
International Journal For Technological Research In Engineering

Volume 7, Issue 4, December-2019 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2019.All rights reserved. 6317

CAB: A CAB BOOKING APPLICATION USING SHORT-RANGE

WIRELESS COMMUNICATION

Sweety
1
, Aastha Bathla

2
, Sweta Kumari

3
, Indu Khatri

4

1,2,3
Students of Computer science, BMCEM, Sonipat

4
Guide

Abstract: Cab is a proof-of-concept ubiquitous computing

application that allows people to book nearby cabs using

their cell phones or PDAs equipped with short-range

wireless network interfaces. Cab discovers and books free

cabs using mobile ad hoc networks of vehicles. We have

implemented a Cab prototype on top of Smart Messages, a

middleware architecture based on execution migration,

which we had developed to provide a common execution

environment for outdoor ubiquitous computing

applications. The experimental and simulation results have

demonstrated the feasibility of Cab.

I. INTRODUCTION

For many years, people have discussed about mobile ad hoc

networks (MANET) and have proposed numerous routing

algorithms [23, 31], but the technology has not been mature

enough to support the deployment of such networks in the

real world. Recently, shortrange wireless networking has

started to live up to its expectations, and we see a large

deployment of products based on either IEEE 802.11

standards or Bluetooth (a low-cost, low-power alternative to

IEEE 802.11 family of protocols). While short-range wireless

technology is on its way to become ubiquitous in the near
future, little has been done to develop real-life services or

applications over mobile ad hoc networks. This paper

presents Cab, a real-life ubiquitous computing application

built over MANET, which allows people to book nearby cabs

in densely populated urban areas using their cell phones or

PDAs equipped with short range wireless network interfaces.

Current cab booking systems rely on centralized schemes for

cab dispatching short messages (SMSs) to a certain server

over cellular links [1, 2]. Although under the traditional

centralized solution cab dispatching is guaranteed, this

solution is not scalable due to: 1) all requests have to go

through one or multiple cab dispatchers, which introduces
waiting time for the clients, especially during periods of peak

cab requests, and 2) in order to dispatch the nearest cab to the

client, all cabs in the city have to be monitored to find the

closest one to the client’s location.

The Cab dispatching system, on the other hand, is simpler,

faster, and more scalable since it works in a completely

decentralized fashion, and there is no need to gather the

locations of all the cabs in real-time. Cab provides all these

benefits because it defines a system architecture in which the

clients and vehicles communicate using only short-range

wireless network interfaces. This design decision, however,
makes Cab a “best effort” service. Clients can switch to the

standard centralized methods to book a cab if they fail to get

a cab using Cab within a short period of time. Hence, the

Cab system can be incrementally deployed and coexist with

current centralized systems. Cab is useful in cities with high

density of cabs, such as New York or Tokyo, where the

contention to get cabs during certain periods (e.g., people

getting out from a show) is very annoying.

Cab is made possible by two recent technology trends. The

first is the transformation of PDAs (e.g., HP iPAQ [5],

Toshiba Pocket PC [10]) and cell phones (e.g., Ericsson

P900 [7], Motorola A760 [6]) into relatively powerful
mobile computers equipped with short-range wireless

capabilities. The second is the increasing presence of

powerful embedded systems, GPS receivers, and even

wireless network interfaces in modern vehicles. For instance,

GPS has been successfully used to track vehicles and provide

accurate position information [11, 21]. A taxi service, based

on real-time GPS information collected by a centralized

dispatching centre over cellular networks, has also been

implemented in Singapore [28]. We have implemented a Cab

prototype on top of Smart Messages (SM) [13, 24], a

middleware architecture based on execution migration,

which we developed to provide a common execution
environment for outdoor distributed applications. An SM

carries its own routing code and routes itself at each node in

the path toward a node of interest. To perform routing, SMs

store routing information in a memory addressable by names

at nodes. The SM self-routing mechanism [12] is especially

useful for Cab because it allows on-demand deployment of

new routing algorithms and changing the routing algorithm

during execution. This feature enables Cab to adapt to highly

dynamic network configurations. The testbed for Cab

consists of ad hoc wireless networks composed of HP iPAQs

running Linux and communicating through IEEE 802.11
network interface cards. The experimental results show that

