
International Journal For Technological Research In Engineering

Volume 6, Issue 9, May-2019 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2019.All rights reserved. 5508

IMPROVING NETWORK PERFORMANCE & DEPLOYING

CONTAINER-BASED ML SERVICES IN CLOUD ENVIRONMENT

Mr. Bhushan Hiralal Patil
1
, Mr. Arunvel Arunachalam

2
, Prof. Suraj Meghwani

3

M.Tech, Department of Computer Engineering, CDAC ACTS – PUNE, Sandip University, Nashik

Abstract: Cloud computing has an emerged as an important

relevence to improve resource utilization, efficiency,

flexibility, However, cloud platforms cause performance

degradations due to their virtualization layer and may not

be appropriate for the requirements of high performance

applications, such as machine learning. The Research

tackles the problem of improving network performance in

container based cloud instances to create a viable

alternative to run network intensive machine learning

applications. Our approach consists of deploying container

based machine learning based apps via LXC (Linux

Container) cloud instances to increase the available

bandwidth & performance. so to evaluate the efficiency of

this approach and the overhead added by the container-

based cloud environment, we ran a set of experiments to

measure throughput, latency, bandwidth utilization, and

completion times. The outcomes proves that this approach

adds minimum overhead in cloud environment as well as

increases throughput and reduces latency. Containers are a

lightweight virtualization solution to replace virtual

machines for deploying cloud applications as they are less

resource and time consuming. Easy deployment of

applications on containers is done using kubernetes which

helps user to analyze applications with various network

topologies improving transfer rate of large data sets which

are required for machine learning models

Keywords: Cloud Computing Containers, virtualization

machine learning, Network Performance, Link

Aggregation, Container-Based Cloud, Container Network,

Performance

I. INTRODUCTION

Today, cloud computing is rapidly developing and large scale

application. As a kind of network-based computing, cloud

computing can provide shared software and hardware

resource to users by using network, which realizes the

reasonable distribution of information and resource.

Meanwhile, cloud computing brings along the changes of the

traditional data center, which produces a new generation of

data center: cloud data center. By building computing

resources, storage resources and network resources into

dynamic virtual resource pool using virtualization technology

But now cloud data center faces with many problems such as

low resource utilization, application and platform can not be

decoupled, application runtime environment limitations are

strong, and operational staff control decrease, which limit the

development of it. Virtual machines (VMs) are an

infrastructure as a service (IaaS) focusing on hardware

virtualization whose techniques have been used at the

infrastructure layer. To achieve sharing and elasticity of

resources, the cloud makes use of such virtualization

techniques for administering scheduling, provisioning and

security. However, VMs suffer from slow start up time and

exhibit lower densities even when full. Applications occupy

entire host operating system (OS) in VMs and there are also

several limitations on storage and Containers offer as a

lightweight virtualization solution to deploying applications

across various domains and sectors. They allow

infrastructure and platform to be shared in a secure and

portable manner, along with application packaging and

management. They facilitate faster deployment of

applications and have faster start up times. They are less

resource and time consuming and can be scaled up or down

providing higher density levels than full VMs. They facilitate

easier and portable across infrastructure deployment of

applications in an interoperable way. Using containers will

accelerate agile application development of distributed

applications providing an additional layer of protection by

isolating applications and the host, without using incremental

resources. They also allow easy updates to applications. Fig.

1 shows the difference between traditional hypervisor and

container-based architectures

Fig.1: Traditional hypervisor architecture on the left and a

container-based architecture on right
Container technology is a virtualization technology at the

operating system level, it can provide a separate file system,

network and process context space for each running server

without modifying the host operating environment. So that,

each service can arbitrarily change the contents of the

operating system files, configuration of network and user in

their own virtual running space, without damage to real host

system files. Although an instance of the operating system is

shared between containers, they run independently and

without interference. Besides, do not relaying on the integrity

of the operating system makes container more lightweight

and fast start than virtual machine, which meets the needs of

cloud data center. Cloud computing infrastructures support

rapid resource provisioning, which in turn is a suitable option

to deploy a container environment. Primarily due to the

advances of cloud platforms, there are possibilities to

International Journal For Technological Research In Engineering

Volume 6, Issue 9, May-2019 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2019.All rights reserved. 5509

develop new business models based on the pay-per-use

billing structure. Also, there are cloud computing

technologies (specifically those focused on network and

storage) that provide lower performance degradation.

