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Abstract: Composite beams and beam like elements are 

principal constituents of many structures and used widely 

in high speed machinery, aircraft and light weight 

structures. Crack is a damage that often occurs on members 

of structures and may cause serious failure of the 

structures. The influence of cracks on dynamic 

characteristics like natural frequencies, modes of vibration 

of structures has been the subject of many investigations. 

However, the parametric studies like effect of geometry, 

crack location and support conditions on natural 

frequencies of composite beam are scarce in literature. In 

the present work, a numerical study using finite element is 

performed to investigate the free vibration response of 

composite beams. The finite element software ANSYS is 

used to simulate the free vibrations. A variety of parametric 

studies are carried out to see the effects of various changes 

in the laminate parameters on the natural frequencies. The 

parameters investigated include the effects of fiber 

orientation, the location of cracks relative to the restricted 

end, depth of cracks, volume fraction of fibers, length of 

beam and support conditions. The study shows that the 

highest difference in frequencies occur when the value of 

the fiber orientation equal to zero degree. The increase of 

the beam length results in a decrease in the natural 

frequencies of the composite beam and also shows that an 

increase of the depth of the cracks leads to a decrease in the 

values of natural frequencies.  

  

I.   INTRODUCTION 

In the recent decades, fiber reinforced composite materials 

are being used more frequently in many different engineering 
fields. The automobile, aerospace, naval, and civil industries 

all use composite materials in some way. Composite 

materials are gaining popularity because of high strength, low 

weight, resistance to corrosion, impact resistance, and high 

fatigue strength. Other advantages include ease of 

fabrication, flexibility in design, and variable material 

properties to meet almost any application. Beams and beam 

like elements are principal constituents of many mechanical 

structures and used widely in high speed machinery, aircraft 

and light weight structures. Fiber-reinforced laminated beams 

constitute the major category of structural members, which 

are widely used as movable to elements, such as robot arms, 
rotating machine parts, and helicopter and turbine blades. 

Similar to other structural components, beams are subjected 

to dynamic excitations. Reducing the vibration of such 

structures is a basic requirement of engineers. One method to 

reduce the vibration of a structure is to move its natural 

frequencies away from frequency of excitation force. There 

are different methods to modify the natural frequencies of 

beam structures. In general, any continuous structure has 

infinite degrees of freedom and, consequently, an infinite  

 

number of natural frequencies and the corresponding modal 

shapes. If a structure vibrates with a frequency equal to a 

natural one, the vibration amplitude grows rapidly with time, 

requiring a very low input energy. As a result, the structure 

either fails by overstressing, or the nonlinear effects limit the 

amplitude to a large value, leading to high-cycle fatigue 

damage. Thus, for any structure, its natural frequencies must 

be determined in order to ensure that the loading frequencies 

imposed and the natural frequencies differ considerably; in 
other words, to avoid resonances.  

To avoid structural damages caused by undesirable 

vibrations, it is important to determine:  

1 - Natural frequencies of the structure to avoid resonance;  

2 - Mode shapes to reinforce the most flexible points or to 

determine the right positions to reduce weight or to increase 

damping;  

3 - Damping factors.  

With respect to these dynamic aspects, the composite 

materials represent an excellent possibility to design 

components with requirements of dynamic behavior (Tita, 
2003).  

During operation, all structures are subjected to degenerative 

effects that may cause initiation of structural defects such as 

cracks which, as time progresses, lead to the catastrophic 

failure or breakdown of the structure. Thus, the importance 

of inspection in the quality assurance of manufactured 

products is well understood. 3  

Cracks or other defects in a structural element influence its 

dynamical behavior and change its stiffness and damping 

properties. Consequently, the natural frequencies of the 

structure contain information about the location and 
dimensions of the damage (Krawczuk, 1995). Structural 

damage detection has gained increasing attention from the 

scientific community since unpredicted major hazards, most 

with human losses, have been reported. Aircraft crashes and 

the catastrophic bridge failures are some examples. 