Cab is a viable solution for booking cabs in densely

populated urban areas. We have also evaluated and

compared through simulations multiple mechanisms for

discovering free cabs under different traffic scenarios. The

rest of this paper is organized as follows. describes the Cab

prototype, its SM-based routing algorithms, and the

experimental results. Section 4 presents the simulation

results comparing different routing algorithms.

II. DESIGN

Cab consists of a mobile ad hoc network of computers
embedded in taxis and client handheld devices, which

communicate using short-range wireless network interfaces

such as IEEE 802.11. Instead of booking cabs through a

centralized dispatcher, Cab clients book free nearby cabs by

International Journal For Technological Research In Engineering

Volume 7, Issue 4, December-2019 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2019.All rights reserved. 6318

communicating directly with other Cab nodes (i.e., taxis)

over a mobile ad hoc network. This decentralized architecture

provides a simple, cheap, and scalable solution to a real-life

problem. However, Cab presents new challenges which do
not exist in traditional systems based on centralized

dispatching centre. For instance, we need a distributed

protocol to ensure that at most one cab arrives at the site of

the client who requested the cab.

Furthermore, we must ensure that any free cab accepts only

one client request at any point in time. To provide an

automatic booking mechanism, we also need accurate

location information for both clients and cabs (e.g., the

client’s street address has to be present in the booking

request). Finally, Cab needs to provide a mechanism for the

client and driver to authenticate each other when they meet.

This section presents the Cab system architecture and its
protocol that satisfies these requirements.

2.1 System Architecture

Cab consists of two types of entities: client stations and

driver stations. A client station is PDA (or cell phone), while

a driver station is a system embedded in the cab. We assume

that all driver stations communicate with each other using

IEEE 802.11, the de facto standard for high bandwidth, short-

range wireless networking. Additionally, each driver station

has a GPS receiver that can report its current location when

needed. All driver stations that are within the radio range of
each other form an ad hoc network of nodes which

communicate and perform the distributed computation

necessary to book a free cab. The client stations have to join

such a network to inject their requests for free cabs. A client

station communicates directly with cabs in its transmission

range, and the cabs in the network forward the request until a

free cab is discovered. Unlike driver stations which are

homogeneous, client stations can have different capabilities.

Besides powerful PDAs equipped with IEEE 802.11 wireless

network interfaces and GPS receivers, cell phones equipped

with lowpower Bluetooth interfaces and without GPS
receivers can also be used as client stations. In such a case,

however, the client station needs to connect to a gateway

station that forwards the request into the network of cabs and

sends the answer back to the client. A gateway station is a

computer equipped with a GPS receiver and multiple

network interfaces (i.e., Bluetooth and IEEE 802.11), which

can be co-located with Hotspots (i.e., IEEE 802.11 access

points) at public places such as restaurants, stores, theaters,

bus stops, telephone booths, and building lobbies. The role of

a gateway station is to “stamp” location information on

requests received from lighter clients that cannot incorporate

a GPS receiver (i.e., given the range of Bluetooth, the
location of the gateway is a good approximation for the

location of the client).

2.2 Cab Protocol

The Cab application starts when a client sends out a request

and ends with a validation at the client’s location. The Cab

protocol consists of two phases: Cab Booking and Validation.

Figure 2 shows the Cab Booking phase. During this, the

client and driver stations collaborate with each other to

forward the client’s request through the network until a free

cab is discovered. To accommodate various network

configurations determined by density and mobility of the

cabs, Cab assumes an extensible routing layer which
supports different routing algorithms as plugins (similar to

Active Networks [3]). Sections 3 and 4 will present our

experiences with developing routing algorithms specific to

Cab. Cab Booking is a three-way handshake protocol which

ensures that a nearby free cab is booked and no more than

one client books a cab simultaneously. It starts by sending a

request containing the client’s information (e.g., current

location, destination location) into an ad hoc network of

cabs. This request is routed to a free cab by the routing layer.

