
International Journal For Technological Research In Engineering

Volume 6, Issue 9, May-2019 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2019.All rights reserved. 5488

APPLICATION-AWARE BIG DATA DEDUPLICATION IN CLOUD

ENVIRONMENT

Miss Namitha A R
1
, Mahesh R

2
, Nayana L V

3
, Nischitha L

4
, Pavana Shree K M

5

1
Assistant Professor,

2,3,4,5
UG Students

Dept of Information Science and Engineering, BGS Institute of Technology, BG Nagar, Mandya-571448

Abstract: Deduplication has become a widely deployed

technology in cloud data centers to improve IT resources

efficiency. However, traditional techniques face a great

challenge in big data deduplication to strike a sensible

tradeoff between the conflicting goals of scalable

deduplication throughput and high duplicate elimination

ratio. We propose AppDedupe, an application-aware

scalable inline distributed deduplication framework in

cloud environment, to meet this challenge by exploiting

application awareness, data similarity and locality to

optimize distributed deduplication with inter-node two-

tiered data routing and intra-node application-aware

deduplication. It first dispenses application data at file level

with an application-aware routing to keep application

locality, then assigns similar application data to the same

storage node at the super-chunk granularity using a

handprinting-based stateful data routing scheme to

maintain high global deduplication efficiency, meanwhile

balances the workload across nodes. AppDedupe builds

application-aware similarity indices with super-chunk

handprints to speedup the intra-node deduplication process

with high efficiency. Our experimental evaluation of

AppDedupe against state-of-the-art, driven by real-world

datasets, demonstrates that AppDedupe achieves the highest

global deduplication efficiency with a higher global

deduplication effectiveness than the high-overhead and

poorly scalable traditional scheme, but at an overhead only

slightly higher than that of the scalable but low duplicate-

elimination-ratio approaches.

Keywords: big data deduplication, application awareness,

data routing, handprinting, similarity index

I. INTRODUCTION

Recent technological advancements in cloud compu-ting,

internet of things and social network, have led to a deluge of

data from distinctive domains over the past two decades.

Cloud data centers are awash in digital data, easily amassing

petabytes and even exabytes of informa-tion, and the

complexity of data management escalates in big data.

However, IDC data shows that nearly 75% of our digital

world is a copy [1]. Data deduplication [2], a specialized data

reduction technique widely deployed in disk-based storage

systems, not only saves data storage space, power and

cooling in data centers, also decreases significant

administration time, operational complexity and risk of

human error. It partitions large data objects into smaller parts,

called chunks, represents these chunks by their fingerprints,

replaces the duplicate chunks with their fingerprints after

chunk fingerprint index lookup, and only transfers or stores

the unique chunks for the purpose of improving

communication and storage effi-ciency. Data deduplication

has been successfully used in various application scenarios,

such as backup system [1], virtual machine storage[3],

primary storage [4], and WAN replication [5]. Big data

deduplication is a highly scalable distributed deduplication

technique to manage the data deluge under the changes in

storage architecture to meet the service level agreement

requirements of cloud storage. It is gen -erally in favor of

source inline deduplication design, be-cause it can

immediately identify and eliminate dupli-cates in datasets at

the source of data generation, and hence significantly reduce

physical storage capacity re-quirements and save network

bandwidth during data transfer.The framework includes

inter-node data assignment from clients to multiple

deduplication storage nodes by a data routing scheme, and

independent intra-node redun-dancy suppression in

individual storage nodes. Unfortunately, this chunk-based

inline distributed de-duplication framework at large scales

faces challenges in both inter-node and intra-node scenarios.

First, for the inter-node scenario, different from those

distributed de-duplication with high overhead in global

match query [37], [43], there is a challenge called

deduplication node in-formation island. It means that

deduplication is only per-formed within individual nodes due

to the communica-tion overhead considerations, and leaves

the cross-node redundancy untouched. Second, for the intra-

node sce-nario, it suffers from the chunk index lookup disk

bottleneck. There is a chunk index of a large dataset, which

maps each chunk’s fingerprint to where that chunk is stored

on disk in order to identify the replicated data. It is generally

too big to fit into the limited memory of a deduplication node

[3], and causes the parallel deduplication perfor-mance of

multiple data streams to degrade significantly due to the

frequent and random disk index I/Os..

