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Abstract: Cab is a proof-of-concept ubiquitous computing 

application that allows people to book nearby cabs using 

their cell phones or PDAs equipped with short-range 

wireless network interfaces. Cab discovers and books free 

cabs using mobile ad hoc networks of vehicles. We have 

implemented a Cab prototype on top of Smart Messages, a 

middleware architecture based on execution migration, 

which we had developed to provide a common execution 

environment for outdoor ubiquitous computing 

applications. The experimental and simulation results have 

demonstrated the feasibility of Cab. 

 
I.     INTRODUCTION 

For many years, people have discussed about mobile ad hoc 

networks (MANET) and have proposed numerous routing 

algorithms [23, 31], but the technology has not been mature 

enough to support the deployment of such networks in the 

real world. Recently, shortrange wireless networking has 

started to live up to its expectations, and we see a large 

deployment of products based on either IEEE 802.11 

standards or Bluetooth (a low-cost, low-power alternative to 

IEEE 802.11 family of protocols). While short-range wireless 

technology is on its way to become ubiquitous in the near 
future, little has been done to develop real-life services or 

applications over mobile ad hoc networks. This paper 

presents Cab, a real-life ubiquitous computing application 

built over MANET, which allows people to book nearby cabs 

in densely populated urban areas using their cell phones or 

PDAs equipped with short range wireless network interfaces. 

Current cab booking systems rely on centralized schemes for 

cab dispatching short messages (SMSs) to a certain server 

over cellular links [1, 2]. Although under the traditional 

centralized solution cab dispatching is guaranteed, this 

solution is not scalable due to: 1) all requests have to go 

through one or multiple cab dispatchers, which introduces 
waiting time for the clients, especially during periods of peak 

cab requests, and 2) in order to dispatch the nearest cab to the 

client, all cabs in the city have to be monitored to find the 

closest one to the client’s location. 

The Cab dispatching system, on the other hand, is simpler, 

faster, and more scalable since it works in a completely 

decentralized fashion, and there is no need to gather the 

locations of all the cabs in real-time. Cab provides all these 

benefits because it defines a system architecture in which the 

clients and vehicles communicate using only short-range 

wireless network interfaces. This design decision, however, 
makes Cab a “best effort” service. Clients can switch to the 

standard centralized methods to book a cab if they fail to get  

 

a cab using Cab within a short period of time. Hence, the 

Cab system can be incrementally deployed and coexist with 

current centralized systems. Cab is useful in cities with high 

density of cabs, such as New York or Tokyo, where the 

contention to get cabs during certain periods (e.g., people 

getting out from a show) is very annoying. 

Cab is made possible by two recent technology trends. The 

first is the transformation of PDAs (e.g., HP iPAQ [5], 

Toshiba Pocket PC [10]) and cell phones (e.g., Ericsson 

P900 [7], Motorola A760 [6]) into relatively powerful 
mobile computers equipped with short-range wireless 

capabilities. The second is the increasing presence of 

powerful embedded systems, GPS receivers, and even 

wireless network interfaces in modern vehicles. For instance, 

GPS has been successfully used to track vehicles and provide 

accurate position information [11, 21]. A taxi service, based 

on real-time GPS information collected by a centralized 

dispatching centre over cellular networks, has also been 

implemented in Singapore [28]. We have implemented a Cab 

prototype on top of Smart Messages (SM) [13, 24], a 

middleware architecture based on execution migration, 

which we developed to provide a common execution 
environment for outdoor distributed applications. An SM 

carries its own routing code and routes itself at each node in 

the path toward a node of interest. To perform routing, SMs 

store routing information in a memory addressable by names 

at nodes. The SM self-routing mechanism [12] is especially 

useful for Cab because it allows on-demand deployment of 

new routing algorithms and changing the routing algorithm 

during execution. This feature enables Cab to adapt to highly 

dynamic network configurations. The testbed for Cab 

consists of ad hoc wireless networks composed of HP iPAQs 

running Linux and communicating through IEEE 802.11 
network interface cards. The experimental results show that 

Cab is a viable solution for booking cabs in densely 

populated urban areas. We have also evaluated and 

compared through simulations multiple mechanisms for 

discovering free cabs under different traffic scenarios. The 

rest of this paper is organized as follows. describes the Cab 

prototype, its SM-based routing algorithms, and the 

experimental results. Section 4 presents the simulation 

results comparing different routing algorithms. 