However, the use of cloud environments for processing

distributed applications has traditionally been avoided when

it requires high bandwidth and throughput as well as low

latency. Traditional cloud providers, which use virtualization

technologies that are not optimized for the execution of

distributed applications, add significant overheads. Our main

challenge in this paper is to improve network performance in

the container-based cloud environment for applications. We

chose to increase the network performance by using the IEEE

802.3ad link aggregation standard. It gives and uses a

standard method to combine multiple physical links that can

be used as a single logical link. The standard is a layer 2

control protocol that can be used to automatically detect,

configure, and manage a single logical link with multiple

physical links between two adjacent enabled devices. Thus,

link aggregation provides higher availability and capacity

while network performance improvements are obtained using

existing hardware (IEEE 802.3ad requires support in a

network switch). Also, our goal is to target a high-

performance cloud environment by deploying container-

based instances, where applications may run. We chose

container-based technologies to enable multiple isolated

Linux systems to run on a single host through Namespaces

(providing isolated user environments in the form of

containers) and cgroups (providing resource management and

accounting). LXC (Linux Container) technology is an

important part of this cloud infrastructure, because it is a free

software that provides a powerful set of user space tools and

utilities to manage Linux containers

II. RELATED WORK

In this section, we provide a brief background about

machines placement, Docker containers, Docker Container

Networking. We also described related work reported in the

literature with regards to performance of Docker containers

when compared to the performance of VMs. ALSO we

should focus on container network models. There are two

mainstream models called Container Network Model (CNM)

and Container Network Interface (CNI).

A. Virtual machine placement:

Nowadays, cloud computing has been widely used.The

Virtual Machines (VMs) are created on servers in cloud

computing. With the rapid development of Cloud computing

technologies, the management of Cloud resources has

become crucial to Cloud Service Providers (CSPs). CSPs

provide on demand services to the end users through

provisioning Virtual Machines (VMs) in their available

Physical Machines (PM)s. In order to reduce the Total Cost

of Ownership(TCO), CSPs consolidate multiple VMs in each

of the available PMs. In this context, significant number of

research work have already been done which indicate the

benefit of running multiple VMs in a PM. The VM

scheduling on servers for energy saving in the cloud

computing has been studied. The Virtual Machine

Scheduling Algorithm (VSA) is proposed to schedule VMs

in cluster environments. However, it is not effective and has

high time complexity. The VM scheduling on servers for

energy saving inthe cloud computing has been studied. The

Virtual Machine Scheduling Algorithm (VSA) is we propose

a new scheduling method called Energy-aware Virtual

Machine Placement (EVP)method to schedule VMs that can

reduce power consumption complexity. Power consumption

of a PM depends on the number of VMs deployed, reserved

resources of VMs, and the state ofthe processes running

within the VMs. There are significant number of works that

try to minimize the the overall power consumption of a data-

center by reducing the number of active PMs. They classify

this problem of mapping the VMs to minimum number of

PMs satisfying the constraints of physical resources and the

requirements of the VMs as the VM Placement Problem

B. Docker Container

Docker containers are lightweight, highly portable and

scalable. Such features become attractive to develop

containerized services (or microservices). In the literature,

container-based services are reported to always outperform

VM-based services. For example, it was shown in that

containers outperform virtual machines in terms of execution

time, latency, throughput, power consumption, CPU

utilization and memory usage. However, according to

Amazon AWS documentation. it was reported that Docker

containers are deployed on top of virtual machines (VMs),

and not on bare-metal hardware. This contradicts the

common practice of container deployment which is widely

adopted in the literature of deploying container on bare-metal

hardware. This was the primary motivation for our research

work in which we aim to investigate and assess the

performance difference resulting from deploying services

using VMs (virtual machines) and using Docker containers.

