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Abstract; The increasing use of composite materials across 

various fields such as aerospace, automotive, civil, naval 

and other high performance engineering applications are 

due to their light weight, high specific strength and 

stiffness, excellent thermal characteristic, ease in 

fabrication and other significant attributes. The present 

study deals with experimental investigation on free 

vibration of laminated composite beam and compared with 

the numerical predictions using finite element method 

(FEM) in ANSYS environment. A program is also 

developed in MATLAB environment to study effects of 

different parameters. The scope of the present work is to 

investigate and understand the effect of different 

parameters including cross sectional shape on modal 

parameters like modal frequency, mode shapes. 

Experimental investigation is carried out by Impulsive 

frequency response test under fixed- free and fixed-fixed 

boundary conditions. Composites Beams are fabricated 

using woven glass fabric and epoxy by hand layup 

technique. Modal analysis of various cross sectional beams 

were reported, compared and discussed. The finite element 

modeling has been done by using ANSYS 14 and compared 

with the experimental results. Two-node, finite elements of 

three degrees of freedom per node and rectangular section 

are presented for the free vibration analysis of the 

laminated composite beams in this work. The effects of 

different parameters including ply orientation, number of 

layers, effect of the length of the beam and various 

boundary conditions of the laminated composite beams are 

discussed. 

 

I.   INTRODUCTION 

The widespread use of composite structures in aerospace 
applications has stimulated many researchers to study various 

aspects of their structural behavior. These materials are 

particularly widely used in situations where a large strength-

to-weight ratio is required. Similarly to isotropic materials, 

composite materials are subjected to various types of 

damage, mostly cracks and delamination. These result in 

local changes of the stiffness of elements for such materials 

and consequently their dynamic characteristics are altered. 

This problem is well understood in case of constructing 

elements made of isotropic materials, while data concerning 

the influence of fatigue cracks on the dynamics of composite 

elements are scarce in the available literature. The research 
context is described in Sec.2.1. The focus of the thesis as 

well as the main objectives is discussed in Sec.2.2. The beam 

is manufactured from a Glass Fibre Reinforced Polymer 

(GFRP) and its box and Channel like beam. This beam was 

actually used as a prototype for footbridge. The GFRP (Glass 

Fibre Reinforced Polymer) composite materials are being  

 

utilized in more structures like bridges as the technology. 

GFRP composite are ideal for structural applications where 

high strength to weight and stiffness to weight ratios are 

needed. As the technology progresses, the cost involved in 

manufacturing and designing composite material will reduce, 

thus bringing added cost benefits also. The vibration 

analyses in composite beams have been a problem for 

structural designer for years and have increased recently. 

Though, all elements have natural frequencies with the 

potential to suffer excessive vibrations under dynamic load. 
This is done by using modal analysis, which allows one to 

determine the natural frequencies of the structure, associated 

mode shapes and damping. And once natural frequencies are 

known, thus making structure suitable for the task designed 

for. This is mainly due to the human feeling of vibration 

while crossing a footbridge with a frequency close to the first 

(fundamental) natural frequency of the bridge, although the 

vibration caused by the pedestrians are far from harmful to 

the bridge. Therefore vibration analysis of such structure can 

be considered to be a serviceability issue. Modal parameters 

of a structure are frequency, mode shape and damping. 

Frequency is directly proportional to structure‟s stiffness and 
inverse of mass. Nevertheless, modal parameters are 

functions of physical properties of the structure. Thus, 

changes in the physical properties such as, beginning of local 

cracks and/or loosening of a connection will cause detectable 

changes in the modal properties by reducing the structure‟s 

stiffness. The design of GFRP (Glass Fibre Reinforced 

Polymer) bridge deck established to promote the use of 

innovative material and lead to use in footbridge construction 

to improve the reliability for proper safety and serviceability. 

The Aberfeldy cable-stayed was the first GFRP footbridge, 

built back in 1992. There are only two GFRP footbridge 
existing in UK knows as the Halgavor and Willcot. The use 

of glass or carbon fibre reinforced polymer was due to its 

advantages, for they are easily drawn into having a high 

strength-to-weight ratio, low maintenance and lightweight. 

 

II.   GOVERNING EQUATION 

The differential equation of the bending of a beam with a 

mid-plane symmetry (Bij = 0) so that there is no bending-

stretching coupling and no transverse shear deformation ( 

Ԑxz= 0) is given by; 

 IS 
d

4

 q  x 

 

11  dx
4 

It can easily be shown that under these conditions if the 

beam involves only a one layer, isotropic material, then 

IS11= EI = Ebh3/12 and for a beam of rectangular cross-

section Poisson‟s ratio effects are ignored in beam theory, 
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which is in the line with Vinson &Sierakowski (1991). 

