
International Journal For Technological Research In Engineering

Volume 7, Issue 3, November-2019 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2019.All rights reserved. 6229

A FACTUAL STUDY OF CODE READABILITY AND SOFTWARE

COMPLEXITY

Deepa Dhabhai

(Assistant Professor - CS)

Shekhawati Institute of Engineering and Technology, Rajasthan, India

Abstract: Important software quality metrics such that Code

readability and software complexity that impact other

software metrics such as maintainability, reusability,

portability and reliability. This paper presents a Factual

study of the relationships between code readability and

program complexity. This analysis includes many

readability and complexity metrics. Our study factually

confirms the existing wisdom that readability and

complexity are negatively correlated.

Keywords: readability, complexity, metrics, correlation,

feature ranking, Factual study

I. INTRODUCTION

Code Readability is defined as a human judgment as to how

much source code is understandable and easy to read. It has

been traditionally considered as an important software quality

metric as it has a great influence on software maintenance.

Typically, maintainability phase consumes 40% to 80% of

the total life-cycle cost of software [1]. Aggarwal et al. [2]

claim that source code readability and documentation

readability are crucial for maintainability of a software. Some

researchers identify reading code as a key activity in software
maintenance, and also recognize it as the most time-

consuming activity among all the maintenance activities [3],

[4], [5]. Software complexity is defined in IEEE glossary

standards as: “the degree to which a system or component

has a design or implementation that is difficult to understand

and verify” [12]. The complexity of code can be affected by

many factors, such as: lines of code, total number of

operators and operands, coupling between objects, and

number of control flows [13]. These factors are used in

software metrics for measurement and approximate

quantification of software complexity. Software complexity
is considered as an “essential” property of the software since

it reflects the complexity of the real-worlds problem a

software deals with [6]. On the other hand, code readability is

considered as an “accidental property”, not an essential one,

as it is not determined by the problem space, and can largely

be controlled by the software engineers. While software

complexity metrics measure the size of classes and methods,

coupling, and interdependencies between modules, the code

readability considers local and line-byline factors such as:

names of identifies, indentations, spaces, and length of lines

of code. Software quality is a critical topic in software

engineering, and thus many researchers have performed
studies in this area. Code readability and software complexity

have a substantial impacts on software quality. For better

quality, low complexity and high readability are desired. \

Complexity may impact code readability, while low

readability also may result in higher perceived complexity.

Thus, readability and complexity are related. Research

Questions: A proper understanding of the relationship

between these two attributes (i.e., readability and

complexity) is necessary. In this paper, we present an

Factualstudy of the relationships between code readability

and software complexity.

II. BACKGROUND AND RELATED WORK
In the next sub-sections we highlight the importance of

source code lexicon (i.e., terms extracted from identifiers and

comments) for software quality; in addition, we describe

state-of-the-art code readability models. To the best of our

knowledge, three different models have beed defined in the

literature for measuring the readability of source code [7],

[8], [9]. Besides estimating the readability of source code,

readability models have been also used for defect prediction

[7], [9]. Recently, Daka et al. [17] offered a specialized

readability model for test cases, which is used to improve the

readability of automatically generated test cases. A. Software

Quality and Source Code Lexicon Identifiers and comments
play a crucial role in program comprehension and software

quality since developers express domain knowledge through

the names they assign to the elements of a program (e.g.,

variables and methods) [10], [11], [12], [13], [14], [15], [16].

For example, Lawrie et al. [14] showed that identifiers

containing full words are more understandable than

identifiers composed of abbreviations. From the analysis of

source code identifiers and comments it is also possible to

glean the “semantics” of the source code. Consequently,

identifiers and comments can be used to measure the

conceptual cohesion and coupling of classes [18], [19], and
to recover traceability links between documentation artifacts

(e.g., requirements) and source code (e.g., [20]). While the

importance of meaningful identifiers for program

comprehension is quite consolidated, there is no agreement

on the importance of the presence of comments for

increasing code readability and understandability. While the

previous studies pointed out that comments make source

code more readable [21], [22], [23], the more recent studies,

for instance by Buse and Weimer [7], showed that the

number of commented lines is not an important factor in

their readability model. However, the consistency between

comments and source code has been shown to be more
important than the presence of comments, for code quality.

