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Abstract: This paper provides a literature review on smart 
grids and big data. Smart grid refers to technologies used to
modernize the energy delivery of traditional power grids, 
using intelligent devices and big data technologies. The 
modernization is performed by deploying equipment such as 
sensors, smart meters, and communication devices, and by 
invoking procedures such as real- time data processing and 
big data analysis. A large volume of data with high velocity 
and diverse variety are generated in a smart grid 
environment. This paper presents definitions and 
background of smart grid and big data. Current studies and 
research developments of big data application in smart 
grids are also introduced. Additionally, big data challenges 
in smart grid systems such as security and data quality are 
discussed.
Keywords: Big data, Demand response, Electric vehicles, 
Quality, Renewable energy, Smart grid, Security.

I.   INTRODUCTION
The traditional electric grid based on centralized generation 
plants and unidirectional transmission and distribution 
systems is transitioning to a smart grid that is decentralized 
and multidirectional with a high integration of information 
and communication technologies. The IEEE 2030 standard 
[1] states that the smart grid system is based on an 
interconnection of three systems: 1) the electric power 
system which emphasis the power generation, transmission, 
distribution and consumption of power. 2) the 
communication system which emphasis the communication 
connectivity among systems, devices and applications. 3) the 
information technology system which includes technologies 
that store, process and manage data information for decision 
making on the power system operation. With this 
development of the smart grid, large amounts of smart meters 
and sensors are being deployed with huge coverage. As a 
result, a large number of multi- sourced heterogeneous smart 
grid data is being produced. Enormous value can be extracted 
from this smart grid data that can enhance the quality of the 
grid, also provide better service for different types of 
customers. The smart grid data is large in volume, high in 
velocity (moving from a system that is read once every 
month to a system that generates readings every few 
minutes), and wide in variety (different types of data are 
generated from various resources). Interestingly, the 
characteristics of the nature of smart grid data can be 
considered as a big data challenge that requires advanced 
information technology systems and cyber infrastructure to 
handle and analyze this huge amount of data. Data mining 
applications have been widely used to pro- mote the 

reliability and automation of the electric grid, clustering [2]–
[6], classification [7], [8] and prediction [8]–[10] have been 
main topics of research during past years. However, the 
traditional data management techniques and applications are 
not designed to handle big data. Therefore, developing 
frameworks that address the challenges of smart grid big data 
analytics are of research interest. A cloud based dynamic 
demand response platform for smart grid big data is 
presented in [11]. Also, a cloud based visual analytics 
framework to monitor the grid status, including micro-
generators and prosumers, is presented in [12]. A recent 
framework that covers the life cycle of smart grid big data 
from generation to analytics is presented in [13]. The work in 
[13] introduces a framework utilizing state-of-the-art big 
data components to address the smart grid big data 
challenges. Also, various data analytical applications can be 
performed on top of the frame- work. However, the 
framework presented in [13], is not able to scale with big 
data applications that require low latency

II.   OVERVIEW OF SMART GRID AND BIG DATA
Smart Grid
The deployment of smart meters and sensors throughout the 
grid results in massive amounts of data. This includes
generation side data (wind farms and photovoltaic plants), 
consumption side data (residential homes, factories and elec-
tric vehicle charging stations), prosumers data (residential 
photovoltaic panels and vehicle-to-grid) and, weather and 
natural disasters data can be included in the smart grid 
system. Also, images and video footage could be included to 
detect physical attacks (California transmission substation
sniper attack [23]) or investigate power outages. The smart 
grid data is considered to be large in volume, high in velocity 
and wide in variety. The value of this smart grid big data 
becomes useful when integrated with multi-sourced existing 
smart grid data in an analytics environment, and can 
potentially enhance the functionality of the smart grid. Fig. 
(1) Shows the structure of traditional and smart grids [16]. 
The traditional power grid includes unidirectional 
transmission, meaning that power flows from power
generators to consumers [17]. Smart grid systems, on the 
other hand include bidirectional transmission, data driven 
system, and renewable energy resources to offer additional 
utilities to customers, distributers, and providers [17]. 
Despite all its benefits, smart grids have difficulty in 
handling large
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Fig. (1). Traditional grid vs. smart grid [16].
volume of data within an acceptable time limit and hardware 
resources [18].