Development of an early damage detection method for 

structural failure is one of the most important keys in 

maintaining the integrity and safety of structures. The cracks 

can be present in structures due to their limited fatigue 

strengths or due to the manufacturing processes. These 

cracks open for a part of the cycle and close when the 

vibration reverses its direction. These cracks will grow over 
time, as the load reversals continue, and may reach a point 

where they pose a threat to the integrity of the structure. As a 

result, all such structures must be carefully maintained and 

more generally, SHM denotes a reliable system with the 

ability to detect and interpret adverse “change” in a structure 

due to damage or normal operation (Ramanamurty 2008).  
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II.  LITERATURE REVIEW 

Nikpur and Dimarogonas (1988) presented the local 

compliance matrix for unidirectional composite materials. 

They have shown that the interlocking deflection modes are 
enhanced as a function of the degree of anisotropy in 

composites. 7  

QIAN and Gu (1990) derived an element stiffness matrix of a 

beam with a crack from an integration of stress intensity 

factors, and then a finite element model of a cracked beam is 

established. This model is applied to a cantilever beam with 

an edge-crack, and the eigen frequencies are determined for 

different crack lengths and locations. Finally, a simple and 

direct method for determining the crack position, based on 

the relationship between the crack and the eigen couple 

(eigenvalue and eigenvector) of the beam, is proposed and 

this method can be suggested to complex structures with 
various cracks, if their stress intensity factors are known.  

Ostachowicz and Krawczuk (1991) presented a method of 

analysis of the effect of two open cracks upon the frequencies 

of the natural flexural vibrations in a cantilever beam. Two 

types of cracks were considered: double-sided, occurring in 

the case of cyclic loadings, and single-sided, which in 

principle occur as a result of fluctuating loadings. It was also 

assumed that the cracks occur in the first mode of fracture: 

i.e., the opening mode. An algorithm and a numerical 

example were included.  

Manivasagam and Chandrasekaran (1992) presented results 
of experimental investigations on the reduction of the 

fundamental frequency of layered composite materials with 

damage in the form of cracks.  

Krawczuk (1994) formulated a new beam finite element with 

a single non-propagating one-edge open crack located in its 

mid-length for the static and dynamic analysis of cracked 

composite beam-like structures. The element includes two 

degrees of freedom at each of the three nodes: a transverse 

deflection and an independent rotation respectively. He 

presented the exemplary numerical calculations illustrating 

variations in the static deformations and a fundamental 
bending natural frequency of a composite cantilever beam 

caused by a single crack.  

Krawczuk and Ostachowicz (1995) investigated Eigen 

frequencies of a cantilever beam made from graphite-fiber 

reinforced polyimide, with a transverse on-edge non-

propagating open crack. Two models of the beam were 

presented. In the first model the crack was modeled by a 

massless substitute spring Castigliano‟s theorem. The second 

model was based on the finite element method. The 

undamaged parts of the beam were modeled by beam finite 

elements with three nodes and three degrees of 8 freedom at 

the node. The damaged part of the beam was replaced by the 
cracked beam finite element with degrees of freedom 

identical to those of the non-cracked done. The effects of 

various parameters the crack location, the crack depth, the 

volume fraction of fibers and the fibers orientation upon the 

changes of the natural frequencies of the beam were studied.  

Ghoneam (1995) presented the dynamic characteristics 

laminated composite beams (LCB) with various fiber 

orientations and different boundary fixations and discussed in 

the absence and presence of cracks. A mathematical model 

was developed, and experimental analysis was utilized to 

study the effects of different crack depths and locations, 

boundary conditions, and various code numbers of laminates 

on the dynamic characteristics of CLCB. The analysis 
showed good agreement between experimental and 

theoretical results.  

Dimarogonas (1996) reported a comprehensive review of the 

vibration of cracked structures. This author covered a wide 

variety of areas that included cracked beams, coupled 

systems, flexible rotors, shafts, turbine rotors and blades, 

pipes and shells, empirical diagnoses of machinery cracks, 

and bars and plates with a significant collection of 

references.  