II. APPDEDUPE DESIGN

In this section, we use the following three design princi -ples

to govern our AppDedupe system design:

─ Throughput. The deduplication throughput should scale

with the number of nodes by parallel dedupli-cation across

the storage nodes.

─ Capacity. Similar data should be forwarded to the same

deduplication node to achieve high duplicate elimination

ratio.

─ Scalability. The distributed deduplication system should

easily scale out to handle massive data vol-umes with

balanced workload among nodes.

To achieve high deduplication throughput and good

International Journal For Technological Research In Engineering

Volume 6, Issue 9, May-2019 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2019.All rights reserved. 5489

scalability with negligible capacity loss, we design a scal-

able inline distributed deduplication framework in this

section. In what follows, we first show the architecture of our

AppDedupe system. Then we present our two-tiered data

routing scheme to achieve scalable performance with high

deduplication efficiency.

Fig 1:The architectural overview of AppDedupe

A. Interconnect communication

The interconnect communication is critical for the design of

AppDedupe. We detail the operations carried out when

storing and retrieving a file. A file store request is processed

as shown in the Fig. 3: a client sends a PutFileReq message

to the director after file partitioning and chunk fingerprinting.

The message includes file metadata like: file ID (the SHA-1

value of file content), file size, file name, timestamp, the

number of super -chunk in the file and their checksums. The

director stores the file metadata as a file recipe [34], and

makes sure that there has enough space in the distributed

stor-age systems for the file. It also performs the

applicationaware routing decision to select a group of

corresponding application storage nodes for each file. The

director re-plies to the client with the file ID and a

corresponding application storage node list in PutFileResp

message. After received the PutFileResp, the client sends k

LookupSCReq requests to the k candidate dedupe storage

nodes for each super-chunk in the file, respectively, to lookup

the appli-cation-aware similarity index in dedupe storage

nodes for the representative fingerprints of the super-chunk.

These candidate nodes reply to the client with a weighted re-

semblance value for the super-chunk. The client selects a

candidate node as the target route node to store the su-per-

chunk, and notifies the director its node ID by PutSC Req

message. Then, the client sends all chunk fingerprints of the

super-chunk in batch to the target node to identify whether a

chunk is duplicated or not.

Fig 2:Message Exchange for Store Operation.

Fig3: Message Exchange for retrieve operation.

The process of retrieving a file is also initiated by a cli-ent

request GetFileReq to the director, as depicted in Fig. 4. The

director reacts to this request by querying the file recipe, and

forwards the GetFileResp message to the client. The

GetFileResp contains the super-chunk list in the file and the

mapping from super-chunk to the dedupe stor-age node

where it is stored. Then, the client requests each super-chunk

in the file from the corresponding dedupe storage node with

GetSuperChunk message. The dedupe server can retrieve

super-chunk from data containers, and the performance of

restore process can be accelerated, like [35] [36]. Finally, the

client downloads each super-chunk and uses the checksums

of super-chunks and file ID to verify the data integrity.

III. PERFORMANCE EVALUATION

We have implemented a prototype of AppDedupe in user

space using C++ and pthreads, on the Linux platform. We

evaluate the parallel deduplication efficiency in the multi-

core deduplication server with real system implementa-tion,

while use trace-driven simulation to demonstrate how

AppDedupe outperforms the state-of-the-art distrib-uted

deduplication techniques in terms of deduplication efficiency

and system scalability. In addition, we conduct sensitivity

studies on chunking strategy, chunk size, su-per-chunk size,

handprint size and cluster size.

A. Evaluation Platform and Workload

In our prototype dedup-lication system, 7 desktops serve as

the clients, one server serves as the director and the other

three servers for dedupe storage nodes. It uses Huawei S5700

Gigabit Ethernet switch for internal communication. To

achieve high throughput, our client component is based on an

event-driven, pipelined design, which utilizes an asyn-

chronous RPC implementation via message passing over

TCP streams. All RPC requests are batched in order to

minimize the round-trip overheads. We also perform event-

driven simulation on one of the four servers to evaluate the

distributed deduplication techniques in terms of

deduplication ratio, load distribution, memory usage and

communication overhead.

International Journal For Technological Research In Engineering

Volume 6, Issue 9, May-2019 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2019.All rights reserved. 5490

B. Evaluation Metrics

The following evaluation metrics are used in our evalua-tion

to comprehensively assess the performance of our prototype

implementation of AppDedupe against the state-of-the-art

distributed deduplication schemes.