Big data in Smart Grids
“Big data has high volume, high velocity, and/or high 
variety information assets that require new forms of
processing,” said Douglas Laney [19]. Smart grids require 
information from sources including sensors, smart meters,
Phasor Measurement Units (PMUs), Geographic 
Information Systems (GIS), weather data, population data, 
internet data and energy market pricing and bidding data 
collected through Automated Revenue Metering systems 
(ARMs). Notwithstanding the extent of these informational 
collections, the absence of physical or worldly connection 
between’s their components renders them past the extent of 
conventional examination strategies [2]. Important state data 
from all elements of the lattice (at all degrees of age and 
burden) must be spoken with insignificant inactivity to stake
holding respondents that rely upon this data as working 
parameters [12].
Big data analytics are the key to developing modern 
technologies that facilitate interaction among the smart grid
main components including hardware, software, network, 
user, server, and data [17]. Big data analytics rely on data
mining and modeling algorithms that facilitate corrective, 
predictive, distributed and adaptive decision making
techniques [18]. The diversity of information in the power 
grid’s big data sources requires the use of batch, streaming,
and interactive processing methods for optimal handling 
based upon the attributes of the data [17]. The big data
attributes can be described by the 4V’s model: volume, 
velocity, variety, and value [20, 21]. Big data in smart grids
features similar “4V” characteristics [22, 23].

Volume
Service organizations are supplanting conventional meters 
with keen meters, which produce huge measure of 
information [24]. In a huge service organization with one 
million keen meters, if each 15-minute information is 
gathered, 35.04 billion records with volume of 2920 TBs 
information will be created [25]. The drastic increase in
electric power systems data volume introduces several 
challenges which will be further discussed in section 4.

Velocity
Speed in vitality huge information setting alludes to the 
speed of putting away, handling and investigating the 
information. Dissimilar to conventional information insight 
gadgets, the capacity and preparing of vitality enormous 

information require quick and continuous ability [26]. 
Gushing information handling is utilized permitting social 
information inquiries to be consistently refreshed. High 
speed information is broke down as far as stream-to-
connection, connection to-connection or connection to-
stream inquiries [22]. Regular questioning dialects utilized 
incorporate Cassandra Query Language (CQL), Stream 
Processing Language, Spark Streaming, Storm, and Fink 
Framework and Apache Drill [2, 17, 22]. The outcome is the 
ongoing association with information enduring ostensible 
idleness. Specially appointed questions can be handled in 
PetaByte (PB) extents inside a couple of moments [2]. 
Along these lines, the speed of information handling can be 
diminished to a couple of moments enabling the vitality 
framework to settle on quick and brief choices, for example, 
deficiency location by means of PMUs and matrix self-
mending reactions[18].

Variety
There are regularly three unique information types in shrewd 
vitality frameworks: Structured, semi-organized, and 
unstructured. The level of structure is characterized by the 
arrangement of the substance exhibited: records with 
qualities grouped by unmistakable classifications (for 
example call records from a telecom organization) are 
viewed as organized while graphical information getting a 
relationship from the plot of factors is viewed as semi-
organized. A totally freestyle content passage, for example, a 
Twitter post or online audit is unstructured information [22]. 
In a savvy matrix, vitality utilization information establishes 
the organized information; correspondence information 
among clients and seller gadgets structure the semi-
organized information; and vitality use email or SMS notices 
are instances of unstructured information[24].