Once the driver of a free cab agrees to the client’s

requirements, the cab status is changed from free to
occupied. The expected arrival time (estimated based on the

distance between the client and the cab, the time of the day,

and previous experiences of the cab driver) and the license

plate of the cab are sent to the client. The handshake protocol

completes with an acknowledgment from the client station to

the driver station. Once the driver station receives the

acknowledgment, the cab driver is notified to pick up the

client.

III. PROTOTYPE IMPLEMENTATION

We have implemented Cab using Smart Messages [13, 24], a
middleware architecture based on execution migration,

which we developed to provide a common execution

environment for outdoor ubiquitous computing applications.

This section presents a short overview of Smart Messages,

the Cab prototype, the routing algorithms used by Cab to

find free cabs, and experimental results over ad hoc networks

of PDAs.

3.1 Smart Messages

Smart Messages (SM) define a middleware architecture,

similar to mobile agents, for programming distributed
applications over mobile ad hoc networks of resource

constrained devices. An SM is a distributed application

consisting of code, data, and a lightweight execution state.

Instead of transferring data among nodes involved in

computation, SMs migrate the execution to each of these

nodes. An SM carries routing code and routes itself at each

node in the path toward a node of interest. Each node

cooperates to support the SM execution by providing a

virtual machine (VM) for execution over heterogeneous

platforms, a shared memory addressable by names (tag

space) for inter-SM communication and synchronization, and

a code cache for storing frequently executed code. An SM
calls explicitly for migration when it needs to execute on a

different node. Upon an SM arrival at a new node, its

execution is resumed from the next instruction following a

migration invocation. During its execution an SM can spawn

or create new SMs. Additionally, an SM can interact with the

host or other SMs using tags stored in the tag space.

Essentially, the tags are (name, data) pairs. Corresponding to

their functionality, there are two types of tags: application

tags for “persistent” memory across SM executions which

International Journal For Technological Research In Engineering

Volume 7, Issue 4, December-2019 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2019.All rights reserved. 6319

can store applicationspecific data, and I/O tags for interaction

with the host’s operating system and I/O. Tags can also be

used for synchronization between SMs. An SM can block on

a tag until another SM performs a write on that tag (i.e.,
updatebased synchronization). SMs name nodes by tag

names (i.e., content-based naming) and migrate to nodes of

interest using a high level migration function that implements

routing [12]. The routing is executed at each node on the path

toward a node of interest; hence, SMs are self-routing

applications. The implementation of routing uses information

stored by SMs in the tag space and a systemprovided

primitive for one-hop migration. This primitive captures the

current execution control state and migrates it to the next hop

along with the code and data. The SM platform is developed

by directly modifying Sun Microsystem’s

Kilobyte Virtual Machine (KVM); KVM features a small
memory footprint (160K) suitable for most embedded

devices. The tag space and SM operations are available to

applications as a Java API.

3.2 Cab Prototype

We have implemented the Cab prototype on top of the SM

platform installed on HP iPAQs running Linux.

The iPAQs use Orinoco’s 802.11 cards for wireless

communication, and each of them is connected to a Geko 201

GPS receiver. We have demonstrated in a different project

[18] that cars can be mapped with high accuracy on the roads
despite the low accuracy provided by raw GPS data (e.g., raw

GPS data provides on average an accuracy of 10 meters).

Figure 3 illustrates an Cab driver station.

IV. PERFORMANCE EVALUATION

To compare the performance of the three Cab routing

algorithms under different scenarios, we have simulated Cab

using the ns-2 simulator [9], enhanced with the CMUwireless

extensions [8]. Different scenarios are used to test

sensitivities of the algorithms to various application and

network parameters. In this section, we describe our
experiments and present the corresponding results.