Krawczuk, Ostachowicz and Zak (1997) presented a model 

and an algorithm for creation of the characteristic matrices of 

a composite beam with a single transverse fatigue crack. The 
element developed had been applied in analyzing the 

influence of the crack parameters (position and relative 

depth) and the material parameters (relative volume and fiber 

angle) on changes in the first four transverse natural 

frequencies of the composite beam made from unidirectional 

composite material.  

Chondros (1998) developed a continuous cracked beam 

vibration theory for the lateral vibration of cracked Euler 

Bernoulli beams with single edge or double edge open 

cracks. The HuWashizuBarr variational formulation was 

used to develop the differential equation and the boundary 
conditions of the cracked beam as a one dimensional 

continuum. The displacement field about the crack was used 

to modify the stress and displacement field throughout the 

bar. The crack was modeled as a 9 continuous flexibility 

using the displacement field in the vicinity of the crack found 

with fracture mechanics methods. Hamada (1998) studied the 

variations in the Eigen-nature of cracked composite beams 

due to different crack depths and locations. A numerical and 

experimental investigation has been made. The numerical 

finite element technique was utilized to compute the Eigen 

pairs of laminated composite beams through several states of 
cracks. The model was based on elastic-plastic fracture 

mechanics techniques in order to consider the crack tip 

plasticity in the analysis. The model has been applied to 

investigate the effects of state of crack, lamina code number, 

boundary condition on the dynamic behavior of composite 

beams. Zak, Krawczuk and Ostachowicz (2000) developed 

the work models of a finite delaminated beam element and 

delaminated plate element. They carried out an extensive 

experimental investigation to establish changes in the first 

three bending natural frequencies due to delamination. The 

subsequent results of the numerical calculations were 

consistent the results of the experimental investigations.  
Banerjee (2001) derived exact expressions for the frequency 

equation and mode shapes of composite Timoshenko beams 

with cantilever end conditions in explicit analytical form by 

using symbolic computation. The effect of material coupling 

between the bending and torsional modes of deformation 

together with the effects of shear deformation and rotatory 

inertia is taken into account when formulating the theory. 

The expressions for the mode shapes were also derived in 

explicit form using symbolic computation.  
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III.    THE METHODOLOGY 

Modal analysis of ANSYS is used to determine the 

natural frequencies and mode shapes, which are important 

parameters in the design of a structure for dynamic loading 
conditions. They also required for spectrum analysis or for a 

mode superposition harmonic transient analysis.  

Modal analysis in ANSYS program is linear analysis.  

The damped and QR damped methods allow to include 

damping in the structure.  

GOVERNING EQUATION  

The differential equation of the bending of a beam with a 

mid-plane symmetry (Bij = 0) so that there is no bending-

stretching coupling and no transverse shear deformation 

(εxz=0) is given by;  

(1)  

It can easily be shown that under these conditions if the beam 
involves only a one layer, isotropic material, then IS11 = EI 

= Ebh3/12 and for a beam of rectangular cross-section 

Poisson‟s ratio effects are ignored in beam theory, which is 

in the line with Vinson & Sierakowski (1991). 

In Equation 1, it is seen that the imposed static load is written 

as a force per unit length. For dynamic loading, if Alembert‟s 

Principle are used then one can add a term to Equation.1 

equal to the product mass and acceleration per unit length.  

BEAM MODEL  

The model chosen is a cantilever composite beam of uniform 

cross-section A, having an open transverse crack of depth „a‟ 
at position L1. The width, length and height of the beam are 

B, L and H, respectively in Fig. 3.1. The angle between the 

fibers and the axis of the beam is α.  

Fig. 3.1 Schematic diagram cantilever composite beam with a 

crack  

MODELLING PROCEDURE IN ANSYS 13  

Regardless of the type of problem involved, an ANSYS 

analysis consists of the same steps as follows: 16  

1. Preprocessing  

2. Solution stage  

3. Post processing.  
 

After selecting the type of analysis in the preferences, the 

next step in the preprocessing is to choose an element type. 