Fig.A&B: Common approach of hosting of VMs vs.

Containers

The Services deployed using containers are expected to take

less execution time thus resulting in less latency over virtual

machines as in. In addition, containers were shown to

introduce lower power consumption over virtualized

technologies.

C. Docker Container Networking:

As an important part of container technology, container

network mainly solves the problem of communication

between containers in the case of ensure container isolation.

Since container is a new technology, container network is not

yet mature, and many container network solutions were

proposed to solve the problems of container network. Each

International Journal For Technological Research In Engineering

Volume 6, Issue 9, May-2019 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2019.All rights reserved. 5510

solution has its own characteristics, and how to choose

appropriate solution according to different scenarios is not

only very important for the efficiency of communication

between containers but also of great significance in

improving cloud data center performance. In order to provide

experiences and references for choosing and deploying

appropriate container network, we introduce three kinds of

mainstream container network solutions (Flannel, Docker

Swarm Overlay, Calico), and design experiments to measure

and evaluate the performance of them

Flannel

Flannel is a network planning service designed for

Kubernetes. The deployment and configuration for Flannel is

relatively simple, through the Etcd assigned IP address, it can

manage multiple containers cross host. Flannel is designed to

be lightweight and superior in performance. It can solve the

IP conflict in Docker default configuration by replanning the

allocation of IP address. When communication, Flannel will

assign each Docker daemon an ip segment Through Etcd to

maintain a cross host routing table, the IP between containers

can be connected to each other. When two containers across

the host communicate with each other, they will modify the

destination address and source address of the packet, and

unpack it after sending to the target host through routing

table. Flannel is the most mature in container network

solutions, but since each host is a separate subnet network

architecture, it is not possible to achieve fixed IP container

drift and lack of flexibility. Beside, because of the lack of

multi-subnet isolation mechanism, high dependency on the

upper design and other defects, Flannel can only be used for

the container cluster which have low requirement for

flexibility

Docker Swarm Overlay

Docker Swarm Overlay is a network solution that Docker

uses the Swarm framework to solve network communication

problems between containers. Swarm Overlay was originally

native to Docker, the deployment and configuration is the

simplest. previously, Overlay needed to add additional key-

value storage (Consul, Etcd etc) in the Swarm cluster to

synchronize the network configuration to ensure that all

containers were in the same network segment. This storage

was built in Docker and integrated the support of Overlay

Networks, which simplifies the complexity of network

configuration. Overlay integrates load balancing and service

address function through the Swarm, it provides a DNS

address for each service and maintains a common port.

Besides, it implements the monitoring and management

mechanism to maintain the operation of service state.

However, Overlay solution uses Vxlan for cross host

communication and requires encapsulation and

decapsulation, which lose the performance of network, so it

is just suitable for the construction of a simple network with

low performance.

Calico

Calico is a high performance data center solution base on

BGP protocol, implemented through three layer routing. By

compressing the entire Internet’s extensible IP network

principles to the data center level, Calico uses vRouter for

data forwarding at each compute node and spreads the

workload routing information to the entire Calico network

through the BGP protocol to ensure that all data traffic are

completed through IP packet. Similar to the general routing

scheme, Calico runs a large number of routing tables on the

host, these routing tables are dynamically generated and

managed by Calico through its own components, with no

involvement of tunnels or NATs and less performance loss.

These make sure that Calico is of high performance.The

Calico solution is suitable for networks that require high

performance and high isolation. Each container in Calico has

its own network protocol stack, which facilitates node

interconnection. Because Calico directly uses the data center

network structure, when deploying network, there is no need

to rely on independent network equipment, so the transfer

efficiency higher.