Value
Worth is a consequence of the initial three V's with some 
calculation included. This is the reason Monica Rogati says, 
"More information beats sharp calculations, yet better 
information beats more information" [27]. Vitality enormous 
information has esteem once gone through calculation to 
help business choices or help clients [24]. For specialist co-
ops, esteem renders into making focused showcasing 
methodologies by breaking down the client vitality 
utilization designs. Clients could likewise profit by vitality 
investment funds, straightforwardness in their vitality 
utilization and improved operational effectiveness [24]. 
Worth additionally relies upon the eye of the spectator. A 
matrix administrator would not think about the temperature 
of a solitary house or how streamlined the traffic lights are 
between one another. This is the reason it is so critical to 
incorporate Value in the depiction of what establishes 
enormous information.

III.   RESEARCHES RELATED TO BIG DATA 
APPLICATIONS IN SMART GRID

Threemaincategoriesareidentifiedforsmartgridbigdataapplicat
ions: Renewable Energy(RE),Demand Response (DR), and 
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Electric Vehicles (EV) [2]. Renewable Energy With 
expanding coordination of sustainable power sources in 
power frameworks, information the executives of current 
vitality matrices turns into a mind boggling task, which ought 
to be tended to by enormous information examination [28, 
29]. For instance, authentic climate information and GPS 
information can be utilized to improve gauging of sustainable 
power source control age, which at last upgrades the matrix 
vitality proficiency [30]. Information mining and handling 
have been utilized to concentrate highlights of time 
arrangement information for progressively precise 
determining of discontinuous sustainable assets, for example, 
wind and sun oriented [31 - 34].

Demand Response
Demand response refers to changes in customers’ electricity 
consumptions in response to changes in the electricity cost 
and availability [37]. Flexible loads such as Heating, 
Ventilation and Air Conditioning (HVAC), which “need to 
run but their exact time of operation is not critical” and other 
controllable loads such as electric vehicles are the targets of 
demand response programs [38]. Traditional power systems 
do not offer real-time demand response, which degrades grid 
reliability and adequacy. Therefore, big data technologies are 
used in smart grid management to improve the electricity 
consumption data accessibility, which expands the demand 
response [39]. For example, advanced meters apply game 
theory and modern communication technologies enabling 
smart grids to provide real-time demand response capability 
for more efficient and reliable operation of the grid [40, 41]. 
A study reported that during the California electricity crisis, 
the price of electricity could have been halved if the demand 
decreased by five percent [42]. U.S. government issued 
Federal Energy Regulatory Commission (FERC) Order 719 
to improve the electricity wholesale markets by establishing 
rules and regulation for demand response [43]. Additionally, 
the US government enacted the American Recovery and 
Reinvestment Act of 2009, which is a 4.5 billion U.S. dollar 
funding of smart grid technologies as a means to improve the 
U.S. electric grid systems [44].

Electric Vehicles
The International Energy Agency reports that more than 1.2 
million Electric Vehicles (EVs) were operating in 2015 [45] 
in the world. In the US in 2015, 400,000 were operating 
making about 1/3 of the world’s total use of EV’s. EVs 
charge their batteries through the grids, which imposes a 
significant impact on electric grid systems [46 - 48]. For 
example, charging EVs in a populated area during the peak 
time may have consequences such as fuse blowouts, 
decreased efficiency, and transformer degradation [49 - 51]. 
Through its bidirectional communication technology, smart 
grids can address these issues by scheduling the EV charging 
for off-peak hours [52]. In addition, by coordinated 
discharging through their vehicle-to-grid (V2G) capabilities, 
EVs can provide several benefits such as ancillary services, 
mitigating uncertainties of intermittent renewable energy 
sources such as wind and solar, etc [53], [54 - 56]. There are 

several studies for coordinating the EV charging/discharging 
to benefit electric utilities and their customers using genetic 
algorithms. EV driving and charging data have been 
extensively analyzed by researchers to address the issues 
associated with high penetrations of EVs in electric grids. A 
team of researchers used an Estimation of Distribution 
Algorithms (EDAs) and population-based probabilistic 
search algorithms to optimally manage the enormous number 
of EV’s charging [57]. Such algorithms require the capability 
to process vast and large volume of real-time data, which 
heavily depends on server-based processing or distributed 
processing networks. Another study presented a framework 
for EVs charging demand using big data analysis on data 
generated by smart meters [58]. Big data modeling for EV 
battery was proposed in [59] to improve estimation of 
driving ranges with big data cloud computing. Another study 
presented decision making strategies for EV charging by 
analyzing the predicted generation and demand through the 
use of queue distributions in a distributed network [60]. 
Table 1 offers interesting research for big data applications 
in smart grids.