The element type includes a list of general categories such as 

Structural Mass, Structural Link, Structural Solid, Beam, 

Solid Sell etc. A number of different specific elements will 

appear for each general category. Each element has its own 

set of DOFs, which are the degrees of freedom for which 

ANSYS will find a solution. Next material properties, real 

constants, section etc. need to input.  

The modeling phase entails geometry definition. This is 

where you draw a 2D or 3D representation of the problem. 
ANSYS has a very powerful modeler built into the 

preprocessor.  

The modeler allows the user to construct surfaces and solids 

to model a variety of geometries. For any given geometry, 

there are often several different ways to create the model. 

Before the meshing phase you will define material properties 

and choose a finite element suitable for the problem. In the 

meshing phase the model discretized i.e. creating the mesh.  

In the solution phase, boundary conditions and loads need to 

be defined. The types of loads and boundary conditions you 

select depend on the simplifications being made. ANSYS 

will then attempt to solve the system of equations defined by 

the mesh and boundary conditions.  
Finally, when the solution is complete, you will need to 

review the results using the post processor. The ANSYS post 

processor provides a powerful tool for viewing results .These 

results may be color contour plots, line plots, or simply a list 

of DOF results for each node. 17  

MESHING:  

Meshing a model can be the most difficult part of using any 

finite element package. While ANSYS gives the user a 

variety of automatic options so far as meshing is concerned, 

you are urged to use caution when using these tools. It is 

usually best to think about how you would like to mesh your 

model before you even go about making a model and 
creating areas. In general, ANSYS has two methods of 

meshing:  

1. Free meshing  

The free mesh has no recognizable pattern and no regularity 

in the element shapes. Free meshing is easy but for complex 

geometries can often lead to distorted elements that 

undermine accuracy. Too often users free mesh a model 

because it is easy without bothering to worry about the 

resulting mesh. Free meshing is available for 2D 

quadrilateral and triangular element shapes. Free meshing 

can only produce 3D tetrahedral elements for solid models.  
2. Mapped meshing.  

 

Mapped meshes are easier to control and are oftentimes more 

accurate. Mapped meshes allow the user to more carefully 

specify the size and shape of the mesh in local regions. 

Mapped meshing is available for 2D and 3D elements.  

Mapped meshes are controlled by specifying element 

divisions on boundaries and by splitting areas and volumes 

in certain ways. Once you have split the areas and/or 

volumes in accordance with the above rules, use lsel to select 

the lines and lesize to set the number of element divisions 
along that line. The feature of mapped meshing allows the 

user to place smaller elements in the areas of high stress 

gradient (near the crack) while using larger elements where 

the gradient is not so steep. 19  

There are restrictions to the use of mapped meshing;  

For 2D element, each area must be four-sided i.e. be made up 

of four lines. If the area is made up of more lines, you will 

need to split up the area to create sub-areas with four sides or 

you must concatenate lines so that four lines define the area.  

For 3Delement, each volume must have 6 faces (6 bounding 

areas). You will need to split volumes or concatenate lines 

and areas to create 6-faced volumes.  
 

MODELING OF COMPOSITE BEAM USING ANSYS 13  

Firstly it is required to give preference for what type analysis 

you want to do, here we are analyzing for beam so structural 

part is selected as Shown in fig.  
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Fig Preference menus on ANSYS 

 

Preprocessor  

Now next step is preprocessor, where the preprocessor menu 

basically used to inputs the entire requirement thing for 

analysis such as- element type, real constraints, material 

properties, modeling, meshing, and loads. Element menu 

contains – defined element type and degree of freedom 

defined where we have to give the element structure type 

such as BEAM, SOLID, SHELL, and the degree of freedom , 

here in this analysis selected part is SOLID SHELL190 fig . 

shows this menu contained part 

 
Solution Stage  

The default direct frontal solver is fine for small linear 

problems. However, the size limitations become obvious 

when the user attempts to solve large 3D problems. Solving 

the FE problem is tantamount to solving a matrix equation 

with a very large matrix. Iterative methods are generally 

faster for bigger problems. ANSYS provides several different 
solver options, each of which may be more or less 

appropriate for a given problem.  

