
International Journal For Technological Research In Engineering 

Volume 6, Issue 11, July-2019                                                ISSN (Online): 2347 - 4718 

 
 

www.ijtre.com                        Copyright 2019.All rights reserved.                                                                          5855 
 

IMAGE COMPRESSION USING DCT &DWT TECHNIQUE 
 

Preeti Lathwal
1
, Prof.(Dr.)Y.P.Singh

2
 

1
PG Student, 

2
Professor ECE Department Somany, Institute of Technology and Management, Rewari 

 
 

Abstract: Image compression is one of the most widespread 

techniques for applications that require transmission and 

storage of images in databases. In this paper we discuss 

about the image compression techniques, their need for 

compression, their characteristics, principles, and classes of 

compression and various algorithm of image compression. 

This paper discuss about available image compression 

algorithms based on Wavelet, JPEG/DCT, Vector Quantizer 

and Fractal compression. We also sum up the advantages 

and disadvantages of these algorithms for compression of 

grayscale images. 

 

I.   INTRODUCTION 

Image compression is the technique of data compression 

which is implemented on digital images acquired from 

almost any source. In effect, the objective of compression 

algorithm is to reduce redundancy of the image data in order 

to be able to store or transmit data in an efficient form using 

minimum storage space and bandwidth. Uncompressed 

multimedia (graphics, audio and video) data requires 
considerable storage capacity and transmission bandwidth. 

Despite of high progress in mass-storage density, processor 

speeds, and digital communication system performance, 

demand for data storage capacity and data-transmission 

bandwidth continues to outstrip the capabilities of available 

network technologies. The high use of data intensive 

multimedia-based websites and web based applications have 

not only demanded the need for more efficient ways to 

encode signals and images but have made compression of 

such data essential for storage and communication 

 
Why Compression is needed?  

In the last decade, there has been a lot of technological 

transformation in the way we communicate. This 

transformation includes the ever present, ever growing 

internet, the explosive development in mobile 

communication and ever increasing importance of video 

communication.  Data Compression is one of the 

technologies for each of the aspect of this multimedia 

revolution. Cellular phones would not be able to provide 

communication with increasing clarity without data 

compression. Data compression is art and science of 

representing information in compact form. Despite rapid 
progress in mass-storage density, processor speeds, and 

digital communication system performance, demand for data 

storage capacity and data-transmission bandwidth continues 

to outstrip the capabilities of available technologies. In a 

distributed environment large image files remain a major 

bottleneck within systems.  

 

 

 

Four Stage model of Data Compression  

Almost all data compression systems can be viewed as 

comprising four successive stages of data processing 

arranged as a processing pipeline (though some stages will 

often be combined with a neighboring stage, performed "off-

line," or otherwise made rudimentary).  

The four stages are  

(A) Preliminary pre-processing steps.  

(B) Organization by context.  
(C) Probability estimation.  

(D) Length-reducing code.  

The ubiquitous compression pipeline (A-B-C-D) is what is of 

interest.  

With (A) we mean various pre-processing steps that may be 

appropriate before the final compression engine. 

Lossy compression often follows the same pattern as 

lossless, but with one or more quantization steps somewhere 

in (A). Sometimes clever designers may defer the loss until 

suggested by statistics detected in (C); an example of this 

would be modern zero tree image coding.  
• (B) Organization by context often means data reordering, 

for which a simple but good example is JPEG's "Zigzag" 

ordering. The purpose of this step is to improve the estimates 

found by the next step.  

• (C) A probability estimate (or its heuristic equivalent) is 

formed for each token to be encoded. Often the estimation 

formula will depend on context found by (B) with separate 

'bins' of state variables maintained for each conditioned 

class.  

 

(D) Finally, based on its estimated probability, each 
compressed file token is represented as bits in the 

compressed file. Ideally, a 12.5%-probable token should be 

encoded with three bits, but details become complicated  

 

Coding Redundancy  

If the gray levels of an image are coded in a way that uses 

more code symbols than absolutely necessary to represent 

each gray level, the resulting image is said to contain coding 

redundancy. It is almost always present when an image‟s 

gray levels are represented with a straight or natural binary 

code. Let us assume that a random variable r 
K 

lying in the 

interval [0, 1] represents the gray levels of an image and that 

each r 
K 

occurs with probability P
r 
(r 

K
).  

P
r 
(r 

K
) = N 

k 
/ n where k = 0, 1, 2… L-1  

L = No. of gray levels.  

N 
k 
=No. of times that gray appears in that image  

N = Total no. of pixels in the image  

If no. of bits used to represent each value of r 
K 

is l (r 
K
), the 
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average no. of bits required to represent each pixel is  

L 
avg 

= l (r 
K
) P

r 
(r 

K
)  

That is average length of code words assigned to the various 

gray levels is found by summing the product of the no. of bits 

used to represent each gray level and the probability that the 

gray level occurs. Thus the total no. of bits required to code 

an M×N image is M×N× L 
avg

.  