Binkley et al. [24] proposed the QALP tool for computing

the textual similarity between a component comment and its

code. The QALP score has been shown to correlate with

International Journal For Technological Research In Engineering

Volume 7, Issue 3, November-2019 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2019.All rights reserved. 6230

human judgements of software quality and is useful for

predicting faults in modules. Specifically, the lower the

consistency between identifiers and comments in a software

component (e.g., a class), the higher its fault-proneness [24].
Such a result has been recently confirmed by Ibrahim et al.

[25]; the authors mined the history of three large open source

systems observing that when a function and its comment are

updated inconsistently (e.g., the function code is modified,

the comment not), the defect proneness of the function

increases. Unfortunately, such a bad practice is quite

common since very often developers do not update

comments when they maintain source code [26], [27]. B.

Structural Features as a Proxy of Readability Buse and

Weimer [7] proposed the first model of software readability

and provided evidence that a subjective aspect like

Buse & Weimer have proposed a code readability metric and
developed a readability tool that automatically measures

proposed readability metric. They selected Java code snippets

and made them available to the selected human annotators for

the judgement of readability of those code snippets. The

results obtained from the experts were compared with results

from the propose readability tool. The overall accuracy of the

tool was found to be 80%. The study also showed that the

readability is strongly correlated with some software quality

attributes such as code changes, defect log messages and

automated defect reports. However, Daryl Posnett et al. [16]

argued that code readability is a subjective property and it is
not persuadable to generate readability score using automated

readability tool. Further, they included that readability very

much depends on the information contained in the source

code and thus the readability score can be calculated based

on size and code entropy. Similarly, Ankit performed a

review of metrics for software quality. The authors reviewed

various readability metrics in the literature such as Flesh-

Kincaid metric, Gunning-Fog metric, SMOG index,

Automated Readability Index and Coleman-Liau Index and

concludes that the choice of readability metrics depend on

different employments. They mention various elements of
code that improves and degrades readability, for example

appropriate comments and poorly defined variables

respectively. Complexity Metrics: Many software complexity

metrics have been proposed in the past. Almost all the

proposed complexity metrics measure complexity based on

three attributes: software size, data flow, and control flow.

Halstead Complexity Model [18], McCabe [19], Line of

Code (LOC) [20] and Chidamber & Kemerer [21] metrics

suites are all examples of proposed complexity metrics.

 2.2 Analyses of Relationship

There have been few investigations into the relationship
between software readability and complexity.In the study of.

[7], the investigation was based on Component Based

Software Engineering (CBSE).. Readability and complexity

results indicate a negative correlation between both of these.

Buse and Weimer proposed an approach for constructing a

readability tool. Researchers investigated correlation between

readability score from their proposed readability tool and

cyclomatic complexity with help of Pearson product moment

correlation. They found that readability is weakly correlated

with complexity in the absolute sense, and it is effectively

uncorrelated to complexity in relative sense. 3. Study Setup

In this section, we discuss readability and complexity metrics

used in this work, as well as the tools and methodology
adopted in this research. 3.1 Readability Metrics Different

metrics are developed to estimate the readability of code.

The readability metrics used in this work are described

below. A sentence difficulty is determined as words per

sentence and word difficulty is that by calculating letters per

words. The equation for calculating ARI is: ARI =

4.71(characters) + 0.5 (words) – 21.43 The numeric value of

the ARI metric it approximates the grade level needed to

comprehend the text. For example, ARI = 3 means, students

in 3rd grade (ages 8-9 yrs. old) should be able to comprehend

the text [28]. B. The Simple Measure of Gobbledygook

(SMOG): SMOG is suggested by G Harry McLaughlin [22]
in 1969. This metric evaluated the time (in years) required by

any person to read the text. The equation for calculating

SMOG is: SMOG = 3 + Square Root of Polysyllable Count

The SMOG metric value signifies a U.S. school grade level

indicating that an average student in that grade level can read

the text [28].

III. CONCLUSION:

This paper define factual study of Code Readability and

software complexity .Using facts of previous research work

that complexity metric measures interface complexity for
software components and shows how it is correlated to

readability matrix

REFERENCES

[1] Dubey, S. K., & Rana, A. (2011). Assessment of

maintainability metrics for object-oriented software

system. ACM SIGSOFT Software Engineering

Notes, 36(5):1-7.

[2] Aggarwal, K. K., Singh, Y., & Chhabra, J. K.

(2002). An integrated measure of software
maintainability. In Annual Proc. of Reliability and

maintainability symposium, pp. 235-241.

[3] Raymond, D. R. (1991, October). Reading source

code. In Proc. of the 1991 conference of the Centre

for Advanced Studies on Collaborative research, pp.