Before going to solve the problem, we have to introduce the 

analysis type i.e., static analysis, harmonic analysis, or modal 

analysis etc. to the problems. We have selected modal 

analysis for our problem, because we want frequencies and 

mode shapes as output.  

Following steps are to be followed for type of analysis:  

Go to Preprocessor Loads  Analysis type  New 

analysis.  

Click Modal in the type of analysis box.  

 

Go to Analysis options  Mode extraction method  Block 
Lanczos .  

Enter the Number of Modes required and click Ok 

Post Processing  

The ANSYS post processor provides a powerful tool for 

viewing results. We can see the following results in Post 

processing:  

1. Result summary  

2. Failure criteria  

3. Plot results  

4. List results  

5. Nodal calculation.  

 
The procedure for vibration analysis of composite beam with 

crack, i.e., V-notch is same as the above described steps, but 

a little bit modification in modelling process. Crack is 

created in the composite beam using key points and lines to 

define areas. Volumes can be made from extruding the areas 

and then using Boolean operation to achieve a crack in a 

composite beam. For proper meshing, we will divide the 

beam at location of crack into two volumes using working 

plane. 

 

NUMERICAL RESULTS  
After obtaining the comparison with previous study with the 

existing literatures, the results for various parametric studies 

like effect of geometry, crack location and support 

conditions on natural frequencies of composite beam are 

presented. The changes of the two first natural frequencies of 

the beam due to the crack as functions of fiber volume 

fraction are analyzed. Similarly, the three first natural 

frequencies of the composite beam due to the crack as 

functions of fiber orientations (α) and fiber volume fractions 

are analyzed for free vibration of a composite beam with 

multiple cracks for different crack positions. The beam 
assumed to be made of unidirectional graphite fiber-

reinforced polyamide. The geometrical characteristics of the 

graphite fiber-reinforced polyamide composite beam are 

chosen as the same of those used in Krawczuk & 

Ostachowicz (1995). The material properties of the graphite 

fiber-reinforced polyamide composite are taken as below:  

E11 = 139.18GPa,  

E22 = 8.0539GPa,  

G12 = 3.0352GPa,  

G23 = 2.9944GPa,  

ν12 = 0.2650,  

ν23 = 0.3448, 31 
The geometrical characteristics, the length (L), height (H) 

and width (B) of the composite beam were chosen as 1.0m, 

0.025 and0.050 m, respectively.  

(A) Vibration Analysis of composite beam with single crack  

Effect of various parameters like volume fraction of fibers, 

length of the beam, boundary conditions and crack locations 

of cracked composite beam on first, second and third non- 

dimensional natural frequencies studied and explained as 

below.  
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Effect of Volume Fraction of fiber on Natural frequencies  

First non-dimensional natural frequencies of the cracked 

composite beam as a function of volume fraction of fibers V 

for different values of the crack depth a/H = 0.2, 0.4 and 0.6 
(angle of fibers α = 0 degree and crack location L1/L= 0.1) 

Angle of 

fibers(degree) 

Volume 

fraction of 

fiber 

First Non-dimensional 

Frequency 

Relative 

crack depth 

Relative crack 

depth 

 

 

 
0 

0 1.7749 1.6767 

0.1 1.7437 1.5542 

0.3 1.7107 1.4945 

0.5 1.7090 1.4912 

0.7 1.7254 1.5189 

0.9 1.7653 1.5943 

1 1.8049 1.7019 

 
Table Second non-dimensional natural frequencies of the 

cracked composite beam as a function of volume fraction of 

fibers V for different values of the crack depth a/H 

= 0.2, 0.4 and 0.6 (angle of fibers α = 0 degree and crack 

location L1/L= 0.1) 

Angle of 

fibers(degree) 

