<= “11”;

Oload<= „0‟;

we<= „0‟;

writeAcc<= ‟1‟;

rbe<= „1‟;

whens_sub =>

IRload<= „0‟;

PCload<= „0‟;

Jmpmux<= „0‟;

opfetch<= „0‟;

ALUSel<= “11”;

Asel<= “11”;

Oload<= „0‟;

we<= „0‟;

writeAcc<= ‟1‟;

rbe<= „1‟;

whens_store =>

IRload<= „0‟;

PCload<= „0‟;

Jmpmux<= „0‟;

opfetch<= „0‟;

ALUSel<= “00”;

Asel<= “11”;

Oload<= „0‟;

we<= „1‟;

writeAcc<= ‟0‟;

rbe<= „0‟;

whens_load =>

IRload<= „0‟;

PCload<= „0‟;

Jmpmux<= „0‟;

opfetch<= „0‟;

ALUSel<= “00”;

Asel<= “00”;

Oload<= „0‟;

we<= „0‟;

writeAcc<= ‟1‟;

rbe<= „1‟;

whens_mov =>

IRload<= „0‟;

PCload<= „0‟;

Jmpmux<= „0‟;

opfetch<= „0‟;

ALUSel<= “01”;

Asel<= “10”;

Oload<= „0‟;

we<= „0‟;

writeAcc<= ‟1‟;

rbe<= „0‟;

whens_out =>

IRload<= „0‟;

PCload<= „0‟;

Jmpmux<= „0‟;

opfetch<= „0‟;

ALUSel<= “XX”;

Asel<= “XX”;

Oload<= „1‟;

we<= „0‟;

rbe<= „1‟;

whens_others =>

IRload<= „0‟;

PCload<= „0‟;

Jmpmux<= „0‟;

opfetch<= „0‟;

International Journal For Technological Research In Engineering

Volume 6, Issue 8, April-2019 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2019.All rights reserved. 5228

ALUSel<= “XX”;

Asel<= “XX”;

Oload<= „0‟;

we<= „0‟;

writeAcc<= ‟0‟;

rbe<= „X‟;

end case;

end process;

end imp;

Data Path:-

libraryieee;

use ieee.std_logic_1164.all;

useieee.std_logic_unsigned.all;

useieee.numeric_std.all;

entitydatapath is port (

clk: in std_logic;

reset: in std_logic;

input: in std_logic_vector(7

downto 0);

ouput: out std_logic_vector(7

downto 0);

 Aeq0: out std_logic;

IROut: out std_logic_vector(7

downto 5);

ALUSel: in std_logic_vector(1

downto 0);

Asel: in std_logic_vector(1

downto 0);

writeAcc: in std_logic;

IRload: in std_logic;

PCload: in std_logic;

Oload: in std_logic;

jmpmux: in std_logic;

PCload: in std_logic;

opfetch: in std_logic;

we: in std_logic;

rbe: in std_logic;

enddatapath;

architecture imp of datapath is

signaldp_ROMData, dp_IR, dp_IR2, dp_ALU_Out:

std_logic_vector(7 downto 0);

signaldp_PC, dp_PCnext, dp_Adder_out:

std_logic_vector(7 downto 0);

signaldp_regfile_i, dp_regfile_B: std_logic_vector(7

downto 0);

signal dp_mux4_out: std_logic_vector(7 downto 0);

signal dp_mux2_out: std_logic_vector(3 downto 0);

signal dp_mux2_out8: std_logic_vector(7 downto 0);

signalf_unsigned_overflow: std_logic;

signalsub_jmp: std_logic;

begin

Aeq<= dp_regfile_A(0) or dp_regfile_A(1) or

dp_regfile_A(2) or dp_regfile_A(3) or dp_regfile_A(4) or

dp_regfile_A(5) or

dp_regfile_A(6) or dp_regfile_A(7);

dp_IR2 <=”000” &dp_IR(4 downto 0);

Bus_select: entity work.mux4 port map (Asel,

dp_regfile_B, Input, dp_IR2, dp_regfile_A, dp_mux4_out);

instruction_register: entity work.IR port map (clk, reset,

IRload, dp_ROMData, dp_IR);

ProgramCounter: entity work.PC port map (clk, reset,

PCload, dp_PCnext, dp_PC);

PC_mux: entity work.mux2 port map (jmpmux, “0001”,

dp_IR(3 downto 0), dp_mux_out);

dp_mux2_out8 <= “0000” & dp_mux2_out;