Container Network Model

CNM is proposed by Docker’s Libnetwork project, which

focuses on container networks research, providing

standardized interfaces and components between the Docker

daemons and network drivers. architecture is depicted in

Figure below. CNM mainly includes three components

named sandbox, endpoint and network. Sandbox is an

isolated network operating environments that preserves the

configuration of container network stack, End point

represents the point which container access to network, we

can think of an endpoint as a physical network card. Network

represents a set of endpoints that can communicate directly

to each other, which based on Linux bridge or vlan.The

emergence of CNM makes it possible that different

containers within the same subnet can run on different hosts.

LibNetwork can meet the needs of the upper and lower

levels. For the upper application, Docker daemon can

perform the creation and management of network by calling

the APIs providing byLibNetwork; for the lower application,

the five drivers built into LibNetwork can provide different

types of network services. CNM occupies the core of

LibNetwork, which is the key to provide network services.

Figure d. CNM Architecture.

Container Network Interface(CNI)

CNI is a container network specification with compact

structure proposed by CoreOS. The key to CNI lies in the

simple contract between the container Runtime and the

International Journal For Technological Research In Engineering

Volume 6, Issue 9, May-2019 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2019.All rights reserved. 5511

network plugin. CNI provides a universal container network

model, container can be added to multiple networks driven

by different plugin, and each network has its own

corresponding plugin and unique name. Therefore, CNI can

be compatible with other container technology and the upper

system. CNI provides a universal container network model,

container can be added to multiple networks driven by

different plugin, and each network has its own corresponding

plugin and unique name. Therefore, CNI can be compatible

with other container technology and the upper system.CNM

and CNI are not two completely contradictory models, they

can be transformed into each other. Comparing Figure 2.3 to

Figure 2.4, Sandbox in CNM is consistent with Container

Runtime in CNI. The Endpoint in CNM is implied in the

ADD/DELETE operation in CNI.The CNI plugin only needs

to provide two commands throughout the model: one for

adding network interfaces to the specified network and the

other to remove it. These two commands are called when

container is created and destroyed. CNI architecture is

depicted in Figure e.

Figure e. CNI Architecture.

Introducing IEEE 802.3ad

it is link aggregation enables you to group Ethernet interfaces

at the physical layer to form a single link layer interface, also

known as a link aggregation group (LAG) or bundle. The

IEEE 802.3ad enables dynamic link aggregation and dis-

aggregation by exchanging the packets in Docker cluster. In

this case, the switch equipment dynamically groups similar

ports into a single logical link, increasing the bandwidth and

balancing the load for the Containers. Some users needed

more performance in their network than a single Fast

Ethernet link can provide, but cannot afford the expense or

do not need the bandwidth of a higher-speed Gigabit Ethernet

link. Using IEEE 802.3ad link aggregation in this condition

provides increased port density and bandwidth at a lower

cost. For example, if you need 450 Mbps of bandwidth to

transmit data and have only a 100-Mbps Fast Ethernet link,

creating a LAG bundle containin five 100-Mbps Fast

Ethernet links is more cost-effective than buying a single

Gigabit Ethernet link.

Kubernetes

Kubernetes provides the means to support container-based

deployment within Platform-as-a-Service (PaaS) clouds,

focusing specically on cluster-based systems. It allows to de-

ploy multiple\pods"across physical machines, enabling scale

out of an application with dynamically changing workload.

Each pod can support multiple Docker containers, which are

able to make use of services (e.g. file system and I/O)

associated with a pod. With significant interest in supporting

cloud native applications (CNA). One of the most popular

solutions for container-based virtualization is using Docker

for container packaging with Kubernetes for multihost

container management. Kubernetes follows the master slave

model, which uses a master to manage Docker containers

across multiple Kubernetes nodes (which are physical or

virtual machines). A master and its controlled

Fig f. System Architecture

etcd: As a storage component, etcd is used to store the state

of the system, allowing the other master components to

synchronize themselves to the desired state by watching etcd

Scheduler. The scheduler is responsible for scheduling each

pod on a node in the system

API Server. The API server is responsible for receiving

commands and manipulating the data for Kubernetes objects

(such as pods) accordingly in the system. User scan send

commands to the API server by using the Kubernetes

command line interface (CLI), kubectl

Controller Manager. The controller manager monitors etcd

and regulates the state of the entire system. In other words, if

the state of the system changes, the controller manager will

force the system into the desired state using the Kubernetes

API.

