AN ALTERNATE METHOD TO DETERMINE THE ESSENTIAL PRIME IMPLICANTS OF A BOOLEAN FUNCTION

S. B. Sivasubramaniyan ${ }^{1}$, Dr. R. Seshasayanan ${ }^{2}$
${ }^{1}$ Assistant Professor, Department of EEE, Meenakshi Sundararajan Engineering College, Chennai
${ }^{2}$ Professor, Department of ECE, College of Engineering, Guindy, Anna University, Chennai

Abstract

The present work proposes an alternate method to determine the essential prime implicants from a prime implicant chart derived using the tabulation method. The procedure is accomplished by assigning weights to the each of the implicants of the function. The prime implicants is visualized to group themselves in varying degrees of strengths. Index Terms: Prime implicants, Essential Prime implicants, Quine-McCluskey method, Karnaugh Map.

I. INTRODUCTION

The classical approaches like Quine-McCluskey (QMC) method in two level logic minimization suffer from increased memory size and computation time. There are attempts to overcome the same by reducing the Prime Implicants (PI) table had been carried out by many smart algorithms. Rudell and Sangiovanni [2] proposed an alternate algorithm to QMC method. The reports suggest that 114 out of 134 benchmark functions of standard set had been solved. In the attempts to reduce the PI table, a covering algorithm Branch and Bound algorithm had been proposed. Dagenais proposed an alternate attempt referred as McBOOLE [3]. In McBOOLE, there are two tables - undecided and retained. McBOOLE is reported to be effective in 86 out of 134 benchmark functions. McBOOLE does this with the help of graphs to store the relations among the primes. Binary decision diagrams have been proposed by Coudert and Madre [4].

II. DIFFERENTIAL STRENGTH OF ADHESION

The minimization of logic function is visualized as a problem of differential strength of adhesion among the prime implicants. The prime implicants with strength more than the threshold is deemed as essential prime implicant.
Associated Weights: The proposed method of determining the minimum sum-of-product expression is accomplished by assigning 'weights' to all the prime implicants obtained after the first step of Quine-McCluskey method. The number of literals which make up the prime implicant determine the 'weights' associated with each prime implicant. The number of literals depends on the number of 1 s being grouped which varies as the power of 2 . A single 1 or a group of two adjacent 1 s or four adjacent 1 s or a maximum of eight adjacent 1s form a prime implicant in a four variable problem. Each of the prime implicants obtained at the end of the first step of Quine-McCluskey method clearly shows the number of 1 s forming the particular prime implicant. The proposed method has an associated 'weight' with each of the prime implicant. It is assumed that all the prime implicant will have a maximum weight of ' 1 ' (not a logical one). The
maximum weight of ' 1 ' is distributed equally to all the constituents of the prime implicant when considered alone. If two adjacent 1 s are grouped together to form a prime implicant, each of the two 1 s is assigned an equal weight of 0.5 each. If the constituents 1 s of the group are four in number, then each 1 s in the group is assigned 0.25 each. Karnaugh map is shown in Figure 1 and Table 1 shows the associated weights of the prime implicants.

Figure 1: Karnaugh maps of groupings of 1s
Table 1 (a): Associated weights of Implicants

Strengths	f	3	
Initial		1	7
$(3,7)$	2	0.5	0.5
Final		0.5	0.5
Table 1(b): Associated weights of Implicant			

Strengths		f	1	3	5
Initial	1	1	1	7	
$(1,3,5,7)$	4	0.25	0.25	0.25	0.25
Final		0.25	0.25	0.25	0.25

If more than one prime implicants overlap, then the associated weight of that particular 1 (implicant) will share or lose half of its weight to the adjacent group. Figure. 2 shows the Karnaugh map. The associated weights are shown in Table 2.