In Equation 1, it is seen that the imposed static load is written 

as a force per unit length. For dynamic loading, if Alembert‟s 

Principle are used then one can add a term to Equation.1 
equal to the product mass and acceleration per unit length. In 

that case Equation.1 becomes 

 

IS 

 d 
4


 q x, t A 


2
(x, t) 

11
dx 4 x 

2 
  

Where ω and q both become functions of time as well as 

space, and derivatives therefore become partial derivatives, ρ 

is the mass density of the beam material, and here A is the 

beam cross-sectional area. In the above, q(x, t) is now the 

spatially varying time-dependent forcing function causing the 

dynamic response, and could be anything from a harmonic 

oscillation to an intense one-time impact. 

However, natural frequencies for the beam occur as functions 

of the material properties and the geometry and hence are not 

affected by the forcing functions; therefore, for this study let 
q(x, t) be zero. 

 

III.   MATHEMATICAL MODELING 

The model chosen is a cantilever composite beam of uniform 

cross-section A, The width, length and height of the beam are 

B, L and H, respectively in Figure.3.1. The angle between the 

fibers and the axis of the beam is „α‟. 

 
Figure 3.1 Schematic diagram cantilever composite beam 

 

Vibration Study Analysis; Mass and stiffness matrices of 

each beam element are used to form global mass and stiffness 
matrices. The dynamic response of a beam for a conservative 

system can be formulated by means of Lagrange‟s equation 

of motion in which the external forces are expressed in terms 

of time-dependent potentials and then performing the 

required operations the entire system leads to the governing 

matrix equation of motion 

M q Ke P (t) K g  q 0 

where “q” is the vector of degree of freedoms. M,Ke,Kg are 

the mass, elastic stiffness and geometric stiffness matrices of 

the beam. The periodic axial force P tPoPtCost , 

where Ω is the disturbing frequency, the static and time 

dependent components of the load can be represented as a 

fraction of the fundamental static buckling load Pcr hence 

putting P t PcrPcr Cos t . In this analysis, the 

computed static bucking load of the composite beam is 

considered the reference load. Further the above equation 

reduces to other problems as follows. 

Free vibration with α = 0, β = 0 and ω = Ω/2 the natural 
frequency 

Ke
2
 M q 0 

Static stability with α = 1, β = 0, Ω = 0 

KePcr  K g  q 0 

Element stiffness matrix; 

Element stiffness matrix for a three-nodes composite beam 
element with three degrees of freedom δ = (u, v, θ) at each 

node, for the case of bending in the x, y plan, are given in the 

line Krawczuk&Ostachowicz (1995) as follows: 

 
where B is the width of the element, H is the height of the 
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element and L denotes the length of the element. S11,S13 , and 

S33 are the stress-strain constants. 

 

Generalized element mass matrix; 
Element mass matrix of the non-cracked composite beam 

element is given in the line Krawczuk&Ostachowicz (1995) 

as 

KevN T
  N dv 

M e M ij66whereM ij66= ( i= j= 1, 2…….6) are 

m11 m552BHLe/15,  

m  m  m  m   BHL
2 

/180, 
12 21 56 65  

m13 m31 m35m53BHLe/15, 

m14 m41 m45 m54BHL
2
/ 90 

m15 m51BHL / 30 

m16 m61 m25 m52BHL
2
/180, 

m22 m66BHL(L
2
/1890 H 

2
/ 360), 

m24 m42m46 m64BHL(L
2
/ 945 H 

2
/180), 

m26 m62BHL(L
2
/1890 H 

2
/ 360), 

m338BHL /15, 

m44BHL(2L
2
/ 9452H 

2
/ 45), 

m34 m43 m36 m63 m23 m320, 
where ρ is the mass density of the element, B is the width of 

the element, H is the height of the element and L denotes the 
length of the element. 

 

Bending test;The most commonly used test for ILSS is the 

short beam strength (SBS) test under three point bending. 

The SBS test was done as per ASTM D 2344/ D 2344 M 

(2006) by using the INSTRON 1195 material testing 

machine. The specimens were tested at 2, 50, 100, 200 and 

500 mm/minute cross head velocities with a constant span of 

34 mm to obtain interlaminar shear strength (ILSS) of 

samples. Before testing, the thickness and width of the 

specimens were measured accurately. The test specimen was 

placed on the test fixtures and aligned so that its midpoint 
was centered and its long axis was perpendicular to the 

loading nose. The load was applied to the specimen at a 

specified cross head velocity. Breaking load of the sample 

was recorded. About five samples were tested at each level of 

experiment and their average value along with standard 

deviation (SD) and coefficient of variation (CV) were 

reported in result part. The interlaminar shear strength was 

calculated using the formula, 

S = (0.75Pb)/bd as per ASTM D 2344 

Where Pb is the breaking load in kg; b is the width in mm 

and d is the thickness in mm. 

 
Figure 4.1 (a): Three point bend test setup and fixture 

 
Figure 4.1 (b): Schematic diagram of three point bend test 

Determination of material constants: Laminated composite 

plates behave like orthotropic lamina, the characteristics of 

which can be defined completely by four material constants 

i.e. E1, E2, G12, and V12 where the suffixes 1 and 2 indicate 

principal material directions. For material characterization of 
composites, laminate having eight layers was fabricated to 

evaluate the material constants. The constants are determined 

experimentally by performing unidirectional tensile tests on 

specimens cut in longitudinal and transverse directions, and 

at 45° to the longitudinal direction, as described in ASTM 

standard: D 3039/D 3039 M (2008). The tensile test 

specimens are having a constant rectangular cross section in 

all the cases. The dimensions of the specimen are mentioned 

below in Table 4.1. 