Prometheus

Prometheus is an open-source systems performance

monitoring and alerting toolkit originally built at

SoundCloud. Since its inception in 2012, many companies

and organizations have adopted Prometheus, and the project

has a very active developer and user community. It is now a

standalone open source project and maintained

independently of any company Monitoring nodes constitute a

―Kubernetes cluster.‖ A developer can deploy an application

in the docker containers via the assistance of the Kubernetes

master. Typically, an application is divided into one or more

tasks executed in one or more containers master is the central

controller of the system. It contains four Kubernetes master

components—etcd, Scheduler, APIServer, and Controller

Manager—which are used to controland manage the nodes

and the containers in the system. Briefly,the functions of the

four master components in our system areas follows:∙

applications & application servers is an important part of the

today’s DevOps culture & process. You want to

International Journal For Technological Research In Engineering

Volume 6, Issue 9, May-2019 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2019.All rights reserved. 5512

continuously monitor your applications and servers for

application exceptions, server CPU & memory usage, or

storage spikes. You also want to get some type of notification

if CPU or memory usage goes up for a certain period of time

or a service of your application stops responding so you can

perform appropriate actions against those failures or

exceptions. With monitoring, there are a number tools out

there such Amazon CloudWatch, Nagios, New Relic,

Prometheus and others.

Prometheus Component

a. Promtheus Server:

Prometheus has a main central component called Prometheus

Server. As a monitoring service, Prometheus servers monitor

a particular thing. That thing could be anything: it could be a

an entire Linux server, a stand-alone Apache server, a single

process, a database service or some other system unit that

you want to monitor. In Prometheus terms, we call the main

monitoring service the Prometheus Server and the things that

Prometheus monitors are called Targets. So the Prometheus

server monitors Targets. As said earlier, "Targets" can also

refer to an array of things. It could be a single server or a

targets for probing of endpoints over HTTP, HTTPS, DNS,

TCP and ICMP (*Black-Box Exporter), or it could be a

simple HTTP endpoint that an application exposes through

which the Prometheus server gets the application's health

status from. Each unit of a target such as current CPU status,

memory usage (in case of a Linux server Prometheus Target)

or any other specific unit that you would like to monitor is

called a metric. So Prometheus server collects metrics from

targets (over HTTP), stores them locally or remotely and

displays them back in the Prometheus server.

Fig h (a).Prometheus Server

You get the metrics information by querying from the

Prometheus’s time-series database where the Prometheus

stores metrics and you use a query language called PromQL

in the Prometheus server to query metrics about the targets.

In different words, you ask the Prometheus server via

PromQL to show us the status of a particular target at a given

time.

b. Visualization Layer with Grafana:

You use Grafana, the visualization layer, as the its a

compononet of prometheus server to visualize metrics stored

in the Prometheus time-series database. So, Instead of writing

PromQL queries directly into the Prometheus server, you use

Grafana UI boards to query metrics from Prometheus server

and visualize them in the Grafana Dashboard.

c. Alert Management with Prometheus Alert Manager

Prometheus also has a Alert Management component called

AlertManager for firing alerts via Email or Slack or other

notification clients. You define the Alert Rules in a file called

alert.rules through which the Prometheus server reads the

alert configurations and fires alerts at appropriate times via

the Alert Manager component. For example, if the

Prometheus server finds the value of a metric greater than the

threshold that you defined in the alert.rules file for more than

30 seconds, it will trigger the Alert Manager to fire an alert

about the threshold and the metric. We will see how

AlertManager works with Prometheus and how do we setup

in the Prometheus stack in some later post. The above 3

components are the basis of the entire Prometheus

Monitoring system. You need the central Prometheus server,

a target and a visualization layer.