Volume 

fraction of 

fiber 

Second Non-dimensional 

Frequency 

Relative crack 

depth 

Relative crack 

depth 

 

 

 
0 

0 4.5167 4.4458 

0.1 4.5356 4.4402 

0.3 4.4851 4.3930 

0.5 4.4828 4.3911 

0.7 4.5110 4.4168 

0.9 4.5690 4.4745 

1 4.5969 4.5240 

 
Fig. Second non-dimensional natural frequencies of the 

cracked composite beam as a function of volume fraction of 

fiber V for different values of the crack depth a/H = 0.2, 0.4 
and 0.6 ( angle of fibers α = 0 degree, crack location x/L = 

0.1) 

Fig. presents  the  influence  of  the  volume  fraction  of  

fibers  on  the  first two non- dimensional natural frequencies 

for different  values  of  the  crack depth ratios (a/H). Here 

various values of the fiber volume fraction have been 

considered to study its effect on first and second non 

dimensional frequencies. The angle of fiber is taken as zero 

degree and crack location is at a distance L1= 0.1L 

(m) from the fixed end of the beam. The flexibility due to 

crack is high when the volume fraction of the fiber is 

between 0.2 and 0.8 and maximum when the fiber fractions 
is nearly 0.45. This is due to the fact that the flexibility of the 

composite beam due to crack is a function of fiber volume 

fraction. Therefore, if the  fiber volume fraction is between 

0.2 and 0.8 and crack depth ratio is getting higher, the 

frequency reductions are relatively high as observed in above 

graphs. 

 

Table shows Second non-dimensional natural frequencies of 

the composite beam with crack as a function of crack 

location (L1/L) for different crack depth ratios (for volume 

fraction of fibers V = 0.5 

 

 
Angle of 
fibers(degr

ee) 

Crack 
location ( 

L1/L ) 

Second Non-dimensional Frequency 

Relative 

crack depth 

Relative 

crack depth 

Relative crack 

depth 

 

 

 

 
0 

0 4.5871 4.5871 4.5871 

0.1 4.5537 4.4828 4.3911 

0.3 2.2957 2.2867 2.2757 

0.5 4.0722 4.0399 3.987 

0.7 2.3407 2.3156 2.298 

0.9 4.5862 4.5839 4.5727 
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Fig Second non-dimensional natural  frequencies  of  the  

cracked  composite beam as a function of different crack 

location for different crack depth ratios. (for V 

= 0.5) 

 

From Fig., when Vf = 0.5, a/H = 0.2, 0.4 and 0.6 with crack 

locations (L1/L)  from 0 to 0.9 for cantilever composite beam, 
the first natural frequency is maximum  at crack locations 

L1/L = 0.1 and L1/L = 0.9. The natural frequency decreases 

from crack location L1/L = 0.1 up to the minimum value  at  

crack  location  L1/L  =  0.5 and then increases to the 

maximum value at crack location L1/L = 0.9. The second 

natural frequency as shown in Figure 4.14 is maximum at 

crack locations L1/L = 

0.1 and L1/L = 0.9 and minimum at crack locations L1/L = 

0.3 and L1/L = 0.7.The natural frequency decreases from 

crack location (L1/L) of zero up to the minimum value at 

crack locationL1/L = 0.3 and then increases to the maximum 
value at crack location L1/L = 0.5. The curve is symmetric 

around the middle crack position (L1/L 

= 0.5). As the crack  depth  increases,  the  corresponding  

natural  frequencies decrease for each crack location. This is 

compatible with the increase of flexibility or decrease in the 

stiffness of the beam. 

(B) Vibration analysis of composite beam with multiple 

cracks 

The effects of various parameters on the vibration of 

composite beam with multiple cracks are presented below. 

The Finite element analysis is carried out for  free vibration 
of a composite  cracked  beam  for  various  crack  locations  

and  crack depth ratio a/H = 0.4 for the example problem 

considered by Kisa (2003). In Fig. 