 

II.   DESIGN 

Cab consists of a mobile ad hoc network of computers 
embedded in taxis and client handheld devices, which 

communicate using short-range wireless network interfaces 

such as IEEE 802.11. Instead of booking cabs through a 

centralized dispatcher, Cab clients book free nearby cabs by 
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communicating directly with other Cab nodes (i.e., taxis) 

over a mobile ad hoc network. This decentralized architecture 

provides a simple, cheap, and scalable solution to a real-life 

problem. However, Cab presents new challenges which do 
not exist in traditional systems based on centralized 

dispatching centre. For instance, we need a distributed 

protocol to ensure that at most one cab arrives at the site of 

the client who requested the cab. 

Furthermore, we must ensure that any free cab accepts only 

one client request at any point in time. To provide an 

automatic booking mechanism, we also need accurate 

location information for both clients and cabs (e.g., the 

client’s street address has to be present in the booking 

request). Finally, Cab needs to provide a mechanism for the 

client and driver to authenticate each other when they meet. 

This section presents the Cab system architecture and its 
protocol that satisfies these requirements. 

 

2.1 System Architecture 

Cab consists of two types of entities: client stations and 

driver stations. A client station is PDA (or cell phone), while 

a driver station is a system embedded in the cab. We assume 

that all driver stations communicate with each other using 

IEEE 802.11, the de facto standard for high bandwidth, short-

range wireless networking. Additionally, each driver station 

has a GPS receiver that can report its current location when 

needed. All driver stations that are within the radio range of 
each other form an ad hoc network of nodes which 

communicate and perform the distributed computation 

necessary to book a free cab. The client stations have to join 

such a network to inject their requests for free cabs. A client 

station communicates directly with cabs in its transmission 

range, and the cabs in the network forward the request until a 

free cab is discovered. Unlike driver stations which are 

homogeneous, client stations can have different capabilities. 

Besides powerful PDAs equipped with IEEE 802.11 wireless 

network interfaces and GPS receivers, cell phones equipped 

with lowpower Bluetooth interfaces and without GPS 
receivers can also be used as client stations. In such a case, 

however, the client station needs to connect to a gateway 

station that forwards the request into the network of cabs and 

sends the answer back to the client. A gateway station is a 

computer equipped with a GPS receiver and multiple 

network interfaces (i.e., Bluetooth and IEEE 802.11), which 

can be co-located with Hotspots (i.e., IEEE 802.11 access 

points) at public places such as restaurants, stores, theaters, 

bus stops, telephone booths, and building lobbies. The role of 

a gateway station is to “stamp” location information on 

requests received from lighter clients that cannot incorporate 

a GPS receiver (i.e., given the range of Bluetooth, the 
location of the gateway is a good approximation for the 

location of the client). 

 

2.2 Cab Protocol 

The Cab application starts when a client sends out a request 

and ends with a validation at the client’s location. The Cab 

protocol consists of two phases: Cab Booking and Validation. 

Figure 2 shows the Cab Booking phase. During this, the 

client and driver stations collaborate with each other to 

forward the client’s request through the network until a free 

cab is discovered. To accommodate various network 

configurations determined by density and mobility of the 

cabs, Cab assumes an extensible routing layer which 
supports different routing algorithms as plugins (similar to 

Active Networks [3]). Sections 3 and 4 will present our 

experiences with developing routing algorithms specific to 

Cab. Cab Booking is a three-way handshake protocol which 

ensures that a nearby free cab is booked and no more than 

one client books a cab simultaneously. It starts by sending a 

request containing the client’s information (e.g., current 

location, destination location) into an ad hoc network of 

cabs. This request is routed to a free cab by the routing layer. 

 

Once the driver of a free cab agrees to the client’s 

requirements, the cab status is changed from free to 
occupied. The expected arrival time (estimated based on the 

distance between the client and the cab, the time of the day, 

and previous experiences of the cab driver) and the license 

plate of the cab are sent to the client. The handshake protocol 

completes with an acknowledgment from the client station to 

the driver station. Once the driver station receives the 

acknowledgment, the cab driver is notified to pick up the 

client. 