Deduplication efficiency(DE): It is first defined in [22], to

measure the efficiency of different dedupe schemes in the

same platform by feeding a given dataset. It is calculated by

the difference between the logical size L and the physical

size P of the dataset divided by the deduplication process

time T. So, deduplication efficiency can be expressed in (7).

Normalized deduplication ratio(NDR): It is equal to the

distributed deduplication ratio (DDR) divided by the single-

node deduplication ratio (SDR) achieved by a sin-gle-node,

exact deduplication system, and can be ex-pressed in (8).

This is an indication of how close the deduplication ratio

achieved by a distributed deduplica-tion method is to the

ideal distributed deduplication ratio.

Normalized effective deduplication ratio(NEDR): It is

equivalent to normalized deduplication ratio divided by the

similar to the metric used in [7]. Normalized ef-fective

deduplication ratio can be expressed in (9). It indi-cates how

effective the data routing schemes are in elimi-nating the

deduplication node information island.

Number of fingerprint index lookup messages: It in-cludes

that of inter-node messages and intra-node mes-sages for

chunk fingerprint lookup, both of which can be easily

obtained in our simulation to estimate communica-tion

overhead.

RAM usage for intra-node deduplication: It is an es-sential

system overhead related to chunk index lookup in

dedupe server. And it indicates how efficient the chunk index

lookup optimization is to improve the performance of intra-

node deduplication.

IV. CONCLUSIONS

In this paper, we describe AppDedupe, an application-aware

scalable inline distributed deduplication frame-work for big

data management, which achieves a tradeoff between

scalable performance and distributed deduplica-tion

effectiveness by exploiting application awareness, data

similarity and locality. It adopts a two-tiered data routing

scheme to route data at the super-chunk granular-ity to

reduce cross-node data redundancy with good load balance

and low communication overhead, and employs application-

aware similarity index based optimization to improve

deduplication efficiency in each node with very low RAM

usage. Our real-world trace-driven evaluation clearly

demonstrates AppDedupe’s significant adven-tages over the

state-of-the-art distributed deduplication schemes for large

clusters in the following important two ways. First, it

outperforms the extremely costly and poor-ly scalable

stateful tight coupling scheme in the cluster-wide

deduplication ratio but only at a slightly higher system

overhead than the highly scalable loose coupling schemes.

Second, it significantly improves the stateless loose coupling

schemes in the cluster-wide effective de-duplication ratio

while retaining the latter’s high system scalability with low

overhead.

V. ACKNOWLEDGMENTS

This research was partially supported by the National Key

Research and Development Program of China under Grant

2016YFB1000302.

REFERENCES

[1] W. Xia, H. Jiang, D. Feng, Y. Hua “SiLo: A

Similarity-Locality based Near-Exact Deduplication

Scheme with Low RAM Overhead and High

Throughput”, 2011.

[2] P. Shilane, M. Huang, G. Wallace, and W. Hsu

“WAN optimized replication of backup datasets

using stream-informed delta compression”, 2012.

[3] K. Srinivasan, T. Bisson, G. Goodson, and K.

Voruganti “iDedup: Latency-aware, inline data

deduplication for primary storage”,2012.

[4] Y. Fu, H. Jiang, N. Xiao “A scalable inline cluster

deduplication framework for big data

protection”,2012.

[5] D. Frey, A-M. Kermarrec, K. Kloudas

“Probabilistic deduplication for cluster-based

storage systems”,2012.

[6] H. Kaiser, D. Meister, A. Brinkmann, S. Effert

“Design of an Exact Data Deduplication

Cluster”,2012.

[7] Y. Fu, H. Jiang, N. Xiao, L. Tian, F. Liu, L. Xu

“Application-Aware Local-Global Source

Deduplication for Cloud Backup Services of

Personal Storage”,2012.

[8] Y. Fu, H. Jiang, N. Xiao, L. Tian, F. Liu, “AA-

Dedupe: An Application-Aware Source

Deduplication Approach for Cloud Backup Services

in the Personal Computing Environment”,2012.

[9] D. Meister, A. Brinkmann, T. Sub “File Recipe

Compression in Data Deduplication Systems”,2103.

[10] M. Lillibridge, K. Eshghi, D. Bhagwat “Improving

Restore Speed for Backup Systems that Use Inline

Chunk-Based Deduplication”,2013.