Sub_jmp<= jmpMux and dp_IR(4);

Adder_8_bit: entity work.Addsub8_pc port map (dp_PC,

dp_PCnext, dp_mux2_out8, sub_jmp);

ProgramMemory: entity work.rom_256_8 port map

(opfetch, dp_PC, dp_ROMData);

RegisterFile: entity work.regfile port map (clk, reset, we

,writeAcc, dp_IR(4 downto 0), dp_ALU_Out,

rbe, dp_regfile_A, dp_regfile_B);

ALU8: entity work.ALU port map (ALUSel,

dp_mux4_out, dp_regfile_B, dp_ALU_Out,

f_unsigned_overflow);

OutputRegister: entity work.OReg port map (clk, reset,

Oload, dp_regfile_B, output);

IROut<= dp_IR(7 downto 5);

end imp;

Register File:-

entityregfile is port (

clk: in std_logic;

reset: in std_logic;

we: in std_logic;

writeAcc: in std_logic;

Adr: in std_logic_vector(4

downto 0);

 D: in std_logic_vector(7

downto 0);

rbe: in std_logic;

portA: out std_logic_vector(7

downto 0);

portB: out std_logic_vector(7

downto 0));

endregfile;

architecture imp of regfile is

subtypereg is std_logic_vector(7 downto 0);

typeregArray is array(0 to 31) of reg;

signal RF: regArray;

begin

WritePort: process (clk, reset)

begin

if (clk‟event and clk=‟1‟) then

if (reset=‟1‟) then

RF(0) <= (others => „0‟);

RF(1) <= (others => „0‟);

RF(2) <= (others => „0‟);

RF(3) <= (others => „0‟);

elsif (we=‟1‟) then

RF(conv_integer(Adr)) <=D;

elsif (writeAcc=‟1‟) then

RF (0) <= D;

International Journal For Technological Research In Engineering

Volume 6, Issue 8, April-2019 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2019.All rights reserved. 5229

end if;

end if;

end process;

ReadPortB: Process(rbe, Adr)

begin

if (rbe=‟1‟) then

portB<= RF(conv_integer (Adr));

else

PortB<= (others => „X‟);

end if;

end process;

ReadPortA: PortA<= RF(0);

end imp;

Arithmetic Logic Unit:-

libraryieee;

use ieee.std_logic_1164.all;

useieee.std_logic_unsigned.all;

useieee.numeric_std.all;

entity ALU is port (

S: in std_logic_vector(1 downto 0);

A, B: in std_logic_vector(7 downto 0);

F: out std_logic_vector(7 downto

0);

Unsigned_overflow: out std_logic);

end ALU;

architecture imp of ALU is

signal X, Y: std_logic_vector(7downto 0):

signal C: std_logic_vector(7 downto 0);

begin

C(0) <= S(1);

Y(0) <= s(1) xor (S(0) and B(0));

Y(1) <= s(1) xor (S(0) and B(1));

Y(2) <= s(1) xor (S(0) and B(2));

Y(3) <= s(1) xor (S(0) and B(3));

Y(4) <= s(1) xor (S(0) and B(4));

Y(5) <= s(1) xor (S(0) and B(5));

Y(6) <= s(1) xor (S(0) and B(6));

Y(7) <= s(1) xor (S(0) and B(7));

 U0 entity work.FA port map (C(0), C(1), A(0), Y(0),

F(0));

 U1 entity work.FA port map (C(1), C(2), A(1), Y(1),

F(1));

U2 entity work.FA port map (C(2), C(3), A(2), Y(2), F(2));

 U3 entity work.FA port map (C(3), C(4), A(3), Y(3), F(3));

 U4 entity work.FA port map (C(4), C(5), A(4), Y(4), F(4));

 U5 entity work.FA port map (C(5), C(6), A(4), Y(5), F(5));

 U6 entity work.FA port map (C(6), C(7), A(4), Y(6), F(6));

U7 entity work.FA port map (C(0), unsigned_overflow, A(4),

Y(7), F(7));

end imp;

H. Program Memory:-

entity rom_256_8 is port (

cs: in std_logic;

addr: in std_logic_vector(7 downto 0);

data: out std_logic_vector(7 downto

0));

end rom_256_8;

architecture imp of rom_256_8 is

subtype cell is std_logic_vector (7 downto 0);

typerom_type is array (0 to 255) of cell;

constant ROM: rom_type :=(

Inp& B,

movi& “00001”,

sta& C,

movi& “00000”,

sta& D,

lda& D,

adda& B,

sta& D,

lda& B,

suba& C,

sta& B,

jnz& ”10111”,

outp& D,

others => (others => „0‟)