 

III.   PROTOTYPE IMPLEMENTATION 

We have implemented Cab using Smart Messages [13, 24], a 
middleware architecture based on execution migration, 

which we developed to provide a common execution 

environment for outdoor ubiquitous computing applications. 

This section presents a short overview of Smart Messages, 

the Cab prototype, the routing algorithms used by Cab to 

find free cabs, and experimental results over ad hoc networks 

of PDAs. 

 

3.1 Smart Messages 

Smart Messages (SM) define a middleware architecture, 

similar to mobile agents, for programming distributed 
applications over mobile ad hoc networks of resource 

constrained devices. An SM is a distributed application 

consisting of code, data, and a lightweight execution state. 

Instead of transferring data among nodes involved in 

computation, SMs migrate the execution to each of these 

nodes. An SM carries routing code and routes itself at each 

node in the path toward a node of interest. Each node 

cooperates to support the SM execution by providing a 

virtual machine (VM) for execution over heterogeneous 

platforms, a shared memory addressable by names (tag 

space) for inter-SM communication and synchronization, and 

a code cache for storing frequently executed code. An SM 
calls explicitly for migration when it needs to execute on a 

different node. Upon an SM arrival at a new node, its 

execution is resumed from the next instruction following a 

migration invocation. During its execution an SM can spawn 

or create new SMs. Additionally, an SM can interact with the 

host or other SMs using tags stored in the tag space. 

Essentially, the tags are (name, data) pairs. Corresponding to 

their functionality, there are two types of tags: application 

tags for “persistent” memory across SM executions which 
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can store applicationspecific data, and I/O tags for interaction 

with the host’s operating system and I/O. Tags can also be 

used for synchronization between SMs. An SM can block on 

a tag until another SM performs a write on that tag (i.e., 
updatebased synchronization). SMs name nodes by tag 

names (i.e., content-based naming) and migrate to nodes of 

interest using a high level migration function that implements 

routing [12]. The routing is executed at each node on the path 

toward a node of interest; hence, SMs are self-routing 

applications. The implementation of routing uses information 

stored by SMs in the tag space and a systemprovided 

primitive for one-hop migration. This primitive captures the 

current execution control state and migrates it to the next hop 

along with the code and data. The SM platform is developed 

by directly modifying Sun Microsystem’s 

Kilobyte Virtual Machine (KVM); KVM features a small 
memory footprint (160K) suitable for most embedded 

devices. The tag space and SM operations are available to 

applications as a Java API. 

 

3.2 Cab Prototype 

We have implemented the Cab prototype on top of the SM 

platform installed on HP iPAQs running Linux. 

The iPAQs use Orinoco’s 802.11 cards for wireless 

communication, and each of them is connected to a Geko 201 

GPS receiver. We have demonstrated in a different project 

[18] that cars can be mapped with high accuracy on the roads 
despite the low accuracy provided by raw GPS data (e.g., raw 

GPS data provides on average an accuracy of 10 meters). 

Figure 3 illustrates an Cab driver station. 

 

IV.   PERFORMANCE EVALUATION 

To compare the performance of the three Cab routing 

algorithms under different scenarios, we have simulated Cab 

using the ns-2 simulator [9], enhanced with the CMUwireless 

extensions [8]. Different scenarios are used to test 

sensitivities of the algorithms to various application and 

network parameters. In this section, we describe our 
experiments and present the corresponding results. 

 

4.1 Scenario Generator 

We have developed our own scenario generator tool based on 

set, a generator tool for random-way point mobility model, 

developed at Carnegie Mellon University to generate traffic 

scenario for cities with grid roads (e.g., Manhattan). The 

scenario generator accepts as parameters the simulation time, 

the width and length of the city grids in meters, number of 

horizontal roads, number of vertical roads, number of lanes 

per road, average speed of the cabs in meters/sec, average 

gap distance between cabs on the same lane, and the number 
of clients in the city. In our traffic model, we use an even 

number of alternated single direction roads along each 

dimension of the grid. Cabs can change their lanes within the 

same road independently of each other. The probability of 

staying on the same lane is 0.6, whereas the probability of 

changing the lane is 

0.4 either to the left or to the right. Similarly, cabs can switch 

their roads at intersections. With equal probabilities, a cab 

chooses either to stay on the same road or change to the road 

it intersects with. When a cab reaches the last intersection on 

a road, it is forced to change to the road it intersects with. 