Table 1. Big Data Applications in Smart Grids – Methods 
and Case Studies.

ApplicationRef.
#

Method(s) Case Studies

Renewable 
energy

[28]
The means of 
communications 
through long 
distance or remote 
stations using 
energy efficient 
cellular 
communication 

Off-grid or standalone 
base stations powered 
by local small-scale 
renewables to not 
require grid power for 
communication.

[29]
Multiple models 
for current, future, 
and virtual energy 
markets used to 
optimize PV 
integration into a 
micro grid.

A 65 solar panel array 
with 15 kWH energy 
storage is simulated. 
The system operation is 
evaluated without any 
energy sales, with sales 
restricted to local users, 

[31]

An enhanced K-
means algorithm, 
named Time Series 
Clustering (T.S.C) 
K-means, 
combined with 
Multilayer 
Perceptron Neural 
Networks 
(MLPNN) for solar 

Several meteorological 
time-series datasets are 
used to assess the 
performance of the 
proposed T.S.C K-
means clustering 
method and its 
comparison with other 
clustering techniques 
including K-means*, K-
means++,K-means, self-
organizing
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[32]

A novel time-
series based K-
means clustering 
method, named 
T.S.B K-means, 
combined with 
discrete Wavelet 
Transform (DWT), 
Harmonic Analysis 
Time Series 
(HANTS), and 

Wind speed, wind 
power, wind direction, 
and air temperature data 
from National 
Renewable Energy 
Laboratory (NREL) are 
used to evaluate the 
novel clustering and 
hybrid forecasting 
methods. A comparative 
analysis of the proposed 

[33]
A Transformation-
based K-means 
algorithm, named 
TB K-means, 
combined with 
MLPNN for solar 
radiation
forecasting.

Several different 
datasets are used to 
evaluate the proposed 
TB K- means clustering 
and compare it with 
different variants of K-
means algorithm.
Solar radiation time 
series with different 
characteristics are used 
to provide a 
comparative analysis 
between the proposed 
hybrid forecasting and 

[34]

A novel Game 
Theoretic Self-
organizing Map 
(GTSOM), 
combined with 
Neural gas (NG) 
and Competitive 
Hebbian Learning 
(CHL), DWT and 
Bayesian Neural 

Historical solar 
radiation data are used 
to assess the 
performance of the 
hybrid forecasting with 
the proposed GTSOM 
and other clustering 
methods.

Demand 
response

[39],
[40]

An extended 
framework of the 
Stackelberg game 
model for demand 
response 
optimization.

Homogeneous and 
heterogeneous 
generation supply 
quantities, generator 
profit and consumer 
welfare are evaluated in 
scenarios with few and 
many generation units 
and a large consumer 
population.

[49]
Method of defining a 
more accurate model 
of electric 
consumption by light 
duty Plug-in Electric 
Vehicles (PEVs).

Uncontrolled home 
charging of EVs and 
uncontrolled 
“opportunistic” 
charging at public 
locations are simulated 
based on travel survey 
data.

Electric 
vehicle

[51]
A fuzzy expert 
method for online 
management of 
EVs’ charging 
demand.

An IEEE 38 bus 
distribution test feeder 
including charging 
stations at 4 nodes is 
simulated. .Different 
charging 
solutions/scenarios are 
implemented on the test 

[52]
A sliding horizon-
based method for 
real-time data 
management and 
optimal 
coordination of EV 
charging with 
photovoltaic (PV) 
generation.

A 33 bus system 
including DG units and 
EV charging stations is 
simulated. EV charging 
coordination and its 
effect on PV power 
curtailment is evaluated.