III. LITERATURE REVIEW

This section describes the primary related works aimed at

improving the network performance and deploying Container

Based instances or Services. Our first scenario consists of

evaluating network performance and then second scenario

consist deploying Container based ML services The Authors

Wattanasomboon, P., & Somchit, Y. (2015, October)[1]

proposes the method called EVP(Energy-Aware virtual

machine placement) to method to schedule VMs that can

reduce power consumption. We also formulate power

consumption model to evaluate the performance of the EVP

method. Finally, we evaluate the EVP method by simulation.

On The basis of experimental results show that the EVP

method has better performance. There are many researches

of VM scheduling for energy saving. Befor using EVP

method for our approach, we have to check performance of

our VMs and containers and choose which platform is better

to to deploy the ML(machine learning)Services.the Salah,

Tasneem, et al.[5] stated the performace comparison between

VMs and Containers and gave theirs results as Container

always outperforms the VM in terms of the parameters like

Cpu Utilization, latency, Throughput, Memory usage,

Execution Time etc. So Services deployed using containers

are expected to take less execution time thus resulting in less

latency over virtual machines as in.

Fig3. Hosting of Containers in Amazon cloud

Furthermore, according to Amazon , Docker containers are

deployed on top of virtual machine, which is against the

common practice of deployment as depicted in Fig.A&B and

Fig.3 shows the container deployment approach adopted by

Amazon cloud. The Author Zeng, Hao, et al. IEEE, 2017,[8]

stated Container technology As an important part of

container technology, container network mainly solves the

problem of communication between containers in the case of

ensure container isolation. Since container is a new

technology, container network is not yet mature, and many

container network solutions were proposed to solve the

International Journal For Technological Research In Engineering

Volume 6, Issue 9, May-2019 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2019.All rights reserved. 5513

problems of container network. Each solution has its own

characteristics, and how to choose appropriate solution

according to different scenarios is not only very important for

the efficiency of communication between containers but also

of great significance in improving cloud data center

performance. In order to provide experiences and references

for choosing and deploying appropriate container network,

we introduce three kinds of mainstream container network

solutions (Flannel, Docker Swarm Overlay, Calico), and

design experiments to measure and evaluate the performance

of them. After Forming or Constructing the network for

container we wanna improve the performance of the network.

So the Author Rista, Cassiano, et al. IEEE, 2017.[6]

published a paper which talks about the network performace

improvement, so auther aims at provide a suitable approach

to deploy dynamic link configuration and network link

aggregation by using IEEE 802.3ad. so we used the

std.802.3ad for improving the performance of our approach,

so our goal is to target a high-performance cloud

environment by deploying container-based instances or

services. Finally the auther Medel, Víctor, et al.

IEEE,2017,[10] provides the means to support container

based deployment within Platform-as-a-Service(PaaS)

clouds, focusing specifically on cluster-based systems.

Kubernetes enables deployment of multiple pods" across

physical machines, enabling scale out of an application with

dynamically changing workload., Kubernetes provides a

useful approach to achieve this. One of the key requirements

for CNA is support for scalability and resilience of the

deployed application, making more effective use of on-

demand provisioning and elasticity of cloud platforms.

Containers provide the most appropriate mechanism for

CNA, enabling rapid spawning and termination compared to

Virtual Machines (VMs). Kubernetes follows the master-

slave model,which uses a master to manage Docker

containers across multiple Kubernetes nodes (which are

physical or virtual machines). A master and its controlled

nodes constitute a ―Kubernetes cluster.‖ A developer can

deploy an application in the docker containers via the

assistance of the Kubernetes master. So for deployement

purpose we prefer the kubernetes to deploy ML services or

instances.