3-16.

[4] Deimel Jr, L. E. (1985). The uses of program

reading. ACM SIGCSE Bulletin, 17(2): 5-14.

[5] Rugaber, S. (2000). The use of domain knowledge

in program understanding. Annals of Software

Engineering, 9(1-2): 143-192.

[6] Brooks, F. P. (1987). No silver bullet essence and
accidents of software engineering. IEEE Computer,

20(4): 10-19

[7] Tashtoush, Y., Odat, Z., Alsmadi, I., and Yatim, M.

(2013). Impact of programming features on code

readability. International J. of Software Engineering

and Its Applications, 7(6): 441-458.

[8] Batool, A., ur Rehman, M. H., Khan, A., and

Azeem, A. (2015). Impact and Comparison of

Programming Constructs on JAVA and C# Source

International Journal For Technological Research In Engineering

Volume 7, Issue 3, November-2019 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2019.All rights reserved. 6231

Code Readability. International J. of Software

Engineering and Its Applications, 9(11): 79-90.

[9] Buse, R. P., and Weimer, W. R. (2008). A metric for

software readability. In Proc. of ACM international
symposium on Software testing and analysis, pp.

121- 130.

[10] https://github.com/ipeirotis/ReadabilityMetrics

[11] http://www.virtualmachinery.com/jhdownload.htm

[12] Radatz, J., Geraci, A., and Katki, F. (1990). IEEE

standard glossary of software engineering

terminology. IEEE Std, 610121990(121990), 3.

[13] Misra, S., and Akman, I. (2008). A model for

measuring cognitive complexity of software. In

Proc. of International Conference on Knowledge-

Based and Intelligent Information and Engineering

Systems, pp. 879-886.
[14] Buse, R. P., and Weimer, W. R. (2010). Learning a

metric for code readability. IEEE Transactions on

Software Engineering, 36(4): 546-558.

[15] Pahal, A., and Chillar, R. S. (2017). Code

Readability: A Review of Metrics for Softw.

Quality. Intl. J. of Comp. Trends and Tech, 46 (1):

1-4.

[16] Posnett, D., Hindle, A., & Devanbu, P. (2011). A

simpler model of software readability. In Proc. of

the 8th working conference on mining software

repositories, pp. 73-82.
[17] Wang, X., Pollock, L., and Vijay-Shanker, K.

(2011). Automatic segmentation of method code

into meaningful blocks to improve readability. In

18th Working Conference on Reverse Engineering

,pp. 35- 44.

[18] Halstead, M. H. (1977). Elements of software

science. Elsevier.

[19] McCabe, T. J. (1976). A complexity measure. IEEE

Trans. on software Engineering, SE-2 (4): 308-320.

[20] Parareda, B., & Pizka, M. (2007). Measuring

productivity using the infamous lines of code
metric. In Proc. of SPACE 2007 Workshop, Japan.

[21] Chidamber, S. R., & Kemerer, C. F. (1994). A

metrics suite for object oriented design. IEEE

Transactions on software engineering, 20(6): 476-

493.

[22] http://www.readabilityformulas.com/smogreadabilit

y-formula.php

[23] http://www.readabilityformulas.com/gunning-

fogreadability-formula.php

[24] Flesch-Kincaid Readability Index.

http://www.mang.canterbury.ac.nz/writing_guide/wr

iti ng/fles ch.shtml
[25] Coleman-LiauIndex.

http://en.wikipedia.org/w/index.php?title=Meri_Col

eman&ac tion=edit&redlink=1

[26] https://www.cs.waikato.ac.nz/~ml/weka/

[27] Goswami, P., Kumar, P., & Nand, K. (2012).

Evaluation of complexity for components in

component based software engineering. IJREAS,

2(2).

[28] http://www.readabilityformulas.com/free-

readabilityformula-tests.php

[29] https://ipeirotis-hrd.appspot.com

[30] Montgomery, D. C., Jennings, C. L., and Kulahci,

M. (2008). Introduction to Time Series Analysis
and ForeCasting. Wiley Series in Probability and

Statistics. John Wiley and Sons, Inc.

[31] Software Code Readability Dataset.

https://github.com/zibranm/dataset.git

http://www.virtualmachinery.com/jhdownload.htm
http://www.readabilityformulas.com/smogreadability-formula.php
http://www.readabilityformulas.com/smogreadability-formula.php
https://ipeirotis-hrd.appspot.com/