 
Inter Pixel Redundancy  
The Information of any given pixel can be reasonably 

predicted from the value of its neighbouring pixel. The 

information carried by an individual pixel is relatively small.  

In order to reduce the inter pixel redundancies in an image, 

the 2-D pixel array normally used for viewing and 

interpretation must be transformed into a more efficient but 

usually „non visual‟ format. For example, the differences 

between adjacent pixels can be used to represent an image. 

These types of transformations are referred as mappings. 

They are called reversible if the original image elements can 
be reconstructed from the transformed data set.  

Different types of Transforms used for coding are: 

1. DCT (Discrete Cosine Transform)  

2. DWT (Discrete Wavelet Transform)  

 

The Discrete Cosine Transform (DCT): 

The discrete cosine transform (DCT) helps separate the 

image into parts (or spectral sub-bands) of differing 

importance (with respect to the image's visual quality). The 

DCT is similar to the discrete Fourier transform: it transforms 

a signal or image from the spatial domain to the frequency 

domain.  
 

Discrete Wavelet Transform (DWT):  

The discrete wavelet transform (DWT) refers to wavelet 

transforms for which the wavelets are discretely sampled. A 

transform which localizes a function both in space and 

scaling and has some desirable properties compared to the 

Fourier transform. The transform is based on a wavelet 

matrix, which can be computed more quickly than the 

analogous Fourier matrix. Most notably, the discrete wavelet 

transform is used for signal coding, where the properties of 

the transform are exploited to represent a discrete signal in a 
more redundant form, often as a preconditioning for data 

compression. The discrete wavelet transform has a huge 

number of applications in Science, Engineering, Mathematics 

and Computer Science. Wavelet compression is a form of 

data compression well suited for image compression 

(sometimes also video compression and audio compression). 

The goal is to store image data in as little space as possible in 

a file. A certain loss of quality is accepted (lossy 

compression). Using a wavelet transform, the wavelet 

compression methods are better at representing transients, 

such as percussion sounds in audio, or high-frequency 

components in two-dimensional images, for example an 
image of stars on a night sky. This means that the transient 

elements of a data. Signal can be represented by a smaller 

amount of information than would be the case if some other 

transform, such as the more widespread discrete cosine 

transform, had been used.  

First a wavelet transform is applied. This produces as many 

coefficients as there are pixels in the image (i.e.: there is no 
compression yet since it is only a transform). These 

coefficients can then be compressed more easily because the 

information is statistically concentrated in just a few 

coefficients. This principle is called transform coding. After 

that, the coefficients are quantized and the quantized values 

are entropy encoded and/or run length encoded.  

 

ENTROPY CODING  

Wavelets and threshold help process the signal but up until 

this point, no compression has yet occurred. One method to 

compress the data is Huffman entropy coding. With this 

method, and integer sequence, q, is changed into a shorter 
sequence, e, with the numbers in e being 8 bit integers. An 

entropy-coding table makes the conversion. Strings of zeros 

are coded by the numbers I through 100, 105, and 106, while 

the non-zero integers in q are coded by 101 through 104 and 

107 through 254. In Huffman entropy coding, the idea is to 

use two or three numbers for coding, with the first being a 

signal that a large number or long zero sequence is coming. 

Entropy coding is designed so that the numbers that are 

expected to appear the most often in q need the least amount 

of space in e.  

 
Cosine Transform 

A discrete cosine transform (DCT) expresses a finite 

sequence of data points in terms of a sum of cosine functions 

oscillating at different frequencies. DCTs are important to 

numerous applications in science and engineering,from lossy 

compression of audio (e.g. MP3) and images (e.g. JPEG) 

(where small high-frequency components can be discarded), 

to spectral methods for the numerical solution of partial 

differential equations. The use of cosine rather 

than sine functions is critical for compression, since it turns 

out (as described below) that fewer cosine functions are 
needed to approximate a typical signal, whereas for 

differential equations the cosines express a particular choice 

of boundary conditions. 

In particular, a DCT is a Fourier-related transform similar to 

the discrete Fourier transform (DFT), but using only real 

numbers. The DCTs are generally related to Fourier Series 

coefficients of a periodically and symmetrically extended 

sequence whereas DFTs are related to Fourier Series 

coefficients of a periodically extended sequence. DCTs are 

equivalent to DFTs of roughly twice the length, operating on 

real data with even symmetry (since the Fourier transform of 

a real and even function is real and even), whereas in some 
variants the input and/or output data are shifted by half a 

sample. There are eight standard DCT variants, of which 

four are common. 