4.1 Scenario Generator

We have developed our own scenario generator tool based on

set, a generator tool for random-way point mobility model,

developed at Carnegie Mellon University to generate traffic

scenario for cities with grid roads (e.g., Manhattan). The

scenario generator accepts as parameters the simulation time,

the width and length of the city grids in meters, number of

horizontal roads, number of vertical roads, number of lanes

per road, average speed of the cabs in meters/sec, average

gap distance between cabs on the same lane, and the number
of clients in the city. In our traffic model, we use an even

number of alternated single direction roads along each

dimension of the grid. Cabs can change their lanes within the

same road independently of each other. The probability of

staying on the same lane is 0.6, whereas the probability of

changing the lane is

0.4 either to the left or to the right. Similarly, cabs can switch

their roads at intersections. With equal probabilities, a cab

chooses either to stay on the same road or change to the road

it intersects with. When a cab reaches the last intersection on

a road, it is forced to change to the road it intersects with.

Clients behave similarly to the cabs at the intersections,

except that they can move on both directions of a road.
Therefore, clients at intersections can choose uniformly

between the three new directions. The cabs select their speed

as [average speed ±(0 .25×average speed× rand())], where

rand() returns a uniformly distributed random number from

the range [0,1]. The clients select their speed uniformly from

range [0,1] meters/sec. Initially, each cab moves toward a

random destination along its road using its currently selected

speed. Once a cab reaches its destination, it selects another

random destination along its road as well as a new speed. If

the selected destination is behind the next intersection on the

road, the cab sets its destination to the intersection. Clients

select their new destinations in a similar manner. For all the
simulations, we fixed the width of the grids to 2,000 meters,

while the length is 3,000 meters. The roads are distributed

uniformly as 6 vertical roads and 10 horizontal roads with 2

lanes per road. The average gap between successive cabs on

the same lane is 185 meters. The scenario generator places

[number of lanes× (city width gap × number vertical roads+

city length gap × number horizontal roads)] = 410 cabs and

200 clients evenly distributed on the roads. We used IEEE

802.11b as the wireless media, with a data transmission rate

of 11Mb and a transmission range of 250 meters. During our

outdoor experiments, we found out that the wireless
transmission range is less than 250 meters. However, we

have been able to restore this transmission range using

external antennas.

4.2 Simulation Results

For all the simulation runs, the first 200 seconds represent a

warm up period (i.e., no cab request occurs within this
period). Each client sends a cab request (Book once during

the simulation period, at a time

chosen randomly after the warm up period. Book is unicasted

for the on-demand and proactive routing mechanisms, while

it is broadcasted for the flooding mechanism. Note that in

case a client uses the Probabilistic On-demand or

Probabilistic Proactive routing mechanisms and has no

routing table information, it will broadcast the Book or

Discover (to simplify the exposition, we will refer only to

Book). The maximum number of hops a request can

propagate (i.e., TTL) searching for a free cab is set to 20

hops. Once a free cab receives a cab request, it sets its status
to reserved for a period chosen randomly between 2 and 5

seconds and sends back a Report SMS. Once a confirmation

(Confirm SMS) is received from a client, the cab status is set

to booked (occupied) for a random period chosen uniformly

over the range [300, 1800] seconds. Regardless of the

routing mechanism, a client re-broadcasts a cab request if it

does not receive a reply from any free cab within a random

period chosen uniformly over the range [2, 5] seconds. The

average cab speed is set to 15 meters/second with zero pause

time. We set the fudge factor L for the on-demand

mechanism to 3. For the proactive mechanism, we set the
maximum entries in the routing table (max) to 20, and the

International Journal For Technological Research In Engineering

Volume 7, Issue 4, December-2019 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2019.All rights reserved. 6320

periodic update interval (UPD) for Update SMS to 5 seconds.