IV. FUTURE WORK

We will do the performance comparison on PMs, VMs,

Containers, kubernetes ISTIO and also Evaluate the ML

services on this plateforms as this is our primary concern. we

trying to the monitor performance of containers based ml

services by using the prometheus which is a open-source

monitoring and altering toolkit.

REFERENCES

[1] Ernst & Young(1996),―Keeping Electronic Records

Forever‖, Records Wattanasomboon, Pragan, and

Yuthapong Somchit. "Virtual machine placement

method for energy saving in cloud computing."

Information Technology and Electrical Engineering

(ICITEE), 2015 7th International Conference on.

IEEE, 2015.

[2] Su, Nan, et al. "Research on virtual machine

placement in the cloud based on improved

simulated annealing algorithm." World Automation

Congress (WAC), 2016. IEEE, 2016.

[3] Karmakar, Kamalesh, Sunirmal Khatua, and Rajib

K. Das. "Efficient virtual machine placement in

cloud environment." Advances in Computing,

Communications and Informatics (ICACCI), 2017

International Conference on. IEEE, 2017.

[4] Yang, Song, et al. "Reliable virtual machine

placement and routing in clouds." arXiv preprint

arXiv:1701.06005 (2017).

[5] Salah, Tasneem, et al. "Performance comparison

between container-based and VM-based services."

Innovations in Clouds, Internet and Networks

(ICIN), 2017 20th Conference on. IEEE, 2017.

[6] Rista, Cassiano, et al. "Improving the Network

Performance of a Container-Based Cloud

Environment for Distributed Systems." High

Performance Computing & Simulation (HPCS),

2017 International Conference on. IEEE, 2017.

[7] Xu, Pengfei, Shaohuai Shi, and Xiaowen Chu.

"Performance Evaluation of Deep Learning Tools in

Docker Containers." Big Data Computing and

Communications (BIGCOM), 2017 3rd

International Conference on. IEEE, 2017.

[8] Zeng, Hao, et al. "Measurement and Evaluation for

Docker Container Networking." Cyber-Enabled

Distributed Computing and Knowledge Discovery

(CyberC), 2017 International Conference on. IEEE,

2017

[9] Mao, Ying, et al. "Draps: Dynamic and resource-

aware placement scheme for docker containers in a

heterogeneous cluster." Performance Computing

and Communications Conference (IPCCC), 2017

IEEE 36th International. IEEE, 2017

[10] Model, Víctor, et al. "Modelling performance &

resource management in kubernetes." 2016

IEEE/ACM 9th International Conference on Utility

and Cloud Computing (UCC). IEEE, 2016.

[11] Model. Víctor, et al. "Adaptive application

scheduling under interference in kubernetes." Utility

and Cloud Computing (UCC), 2016 IEEE/ACM 9th

International Conference on. IEEE, 2016

[12] Tsai, Pei-Hsuan, et al. "Distributed analytics in fog

computing platforms using Tensorflow and

Kubernetes." Network Operations and Management

Symposium (APNOMS), 2017 19th Asia-Pacific.

IEEE, 2017.

[13] Chang, Chia-Chen, et al. "A Kubernetes-Based

Monitoring Platform for Dynamic Cloud Resource

Provisioning." GLOBECOM 2017-2017 IEEE

Global Communications Conference. IEEE, 2017

[14] Xie, Xiao-Lan, Peng Wang, and Qi Wang. "The

performance analysis of Docker and rkt based on

Kubernetes." 2017 13th International Conference on

Natural Computation, Fuzzy Systems and

Knowledge Discovery (ICNC-FSKD). IEEE, 2017

International Journal For Technological Research In Engineering

Volume 6, Issue 9, May-2019 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2019.All rights reserved. 5514

[15] Rovnyagin, Mikhail M., et al. "Using the ML-based

architecture for adaptive containerized system

creation." Young Researchers in Electrical and

Electronic Engineering (EIConRus), 2018 IEEE

Conference of Russian. IEEE, 2018