The most common variant of discrete cosine transform is the 

type-II DCT, which is often called simply "the 

DCT".[1][2] Its inverse, the type-III DCT, is correspondingly 

often called simply "the inverse DCT" or "the IDCT". Two 

related transforms are the discrete sine transform (DST), 

https://en.wikipedia.org/wiki/Data_points
https://en.wikipedia.org/wiki/Cosine
https://en.wikipedia.org/wiki/Frequency
https://en.wikipedia.org/wiki/Lossy_compression
https://en.wikipedia.org/wiki/Lossy_compression
https://en.wikipedia.org/wiki/Audio_compression_(data)
https://en.wikipedia.org/wiki/MP3
https://en.wikipedia.org/wiki/Image_compression
https://en.wikipedia.org/wiki/JPEG
https://en.wikipedia.org/wiki/Spectral_method
https://en.wikipedia.org/wiki/Partial_differential_equations
https://en.wikipedia.org/wiki/Partial_differential_equations
https://en.wikipedia.org/wiki/Partial_differential_equations
https://en.wikipedia.org/wiki/Cosine
https://en.wikipedia.org/wiki/Sine
https://en.wikipedia.org/wiki/Signal_(electrical_engineering)
https://en.wikipedia.org/wiki/Boundary_condition
https://en.wikipedia.org/wiki/List_of_Fourier-related_transforms
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Real_number
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https://en.wikipedia.org/wiki/Even_and_odd_functions
https://en.wikipedia.org/wiki/Discrete_cosine_transform#cite_note-pubDCT-1
https://en.wikipedia.org/wiki/Discrete_cosine_transform#cite_note-pubDCT-1
https://en.wikipedia.org/wiki/Discrete_cosine_transform#cite_note-pubDCT-1
https://en.wikipedia.org/wiki/Discrete_sine_transform
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which is equivalent to a DFT of real and odd functions, and 

the modified discrete cosine transform (MDCT), which is 

based on a DCT of overlapping data. Multidimensional DCTs 

(MD DCTs) are developed to extend the concept of DCT on 
MD Signals. There are several algorithms to compute MD 

DCT. A new variety of fast algorithms are also developed to 

reduce the computational complexity of implementing DCT. 

 

II.   RESULTS AND DISCUSSION 

5.1 RESULTS 

The image on the left is the original image  and the image on 

the right is the compressed one  

(The point is that the image on the left you are right now 

viewing is compressed using Haar wavelet method and the 

loss of quality is not visible. Of course, image compression 

using Haar Wavelet is one of the simplest ways.) 

 

 

III.   CONCLUSION 

Haar wavelet transform for image compression is simple and 

crudest algorithm.as compared to other algorithms it is more 

effective.The quality of compressed image is also 

maintained. Transform coding is a widely used method of 

compressing image information. In a transform-based 

compression system two-dimensional (2-D) images are 

transformed from the spatial domain to the frequency 

domain. An effective transform will concentrate useful 

information into a few of the low-frequency transform 

coefficients. 
 The discrete wavelet transform (DWT) is a mathematical 

tool that has aroused great interest in the field of image 

processing due to its nice features. Some of these 

characteristics are: 1) it allows image multi resolution 

representation in a natural way because more wavelet sub 

bands are used to progressively enlarge the low frequency 

subbands; 2) It supports wavelet coefficients analysis in both 

space and frequency domains, thus the interpretation of the 

coefficients is not constrained to its frequency behavior and 

we can perform better analysis for image vision and 

segmentation; and 3) For natural images, the DWT achieves 
high compactness of energy in the lower frequency subbands, 

which is extremely useful in applications such as image 

compression. The introduction of the DWT made it possible 

to improve some specific applications of image processing by 

replacing the existing tools with this new mathematical 

transform. The JPEG 2000 standard [1] proposes a wavelet 

transform stage since it offers better rate/distortion (R/D) 

performance than the traditional discrete cosine transform 

(DCT). Unfortunately, despite the benefits that the wavelet 

transform entails, some other problems International Journal 
of Engineering Research & Technology (IJERT) Vol. 1 Issue 

5, July - 2012 ISSN: 2278-0181 www.ijert.org 1 are 

introduced. Wavelet-based image processing systems are 

typically implemented by memoryintensive algorithms with 

higher execution time than other transforms. In the usual 

DWT implementation [2], the image decomposition is 

computed by means of a convolution filtering process and so 

its complexity rises as the filter length increases. Moreover, 

in the regular DWT computation, the image is transformed at 

every decomposition level first row by row and then column 

by column, and hence it must be kept entirely in memory. 

The lifting scheme [3,4] is probably the best-known 
algorithm to calculate the wavelet transform in a more 

efficient way. Since it uses less filter coefficients than the 

equivalent convolution filter, it provides a faster 

implementation of the DWT. Other fast wavelet transform 

algorithms have been proposed in order to reduce both 

memory requirements and complexity, like line-based [5] 

and block-based [6] wavelet transform approaches that 

performs wavelet transformation at image line or block level.  