[55]

A hybrid of Auto 
Regressive Moving 
Average (ARMA), 
Fuzzy C-Means 
(FCM) clustering, 
Monte Carlo 
Simulation (MCS), 
and Particle 
Swarm 
Optimization 
(PSO) methods for 
optimal scheduling 
of EVs to increase 
the use of PV 
power for EV 
charging while 
providing 
economic revenues 
for EVs’ 
participation in 
V2G services.

A 12 MW PV system 
with 424 EVs is 
simulated. A 
collaborative strategy is 
developed between the 
EV aggregators and PV 
producers to minimize 
the penalty cost of PV 
over/under-production 
by charging the EVs 
using the PV power in 
excess of the scheduled 
output and discharging 
the V2G power to 
compensate the PV 
power under-
production. The system 
performance with and 
without EV optimal 
charging/discharging 
are evaluated and 
compared.
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[56]

A hybrid of 
ARMA, FCM 
clustering, MCS, 
and Genetic 
Algorithm (GA) 
methods for 
optimal scheduling 
of EVs to increase 
the use of wind 
power for EV 
charging while 
providing 
economic revenues 
for EVs’ 
participation in 
V2G services.

A 10 MW wind system 
with 484 EVs is 
simulated. A bilateral 
contract is developed 
between the EV 
aggregators and wind 
producers to use the 
extra wind power for 
EV charging and to 
discharge the V2G 
power during the 
periods of wind power 
deficits. The system 
performance with and 
without EV optimal 
charging/discharging 
are evaluated and 
compared.

IV. SMART GRID BIG DATA CHALLENGES AND 
PROPOSED SOLUTIONS

Three main challenges are identified for big data in smart 
grids: security, quality, and processing location.

Big Data Security
The use of big data technology in smart grids substantially 
improves the network connectivity at the price of increased 
security vulnerabilities [61]. In a big data context, security 
exposures can be divided into three main parts: privacy, 
integrity, and authentication.

Data Privacy
Smart meters can be a main privacy concern if their data is 
not securely transferred and stored [62]. Smart meters collect 
power consumption data of grid customers. Smart grid 
providers analyze such data, which provides great intuition 
about users’ behaviors and habits, to offer intelligent 
customized services [63]. Several methods have been 
proposed to eliminate and minimize the privacy issue. These 
methods include, but are not limited to distributed 
incremental data collection method [64], and masking of 
consumption data embedded information [65]. Because most 
of the existing solutions do not consider the tradeoff between 
costs of lost privacy and data dissemination (utility), a new 
method is proposed to satisfy both privacy and utility 
requirements of smart metered data [66].

Data Integrity
Risk of integrity attacks is a valid concern because any 
violation of integrity may cause security vulnerabilities [67].
Customer and network data are usually the targets for 
integrity attacks, and any modification of such data interrupts 
the data communication exchange and reduces the entire grid 
functionality [2]. For example, attackers can remove the
higher degree nodes and replace them with higher probability 

nodes in the power network, which affects the integrity of
data [67]. The data integrity in smart grids and energy 
markets has been extensively investigated. A study presented 
the consequences of virtual bidding, which is a method of 
creating profitable integrity attacking strategies with no or
minimal detection in energy markets [68]. Another 
investigation showed that data integrity attacks can cause 
unwanted energy generations and routings, which increase 
the grid operating costs [69]. Market revenues and their 
changes due to data integrity attacks are used as a measure of 
adversary impact of such attacks [70, 71].

Data Authentication
Users in smart grids access the communication system 
through authentication, a process that verifies the user
credentials against the accounts credential database [2]. 
Authentication is used as a tool to identify valid vs non-valid
identities within the majority of existing security 
countermeasures [72]. One critical challenge that smart grids 
face is message injected attacks. If such attacks are not 
addressed properly, they can significantly reduce the entire 
smart grid performance [73]. To address such challenges, a 
group of scientists proposed an authentication method to 
secure smart grid data communication exchange with the use 
of Merkle hash-tree techniques [73]. Another study proposed 
a secure message authentication mechanism by integrating 
Diffie-Hellman protocols and hash-based message 
authentication methods [74]. Such structure allows smart 
meters within the smart grids to complete mutual message 
authentication tasks with minimal signal exchange and 
latency [74].