Clients behave similarly to the cabs at the intersections, 

except that they can move on both directions of a road. 
Therefore, clients at intersections can choose uniformly 

between the three new directions. The cabs select their speed 

as [average speed ±(0 .25×average speed× rand())], where 

rand() returns a uniformly distributed random number from 

the range [0,1]. The clients select their speed uniformly from 

range [0,1] meters/sec. Initially, each cab moves toward a 

random destination along its road using its currently selected 

speed. Once a cab reaches its destination, it selects another 

random destination along its road as well as a new speed. If 

the selected destination is behind the next intersection on the 

road, the cab sets its destination to the intersection. Clients 

select their new destinations in a similar manner. For all the 
simulations, we fixed the width of the grids to 2,000 meters, 

while the length is 3,000 meters. The roads are distributed 

uniformly as 6 vertical roads and 10 horizontal roads with 2 

lanes per road. The average gap between successive cabs on 

the same lane is 185 meters. The scenario generator places 

[number of lanes× (city width gap × number vertical roads+ 

city length gap × number horizontal roads)] = 410 cabs and 

200 clients evenly distributed on the roads. We used IEEE 

802.11b as the wireless media, with a data transmission rate 

of 11Mb and a transmission range of 250 meters. During our 

outdoor experiments, we found out that the wireless 
transmission range is less than 250 meters. However, we 

have been able to restore this transmission range using 

external antennas. 

 

4.2 Simulation Results 

For all the simulation runs, the first 200 seconds represent a 

warm up period (i.e., no cab request occurs within this 
period). Each client sends a cab request (Book once during 

the simulation period, at a time 

chosen randomly after the warm up period. Book is unicasted 

for the on-demand and proactive routing mechanisms, while 

it is broadcasted for the flooding mechanism. Note that in 

case a client uses the Probabilistic On-demand or 

Probabilistic Proactive routing mechanisms and has no 

routing table information, it will broadcast the Book or 

Discover (to simplify the exposition, we will refer only to 

Book). The maximum number of hops a request can 

propagate (i.e., TTL) searching for a free cab is set to 20 

hops. Once a free cab receives a cab request, it sets its status 
to reserved for a period chosen randomly between 2 and 5 

seconds and sends back a Report SMS. Once a confirmation 

(Confirm SMS) is received from a client, the cab status is set 

to booked (occupied) for a random period chosen uniformly 

over the range [300, 1800] seconds. Regardless of the 

routing mechanism, a client re-broadcasts a cab request if it 

does not receive a reply from any free cab within a random 

period chosen uniformly over the range [2, 5] seconds. The 

average cab speed is set to 15 meters/second with zero pause 

time. We set the fudge factor L for the on-demand 

mechanism to 3. For the proactive mechanism, we set the 
maximum entries in the routing table (max) to 20, and the 
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periodic update interval (UPD) for Update SMS to 5 seconds. 

The maximum number of hops (i.e., TTL) for Update SMS 

generated by free cabs is set to 3. Each entry in the routing 

table expires after 2.5×UPD seconds of the last update. 
 

4.2.1 Effects of Number of Free Cabs 

We first look at the effect of the initial number of free cabs. 

An initial free cab can be booked during the simulation and 

then switches its status back to free after the booking period. 

On the other hand, all the cabs initialized as booked at the 

beginning of the simulation remain booked during the 

simulation period. The initially booked cabs act only as 

relays. For these runs, we fix the simulation time to 1500 

seconds, with the 200 seconds warm up period. The clients 

request cabs uniformly over the next 1200 seconds, leaving 

the last 100 seconds for any unfinished requests. mobility 
model, developed at Carnegie Mellon University to generate 

traffic scenario for cities with grid roads (e.g., Manhattan). 

The scenario generator accepts as parameters the simulation 

time, the width and length of the city grids in meters, number 

of horizontal roads, number of vertical roads, number of 

lanes per road, average speed of the cabs in meters/sec, 

average gap distance between cabs on the same lane, and the 

number of clients in the city. In our traffic model, we use an 

even number of alternated single direction roads along each 

dimension of the grid. Cabs can change their lanes within the 

same road independently of each other. The probability of 
staying on the same lane is 0.6, whereas the probability of 

changing the lane is 0.4 either to the left or to the right. 