, the variations of the first three lowest natural frequencies of 

the composite beam with multiple cracks are  shown as a  

function of fiber orientation  (α) for different cracks 

locations. In these figures three cases, labeled as E, F and G, 

were considered .The cracks locations (L1/  L,  L2 /L,  L3/L)  

for the  cases E,  F and G, where chosen as (0.05, 0.15, 0.25), 

(0.45, 0.55, 0.65), ( 0.75, 0.85, 0.95) respectively. The non- 

dimensional natural frequencies are normalized according to 

Eq. (7). 

 
Fig  The first non-dimensional natural frequencies as a 

function of angle of fibers for the cases of three cracks 

located differently, as indicated a/H=0.4 and V=0.5 

 
Fig  The Second non-dimensional natural frequencies as a 

function of angle of fibers for the cases of three cracks 

located differently, as indicated a/H=0.4 and V=0.5 

 
Fig The third non-dimensional natural frequencies as a 

function of angle of fibers for the cases of three cracks 
located differently, as indicated a/H=0.4 and V=0.5 

 

It can be clearly seen from the Figs. that, when the cracks are 

placed near the fixed end the decrease in the first natural 

frequencies are highest, whereas, when the cracks are  located  

near  the  free  end,  the  first  natural frequencies are almost 

unaffected. This observation goes to the conclusion that, the 

first, second and third natural frequencies are  most  affected  

when  the  cracks located at the near of the fixed end, the 

middle of the beam and the free end, respectively. 

 



International Journal For Technological Research In Engineering 

Volume 6, Issue 12, August-2019                                                ISSN (Online): 2347 - 4718 

 
 

www.ijtre.com                        Copyright 2019.All rights reserved.                                                                          5966 

 
Fig. Cantilever composite beam with multiple cracks 

modeled in ANSYS 13 

 
Fig.  First three mode shapes of clamped-free composite 

beam with multiple cracks for crack locations at L1/L= 0.45, 

L2/L = 0.55 and L3/L = 0.65. 

 
IV.  CONCLUSION 

The following conclusions can be drawn from the present 

investigations of the composite beam finite element having 

transverse open crack i.e. v-notch. This element is versatile 

and can be used for static and dynamic analysis of a 

composite beam.  

The in-plane bending frequencies decrease, in general, 

as the fiber angle increases; the maximum occur at α = 0°and 

decrease gradually with increasing the fiber angle up to a 
minimum value obtained for α =90°.  

In case of composite beam with crack, as the angle of 

fibers (α) increases the value of the natural frequencies also 

increases. The most difference in frequency occurs when 

angle of fibers is zero degree.  

The non-dimensional natural frequencies is also depends 

upon the volume fraction of the fibers. The flexibility due to 

crack is high when the volume fraction of the fiber is 

between 0.2 and 0.8 and maximum when the fiber fractions 

is nearly 0.45  

Decrease in the natural frequencies become more 

intensive with the growth of the depth of crack.  
The increase of the beam length results in a decrease in 

the natural frequencies of the composite beam  

Boundary conditions have a remarkable influence on the 

natural frequencies. The natural frequencies for the clamped-

clamped support are higher compared to clamped- free 

support condition.  

The first natural frequency is maximum at crack 

locations L1/L = 0.1 and L1/L = 0.9 and minimum at L1/L = 

0.5. While the second natural frequency is minimum at crack 

locations L1/L = 0.3 and L1/L = 0.7.  

The effect of cracks is more pronounced near the fixed 
end than at far free end. It is concluded that the first, second 

and third natural frequencies are most affected when the 

cracks located at the near of the fixed end, the middle of the 

beam and the free end, respectively  

 
SCOPE FOR FUTURE WORK  

1. The vibration results obtained using ANSYS 13 can be 

verified by conducting experiments.  

2. The dynamic stability of the composite beam with cracks  

3. Static and dynamic stability of reinforced concrete beam 

with cracks.  

4. The Vibration analysis of composite beam by introducing 

inclined cracks in place of transverse crack.  
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