 

Table 4.1: Size of the specimen for tensile test 

Length(mm) 

Width(mm) 
Width(mm) Thickness(mm) 

Thickness(mm)   

   

200 25 3 

   

The specimens were cut from the plates themselves by 

diamond cutter or by hex saw as per requirement as shown in 
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Figure 4.2 (a). Four replicate sample specimens were tested 

and mean values were adopted. The test specimens are shown 

in Figure 4.2. (b) to Figure 4.2(d). 

 
Figure 4.2: Diamond cutter for cutting specimens 

 

Coupons were machined carefully to minimize any residual 

stresses after they were cut from the plate and the minor 

variations in dimensions of different specimens are carefully 

measured. For measuring the Young's modulus, the specimen 

was loaded in INSTRON 1195 universal testing machine (as 

shown in Figure 4.3) monotonically to failure with a 

recommended rate of extension (rate of loading) of 0.2 

mm/minute. Specimens were fixed in the upper jaw first and 

then gripped in the movable jaw (lower jaw). Gripping of the 

specimen should be as much as possible to prevent the 
slippage and an extensometer respectively. Failure pattern of 

woven fiber glass/epoxy composite specimen is shown in 

Figure 4.4. From these data, engineering stress vs. strain 

curve was plotted; the initial slope of which gives the 

Young's modulus. The ratio of transverse to longitudinal 

strain directly gives the Poisson's ratio by using two strain 

gauges in longitudinal and transverse direction. But here 

Poisson.s ratio is taken as 0.3. 

The values of material constants finally obtained 

experimentally for vibration are presented in Chapter-6. 

 
Figure 4.3: Tensile test of woven fiber glass/epoxy composite 

specimens 

 
Figure 4.4: Failure pattern of woven fiber glass/epoxy 

composite specimen 

 
Figure 6.8: Modal analysis of a 8 layer channel beam at 

fixed-fixed boundary condition by Ansys 

 
Figure 6.9: Four natural frequency mode shapes of a 8 layer 

channel beam at fixed-fixed boundary condition by Ansys 

 
IV.   CONCLUSION 

The following conclusions can be made from the present 

investigations of the box and channel shaped composite 

beam finite element. This element is versatile and can be 

used for static and dynamic analysis of a composite or 

isotropic beam. The natural frequencies of different 

boundary conditions of composite beam have been reported. 
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The program result shows in general a good agreement with 

the existing literature. It is found that natural frequency is 

minimum for clamped –free supported beam and maximum 

for clamped-clamped supported beam. Mode shape was 
plotted for differently supported laminated beam with the 

help of ANSYS [58] to get exact idea of mode shape. 

Vibration analysis of laminated composite beam was also 

done on ANSYS [58] to get natural frequency and same trend 

of natural frequency was found to be repeated. There is a 

good agreement between the experimental and numerical 

results. The Finite Element method defined previously is 

directly applied to the explained examples of generally 

laminated composite beams to obtain the natural frequencies, 

the impact of Poisson effect, slender ratio, material 

anisotropy, shear deformation and boundary conditions on 

the natural frequencies of the laminated beams are analyzed. 
And it is found that the present results are in very good 

agreement with the theoretical results of references. We 

assumed different examples and it is found that natural 

frequencies increase with the value of E1 increases. It is 

found that natural frequencies decrease with the increase of 

beam length. It is observed that natural frequency increases 

with increase in number of layers and aspect ratios for both 

box and channel shaped beams. The material anisotropy has a 

relatively negligible effect on the mode shapes and the 

slenderness ratio has considerable effect on all five modes 

especially on the fifth mode. 
 

Scope of future work: An analytical formulation can be 

derived for modelling the behaviour of laminated composite 

beams with integrated piezoelectric sensor and actuator. 

Analytical solution for active vibration control and 

suppression of smart laminated composite beams can be 

found. The governing equation should be based on the first-

order shear deformation theory. The dynamic response of an 

unsymmetrical orthotropic laminated composite beam, 

subjected to moving loads, can be derived. The study should 

be including the effects of transverse shear deformation, 
rotary and higher-order inertia. And also we can provide 

more number of degree of freedom about 10 to 20 and then 

should be analyzed by higher order shear deformation theory. 

The free vibration characteristics of laminated composite 

cylindrical and spherical shells can be analyzed by the first-

order shear deformation theory and a meshless global 

collocation method based on thin plate spline radial basis 

function. An algorithm based on the finite element method 

(FEM) can be developed to study the dynamic response of 

composite laminated beams subjected to the moving 

oscillator. The first order shear deformation theory (FSDT) 

should be assumed for the beam model. The damping 
behavior of laminated sandwich composite beam inserted 

with a visco elastic layer can be derived.  
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