Figure 2: Two loops sharing the same 1 Table 2:Associated weights of Implicants

Strengths			3	6
Initial		1	1	1
$(3,7)$	2	0.5	-	0.5
$(6,7)$	2	-	0.5	0.25
Final		0.5	0.5	0.25

B. Removal of groupings with lower strengths: The assignment of weights is continued for all the prime implicants in the prime implicants chart. The prime implicants with more number of 1 s is given priority ahead of the prime implicants made up of lesser number of 1 s . The final combined weights of each of the prime implicant is assessed based on the threshold. The prime implicants lesser than or equal to the threshold are discarded and the ones which have higher values are the essential prime implicants. The threshold value varies according to the problem in hand. The maximum value assigned to an implicant in the problem is taken as the threshold i.e., if the problem in hand has prime implicants with two 1 s , then the threshold is 0.5 . If the problem has only prime implicants with four 1 s , then the threshold is 0.25 and so on.
Illustrative Examples: The list of prime implicants at the end of the first step of Quine-McCluskey method for the problem $\mathrm{f}=\operatorname{Em}(0,1,2,5,6,7,8,9,10,14)$ are $(0,1,8,9),(0,2,8$, $10),(2,6,10,14),(1,5),(5,7),(6,7)$. The threshold is 0.5 for the problem in hand as the maximum 'weight' taken by the implicant is 0.5 as shown in Table 3.
Table 3: Threshold for the Prime Implicants of $\mathrm{Em}=(0,1,2,5,6,7,8,9,10,14)$

Group	$\mathrm{f}=$ No. of 1 s	$1 / \mathrm{f}$
$(0,1,8,9)$	4	0.25
$(0,2,8,10)$	4	0.25
$(2,6,10,14)$	4	0.25
$(1,5)$	2	0.50
$(5,7)$	2	0.50
$(6,7)$	2	0.50

Table 4: Changing weights of each of the implicants of $\mathrm{Em}=(0,1,2,5,6,7,8,9,10,14)$ Stren

gths	0	1	2	5	6	7	8	9	10	14
Initial	1	1	1	1	1	1	1	1	1	1
$(0,1$,	.25	.25	-	-	-	-	.25	.25	-	-
$8,9)$										
$(0,2$,	.12	-	.25	-	-	-	.12	-	.25	-
$8,10)$	50						50			
$(2,6$,	-	-	.12	-	.25	-	-	.25	.12	.25
$10,14)$			50						50	
$(1,5)$	-	.12	-	.50	-	-	-	-	-	-
		50								
$(5,7)$	-	-	-	.25	-	.50	-	-	-	-
$(6,7)$	-	-	-	-	.12	.25	-	-	-	-
					50					
Final	.12	.12	.12	.25	.12	.25	.12	.25	.12	.25
	50	50	50		50		50		50	

Table. 4 shows the weights associated with each implicants in the PIs taken and the final values taken by them after groupings. The final values of the individual groupings are added to arrive at the combined strength of the groupings. The order in which the groupings are taken is random.

Figure 4: PIs and EPIs of $\mathrm{Em}=(1,2,3,5,6,7,10,11,13,15)$

Table. 5 shows that four of the prime implicants $(0,2,8,10)$, $(1,5),(5,7),(6,7)$ are very weak. This is because the combined strengths of the four prime implicants are less than the threshold. Of the four PIs, two PIs with four 1s and of the 3 PIs with two 1s, the weakest among them is eliminated. The PIs $(1,5)$ and $(6,7)$ are the weakest as shown in the Table. 5.

Elimination of $(1,5)$ makes the PI $(0,1,8,9)$ to increase from its strength from .625 to .75 as implicant 1 in $(1,5)$ gives its share of 0.125 to implicant 1 in $(0,1,8,9)$. The same is true with $(5,7)$ whose strength increases to 0.5 to .75. Elimination of $(6,7)$ makes the PI $(2,6,10,14)$ to have an increased strength of 0.75 and $\operatorname{PI}(5,7)$ to become 1.0

Now the weakest PI with four 1 s is chosen for elimination. The process gives PI $(0,1,8,9)$ a strength of 1.0 and PI $(2$, $6,10,14)$ a strength of 1.0 .
Table 5: Combined weights of the Prime Implicants of $\mathrm{Em}=(0,1,2,5,6,7,8,9,10,14)$