Similarly, cabs can switch their roads at intersections. With 

equal probabilities, a cab chooses either to stay on the same 

road or change to the road it intersects with. When a cab 

reaches the last intersection on a road, it is forced to change 

to the road it intersects with. Clients behave similarly to the 

cabs at the intersections, except that they can move on both 

directions of a road. Therefore, clients at intersections can 

choose uniformly between the three new directions. The cabs 

select their speed as [average speed ± (0 .25×average speed× 
rand ())], where rand () returns a uniformly distributed 

random number from the range [0,1]. The clients select their 

speed uniformly from range [0,1] meters/sec. Initially, each 

cab moves toward a random destination along its road using 

its currently selected speed. Once a cab reaches its 

destination, it selects another random destination along its 

road as well as a new speed. If the selected destination is 

behind the next intersection on the road, the cab sets its 

destination to the intersection. Clients select their new 

destinations in a similar manner. For all the simulations, we 

fixed the width of the grids to 2,000 meters, while the length 

is 3,000 meters. The roads are distributed uniformly as 6 
vertical roads and 10 horizontal roads with 2 lanes per road. 

The average gap between successive cabs on the same lane is 

185 meters. The scenario generator places [number of lanes× 

(city width gap × number vertical roads + city length gap × 

number horizontal roads)] = 410 cabs and 200 clients evenly 

distributed on the roads. We used IEEE 802.11b as the 

wireless media, with a data transmission rate of 11Mb and a 

transmission range of 250 meters. During our outdoor 

experiments, we found out that the wireless transmission 

range is less than 250 meters. However, we have been able to 

restore this transmission range using external antennas. 

The average cab speed is set to 15 meters/second with zero 

pause time. We set the fudge factor L for the on-demand 
mechanism to 3. For the proactive mechanism, we set the 

maximum entries in the routing table (max) to 20, and the 

periodic update interval (UPD) for Update SMS to 5 

seconds. The maximum number of 

hops (i.e., TTL) for Update SMS generated by free cabs is 

set to 3. Each entry in the routing table expires after 

2.5×UPD seconds of the last update. 10 horizontal roads with 

2 lanes per road. The average gap between successive cabs 

on the same lane is 185 meters. The scenario generator 

places [number of lanes× (city width gap × number vertical 

roads + city length gap × number horizontal roads)] = 410 

cabs and 200 clients evenly distributed on the roads. We 
used IEEE 802.11b as the wireless media, with a data 

transmission rate of 11Mb and a transmission range of 250 

meters. During our outdoor experiments, we found out that 

the wireless transmission range is less than 250 meters. 

However, we have been able to restore this transmission 

range using external antennas. 

 

V.   CONCLUSIONS AND FUTURE WORK 

In this paper, we have presented Cab, a reallife ubiquitous 

computing application for booking cabs in cities. Cab 

discovers and books free cabs using only vehicle-to-vehicle 
short-range wireless communication. Cab is easy to deploy, 

cost effective, and scalable since it works in a completely 

decentralized fashion. Cab is just one of the outdoor 

distributed computing applications that we are developing on 

top of mobile ad hoc networks using Smart Messages as a 

common middleware architecture. The experimental results 

over ad hoc networks of nodes running our prototype have 

demonstrated the feasibility of Cab. The simulation results 

using different scenarios show that Cab with a Probabilistic 

Proactive routing yields the best response time and finds the 

closest cab to the client. We are considering several 
extensions to Cab as future work. In this paper, we assumed 

the cabs are cooperative and willing to propagate data 

between each other. We plan to investigate the performance 

of Cab when it uses different classes of cabs in which 

communication happens only between cabs belonging to the 

same class. Cab classes model the situation of different cabs 

companies, where each company is not willing to route 

messages for a competing company. Another extension will 

allow occupied cabs to act as free candidate cabs based on 

their scheduled drop-off location and time. For example, it 

would be useful to consider a cab that is scheduled to drop-

off a client a mere 10 feet from the new client within a 
minute, which is far better than booking a 15 minutes away 

free cab. We also plan to study the use of priorities for the 

free cabs based on, for example, their distances to the client, 

how long they have been idle, or the number of clients 

served in the last hour. The goal of such priority system is to 

guarantee fairness and optimality. 
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