);

begin

process(cs)

begin

if(cs = ‟1‟) then

data<= ROM(conv_integer (addr));

else

data<= (others => „Z‟);

end if;

end process;

end imp;

Processor:-

libraryieee;

use ieee.std_logic_1164.all;

useieee.std_logic_unsigned.all;

useieee.numeric_std.all;

entityup_abs is port(

clk: in std_logic;

reset: in std_logic;

input: in std_logic_vector(7 downto 0);

output: in std_logic_vector(7 downto 0));

end up_abs;

architecture imp of up_abs is

Signal IR: std_logic_vecter(7 downto 5);

Signal ALUSel: std_logic_vecter(1 downto 0);

Signal ASel: std_logic_vecter(1 downto 0);

Signal writeAcc: std_logic;

Signal Aeq0, IRload, PC load, opfetch, jmpmux, Oload, we,

rbe :std_logic;

begin

ControlUnit : controller port map(clk , reset, aeq0, IR,

ALUSel, Asel, writeAcc, IRload,

PCload, Oload, jmpMux, opfetch, we, rbe);

Datapath8 :datapath port map(clk , reset, aeq0, IR, ALUSel,

Asel, writeAcc, IRload, PCload,

Oload, jmpMux, opfetch, we, rbe);

International Journal For Technological Research In Engineering

Volume 6, Issue 8, April-2019 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2019.All rights reserved. 5230

end imp;

Test Bench:-

entity test is port (

--input_testbench: in std _logic_ vecter (7 downto 0);

Output_testbench: out std_logic_vecter(7 downto 0));

end entity:

architecture imp of test is

signalinput_signals: std_logic _vecter (7 down

0):=”00000100”;

signaloutput_signals: std_logic _vecter (7 down 0);

signalclkin: std_logic :=‟0‟;

signal reset :std_logic :=‟1‟;

begin

process(clkin)

begin

clkin<= „not‟ clkin after 5 ns:

end process;

process(reset)

begin

reset<= „1‟ reset after 30 ns ;

end process:

processor: entity work.up_absportmap(reset, clkin,

input_signals, output_signals);

end imp;

IV. RESULT

In this paper we done a design of a single cycle

microprocessor using a VHDL. The final outcome of the

project was that all function and instruction working

properly. We done a five instruction of microprocessor using

Modelsim software to simulate a code of microprocessor

V. CONCLUSIONS

The In this paper, we done a part of successfully studied

about the single cycle microprocessor fetching, load, store

and jump instruction using all part of processor like program

counter, instruction memory, data memory, arithmetic and

logic unit, adder, register file and bit manipulation. In this we

done a part of history of computer, instruction set

architecture of different type of processor and effect of

performance on processor. The design was verified through

exhaustive simulations. The processor achieves higher

performance, lower area and lower power dissipation. This

processor can be used as a systolic core to perform

mathematical functions and we use this for load store a

data.The final outcome of the project was that all the

instructions and function properly.

REFERENCE

[1] Anshulkumar“Computer Architecture”.

[2] 8 Bit Microprocessor Design Using VHDL.

[3] R. Gaonkar“Microprocessor architecture

programming and applications with 8085”.

[4] Douglas V. Hall, SSSP Rao.“Microprocessors and

its Interfacing 3rd Edition 3rd EditionAuthor(s)”.

[5] K. M. Bhurchandi, A. K. Ray “Advanced

Microprocessor andPeripherals 3rd Edition 3rd

EditionAuthor(s)”.

[6] Kenneth Ayala “The 8051 Microcontroller (With

CD) 3 EditionAuthor(s)”.

[7] Kenneth Ayala “The 8051 Microcontroller &

Embedded Systems Using Assembly and C (With

CD) 1st Edition Author(s)”.

[8] Muhammad Ali Mazidi, Janice GillispieMazidi,

RolinD.Mckinlay “The 8051 Microcontroller and

Embedded Systems: Using Assembly and C 2

EditionAuthor(s)”.

[9] Sampath K. Venkatesh “8051 Microcontroller &

Embedded System 1st Edition Author(s)”.

[10] A. P. Godse, D. A. Godse “Microcontrollers and

RISC Architecture forAnna University of

Technology 2nd EditionAuthor(s)”.