Prime Implicants	Combined Strength	Total	Status
$(0,1,8,9)$	$.1250+.1250+.1250+.25$.625	Strong
$(0,2,8,10)$	$.1250+.1250+.1250+.1250$.5	Weak
$(2,6,10,14)$	$.1250+.1250+.1250+.25$.625	Strong
$(1,5)$	$.1250+.25$.375	Weak
$(5,7)$	$.25+.25$.5	Weak
$(6,7)$	$.1250+.25$.375	Weak

Table 6: Restored weights of the Prime Implicants of Em $=(0,1,2,5,6,7,8,9,10,14)$

Prime Implicants	Combined Strength	Total	Status
$(0,1,8,9)$	$.1250+.25+.1250+.25$.75	Strong
$(0,2,8,10)$	$.1250+.1250+.1250+.1250$.5	Weak
$(2,6,10,14)$	$.1250+.25+.1250+.25$.75	Strong
$(5,7)$	$.50+.50$	1.0	Strong

Figure. 3 and Table. 7 show the PIs and EPIs for the problem $\mathrm{f}=\operatorname{Em}(0,1,2,5,6,7,8,9,10,14)$.

Figure 3(a): Prime Implicants of $E m=(0,1,2,5,6,7,8,9,10,14)$

Figure 3(b): PIs and EPIs of $\mathrm{Em}=(0,1,2,5,6,7,8,9,10,14)$

Table 7: EPIs of Em $=(0,1,2,5,6,7,8,9,10,14)$.

Prime Implicants	Combined Strength	Total	Status
$(0,1,8,9)$	$.25+.25+.25+.25$	1.0	Essential
$(2,6,10,14)$	$.25+.25+.25+.25$	1.0	Essential
$(5,7)$	$.50+.50$	1.0	Essential

The problem defined by the sum of minterms given as $f=E m$ $(1,2,3,4,5,6,7,10,11,13,15)$ has six prime implicants from the first step of Quine-McCluskey method (Figure. 4). All the six PIs are essential in this problem which has a threshold of 0.25 .

III. CONCLUSION

Thus an alternative method to determine the Essential Prime Implicants from a Prime Implicant chart is proposed with this paper. However the Prime Implicant chart is taken from the conventional techniques. The method to extend the determination of Prime Implicant also based on the differential strength of adhesion is foreseen as a future development.

REFERENCES

[1] E. J. McCluskey, Jr., "Minimal Sums for Boolean Functions Having Many Unspecified Fundamental Products," 1961.
[2] R. L. Rudell and A. Sangiovanni-Vincentelli, "MultipleValued Minimization for PLA Optimization," in IEEE Transactions on Computer-Aided Design, vol. CAD-6, No. 5, September, 1987.
[3] M. Dagenais, V. Agarwal, N. Rumin, "Mc BOOLE: A New Procedure for Exact Logic Minimization," in IEEE Transactions on Computer-Aided Design, vol. CAD-5, No. 1, January, 1986.
[4] O. Coudert, J. C. Madre, H. Fraisse, "A New Viewpoint on Two-Level Logic Minimization," in $30^{\text {th }}$ ACM/IEEE Design Automation Conference, 1993.
S. B. Sivasubramaniyan completed his Undergraduation in Electrical and Electronics Engineering from University of Madras and his Masters in VLSI Design from Anna University in 2002 and 2009 respectively.
Currently he is working as Assistant Professor in Meenakshi Sundararajan Engineering College, Chennai. His research interest includes Evolutionary Algorithms, Adaptive Hardware and Unconventional Energy Sources.

Dr. R. Seshasayanan was born in the year 1958 in India and received his B.E degree from College of Engineering and M. E., degree from Anna University in the year 1980 and 1983 respectively.
He is a retired Professor from the Department of Electronics and Communication Engineering, Anna University and his area of interests are Low Power VLSI Design and Reconfigurable Architectures for Image Processing. He is actively involved in various R\&D projects funded by NIOT and CVRDE.