Filters Used to Calculate the DWT and IDWT 

For an orthogonal wavelet, in the multiresolution framework 

(in Using Wavelet Packets), we start with the scaling 

function and the wavelet function . One of the 
fundamental relations is the twin-scale relation (dilation 

equation or refinement equation): 

1

2
 ∅ 𝑥 2  = Wn   ∅(x − n)

𝑁

𝑛=0

 

All the filters used in DWT and IDWT are intimately related 

to the sequence 

𝑊 𝑛  (x) 𝜖 𝑁 

Clearly if ∅  is compactly supported, the sequence (wn) is 

finite and can be viewed as a filter. The filter W,which is 

called the scaling filter (nonnormalized), is 

 Finite Impulse Response (FIR)  

 Of length 2N 

 Of sum 1  

 Of norm 

  
1

 2 .
 

 

 A low-pass filter  

For example, for the db3 scaling filter, 

 load db3  

 db3 

https://en.wikipedia.org/wiki/Modified_discrete_cosine_transform
jar:file:///C:/Program%20Files%20%28x86%29/MATLAB/R2010a/help/toolbox/wavelet/help.jar%21/ch05_use.html#1010285
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     db3 = 

     0.2352   0.5706   0.3252  -

0.0955  -0.0604   0.0249 

  

 sum(db3) 

     ans = 

          1.0000 

  

 norm(db3) 

     ans = 

          0.7071 

 

 

From filter W, we define four FIR filters, of length 2N and of 

norm 1, organized as follows. 

Filters Low-Pass High-Pass 

Decomposition Lo_D Hi_D 

Reconstruction Lo_R Hi_R 

The four filters are computed using the following scheme. 

where qmf is such that Hi_R and Lo_R are quadrature mirror 

filters (i.e., Hi_R(k) = (-1) k Lo_R(2N + 1 - k)) for k = 1, 2, 
..., 2N. 

Note that wrev flips the filter coefficients. So Hi_D and 

Lo_D are also quadrature mirror filters. The computation of 

these filters is performed using orthfilt. Next, we 

illustrate these properties with the db6 wavelet. The plots 

associated with the following commands are shown in 
Figure 6-8. 

 % Load scaling filter. 

 load db6; w = db6;  

 subplot(421); stem(w); 

title('Original scaling filter'); 

  

 % Compute the four filters. 

 [Lo_D,Hi_D,Lo_R,Hi_R] = 

orthfilt(w);  

 subplot(423); stem(Lo_D);  

 title('Decomposition low-pass 

filter Lo{\_}D');  

 subplot(424); stem(Hi_D);  

 title('Decomposition high-pass 

filter Hi{\_}D');  

 subplot(425); stem(Lo_R);  

 title('Reconstruction low-pass 

filter Lo{\_}R');  

 subplot(426); stem(Hi_R); 

 title('Reconstruction high-pass 

filter Hi{\_}R'); 

 % High and low frequency 

illustration. 

 n = length(Hi_D); 

 freqfft = (0:n-1)/n; 

 nn = 1:n; 

 N = 10*n; 

 for k=1:N 

     lambda(k) = (k-1)/N; 

     XLo_D(k) = exp(-

2*pi*j*lambda(k)*(nn-1))*Lo_D'; 

     XHi_D(k) = exp(-

2*pi*j*lambda(k)*(nn-1))*Hi_D'; 

 end 

 fftld = fft(Lo_D); 

 ffthd = fft(Hi_D); 

 subplot(427); 

plot(lambda,abs(XLo_D),freqfft,abs(

fftld),'o');  

 title('Transfer modulus: lowpass 

(Lo{\_}D or Lo{\_}R')  

 subplot(428); 

plot(lambda,abs(XHi_D),freqfft,abs(

ffthd),'o');  

 title('Transfer modulus: highpass 

(Hi{\_}D or Hi{\_}R') 

 

 
 

 
 

These approaches increase flexibility when applying wavelet 

transform and significantly reduce the memory requirements. 
In this scheme, the 2D-DWT is performed in only one pass, 

avoiding multiple-layer transpose decomposition operations. 



International Journal For Technological Research In Engineering 

Volume 6, Issue 11, July-2019                                                ISSN (Online): 2347 - 4718 

 
 

www.ijtre.com                        Copyright 2019.All rights reserved.                                                                          5859 
 

One of the most interesting advantages of this method is that 

the computation of each wavelet subband is completely 

independent. An HVS is more sensitive to energy with low 

spatial frequency than with high spatial frequency. In 
numerical analysis and functional analysis, a discrete wavelet 

transform (DWT) is any wavelet transform for which the 

wavelets are discretely sampled. As with other wavelet 

transforms, a key advantage it has over Fourier transform is 

temporal resolution: it captures both frequency and location 

information. 
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