Big Data Quality
Data quality refers to identifying and to removing the 
outliers before transferring the data to the system [75]. 
Energy power consumption data should have high degrees of 
quality to ensure correct data analysis and ultimately proper 
decisions. The quality issues of energy consumption data are 
categorized into noise data, incomplete data, and outlier data 
[76].

Noise Data
Generally, any data that is difficult to comprehend and/or to 
decode by computers is considered noise data, which 
degrades the data quality [76]. In a smart grid context, 
logical errors and inconsistent energy consumption data are 
considered noise [77, 78]. Logical errors are defined as the 
data that violates any given rules and characteristics [79]. For 
example, if the daily customer energy consumption data 
includes 25 hours, it is not logical as it exceeds the maximum 
24 hours [76]. Moreover, inconsistent data occurs when data 
does not follow its previously agreed format [80], or it lacks 
sense when comparing its individual features [81, 82].

Incomplete Data
As the smart grid data complexity increases, incompleteness 
is occasionally observed in energy consumption data. Several 
methods such as delete tuple and data filing are developed to 
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address incomplete data [82]. Delete tuple method simply 
removes the entire record with incomplete data. However, 
this method is not appropriate for cases where the data set has 
several incomplete observations [76]. In such cases, the 
incomplete data will be filled using advanced algorithms 
such as average value, artificial value, and regression 
analysis [82].

Outlier Data
In statistics, if a point of data is considerably distant from 
other data points, it is called outlier [83]. In energy 
consumption data, an outlier may be treated as noise and 
removed. However, they may hold valuable information and 
therefore, should be detected to preserve the data quality.
One method of detection is data quality mining, which is to 
audit the data to automatically find outliers [84]. In smart 
grid systems, outliers should be detected, identified, and 
analyzed as they contain critical information such as power 
rationing, device failures, and suspicious indicators among 
others [85].

4.3. Big Data Processing Location
Processing is a key function for utilizing the algorithms 
required by big data. The current model for processing is that 
information is aggregated and sent to a data center to get 
processed and passed to whomever needs the resultant 
information. The current framework as described by H. Jiang 
is the three-level design with the main data processing at the 
center with two layers around it for aggregation and 
distribution [2]. There are intermediary processors called 
FOGs that are regional collection points that also do minimal 
amounts of processing before passing its collected 
information to the data center [87]. Edge based processing is 
becoming a larger part of the framework of big data. With the 
drop-in price to compute, researchers have started to look 
back when processors had limitations and are creating low 
power solutions that can go anywhere and still be able to 
process at least parts of a machine learning algorithm on 
small amounts of data. This helps to create the non-invasive 
load measuring that is only made possible with low power 
embedded systems [88]. Table 2 provides the literature for 
each category of big data challenges, their proposed solutions 
along with the solution’s main advantage/disadvantage.

V.  FUTURE OF BIG DATA IN SMART GRIDS
The future of research in big data use in smart grids is 
diverse. Big data offers many solutions to the bi-directional
flow of information as well as processing and analyzing that 
information. For a smart grid, big data will be a necessity for 
realizing the best possible solutions for how we as a society 
should distribute and utilize renewables as well as how to 
analyze systems for abnormal conditions such as faults or 
power outages. The future of the smart grid will depend on
building these frameworks such that they can be 
implemented and utilized in a meaningful way. This will 
include the planning to real time operation for generators and 
consumers for current practices to those planned for by 2050 
[91].

Table 2. Big Data Challenges in Smart Grids and Proposed 
Solutions.

VI. CONCLUSION
This paper presents the definitions and applications of 
integrating big data technologies in smart grid systems based
on current studies and research developments. Several 
research articles are reviewed to understand the current 
challenges and solutions of big data applications in smart 
grids and to identify research gaps. Thus, this survey 
provides new directions to further investigate such 
applications and challenges to propose innovative solutions 
for filling the identified research gaps.
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