ENCODING OF DIGITAL CIRCUITS TO MIMIC THE GENOME OF A BIOLOGICAL ORGANISM

S. B. Sivasubramaniyan¹, Dr. R. Seshasayanan² Department of ECE, CEG, Anna University.

The proposed work visualizes the digital circuit as a series of bits much the same way as the human genome is interpreted. The Binary strings are visualized to mimic the genetic imprint of a biological organism. The genotype given by the DNA determines the phenotype of the organism¹. Similarly, the binary string is encoded in a way to reflect the components of the circuit. The 2800 Mega base pairs² constituting the human genome has a sequence of Adenine, Thymine, Cytosine and Guanine. These bases codes the amino acids which in turn make proteins. A digital circuit, thus, is visualized to have sequence of bits.

The component of the circuit mimics the natural cell. The genome consists of 5 frames representing particular attribute as shown in fig. 1. Frame C and E comprises two sub-frames.

Start	Α	В	С	D	E	Stop		
Telo	Input	Circuit		Type of	Compo	Telom		
mere	Level	Level	Groups	inputs	nent	ere		
Figure 1: Genome of a component								

Table 1 Frame A and Frame B Encoding

Frame A	Frame B
g (Input level)	(Circuit Level)
Level I	Level I
2	2
3	3
4	4
5	5
6	6
7	7
	g (Input level) Level I 2 3 4 5

Table 2 Frame C and Frame D Encoding

Frame C						Frame D	
(number of inputs and input groups)							(type of inputs)
Inputs, i Input groups						c-complement	
	C'	1			c2		s-straight
i	w	string		W	grouping	String	String
1	3	000	1	1	1	1	1 – s
							00 - c,c
							01 – c,s
2	3	001	2	2	2	11	10 – s,c
							11 – s,s
							000 – -,c,c
							001 – -,c,s
						011	011 – -,s,s
					_		010,s,c
3	3	011	3	•	2	101	000 – c,-,c
3	3	011	3	3			
						110	
4	3	010	4	4	2	0011	
						0101	
						1100	
						00011	
5	3	110	5	5	2	.00101	
						00110	
						11000	
						-	
						40004	
						10001	

6	3	111	6	6	2		
٠	٠		٠	٠	_		
_	_	404		_		•	
7	3	101	7	7	2	•	
						•	
_	_		_	_	_	0000001	
8	3	100	8	8	2	00000011	
						00000101	
						00000110	
						00011000	
						•	
						-	-
						10000010	

ISSN (Online): 2347 - 4718

Table 3 Frame E Encoding

	Frame E				
(Components)					
Index	Component	String			
00	-	-			
	Not Defined	000			
	Ex-OR	001			
•	AND	011			
01 (Cataa)	OR	010			
(Gates)	Ex-NOR	110			
	Buffer	111			
	NOR	101			
	NAND	100			
	Mux	000			
	Demux	001			
11	Decoder	011			
(Circuits)	Encoder	010			
		110			
		111			
		101			
		100			
	D FF	000			
	T FF	001			
10	JK FF	011			
(Sequential	SR FF	010			
Circuits)	SR	110			
	-	111			
	-	101			
	-	100			

The Length of the genome (L) of a cell in a 7 level, 8 input digital circuit takes the empirical form, L = 2i + 16. Number of strips making up the complete genome is proportional to number of components of the circuit. The 20 bit string

10010010011111010111 (figure 2) represents the genome of a 2 input AND gate (Y = A.B).

Start	A	В	С	D	E	Stop
1	001	001	001 11	11	01 011	1

Figure 2 Two input AND Gate

- [1] J. M. W. Slack, "Essential Developmental Biology," 2nd edition, Wiley-Blackwell, A John Wiley & Sons, Ltd. Publication, 2013.
- [2] International Human Genome Sequencing Consortium, "Finishing the euchromatic sequence of the human genome," Nature, vol. 431, October 2004.