The maximum number of hops (i.e., TTL) for Update SMS

generated by free cabs is set to 3. Each entry in the routing

table expires after 2.5×UPD seconds of the last update.

4.2.1 Effects of Number of Free Cabs

We first look at the effect of the initial number of free cabs.

An initial free cab can be booked during the simulation and

then switches its status back to free after the booking period.

On the other hand, all the cabs initialized as booked at the

beginning of the simulation remain booked during the

simulation period. The initially booked cabs act only as

relays. For these runs, we fix the simulation time to 1500

seconds, with the 200 seconds warm up period. The clients

request cabs uniformly over the next 1200 seconds, leaving

the last 100 seconds for any unfinished requests. mobility
model, developed at Carnegie Mellon University to generate

traffic scenario for cities with grid roads (e.g., Manhattan).

The scenario generator accepts as parameters the simulation

time, the width and length of the city grids in meters, number

of horizontal roads, number of vertical roads, number of

lanes per road, average speed of the cabs in meters/sec,

average gap distance between cabs on the same lane, and the

number of clients in the city. In our traffic model, we use an

even number of alternated single direction roads along each

dimension of the grid. Cabs can change their lanes within the

same road independently of each other. The probability of
staying on the same lane is 0.6, whereas the probability of

changing the lane is 0.4 either to the left or to the right.

Similarly, cabs can switch their roads at intersections. With

equal probabilities, a cab chooses either to stay on the same

road or change to the road it intersects with. When a cab

reaches the last intersection on a road, it is forced to change

to the road it intersects with. Clients behave similarly to the

cabs at the intersections, except that they can move on both

directions of a road. Therefore, clients at intersections can

choose uniformly between the three new directions. The cabs

select their speed as [average speed ± (0 .25×average speed×
rand ())], where rand () returns a uniformly distributed

random number from the range [0,1]. The clients select their

speed uniformly from range [0,1] meters/sec. Initially, each

cab moves toward a random destination along its road using

its currently selected speed. Once a cab reaches its

destination, it selects another random destination along its

road as well as a new speed. If the selected destination is

behind the next intersection on the road, the cab sets its

destination to the intersection. Clients select their new

destinations in a similar manner. For all the simulations, we

fixed the width of the grids to 2,000 meters, while the length

is 3,000 meters. The roads are distributed uniformly as 6
vertical roads and 10 horizontal roads with 2 lanes per road.

The average gap between successive cabs on the same lane is

185 meters. The scenario generator places [number of lanes×

(city width gap × number vertical roads + city length gap ×

number horizontal roads)] = 410 cabs and 200 clients evenly

distributed on the roads. We used IEEE 802.11b as the

wireless media, with a data transmission rate of 11Mb and a

transmission range of 250 meters. During our outdoor

experiments, we found out that the wireless transmission

range is less than 250 meters. However, we have been able to

restore this transmission range using external antennas.

The average cab speed is set to 15 meters/second with zero

pause time. We set the fudge factor L for the on-demand
mechanism to 3. For the proactive mechanism, we set the

maximum entries in the routing table (max) to 20, and the

periodic update interval (UPD) for Update SMS to 5

seconds. The maximum number of

hops (i.e., TTL) for Update SMS generated by free cabs is

set to 3. Each entry in the routing table expires after

2.5×UPD seconds of the last update. 10 horizontal roads with

2 lanes per road. The average gap between successive cabs

on the same lane is 185 meters. The scenario generator

places [number of lanes× (city width gap × number vertical

roads + city length gap × number horizontal roads)] = 410

cabs and 200 clients evenly distributed on the roads. We
used IEEE 802.11b as the wireless media, with a data

transmission rate of 11Mb and a transmission range of 250

meters. During our outdoor experiments, we found out that

the wireless transmission range is less than 250 meters.

However, we have been able to restore this transmission

range using external antennas.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented Cab, a reallife ubiquitous

computing application for booking cabs in cities. Cab

discovers and books free cabs using only vehicle-to-vehicle
short-range wireless communication. Cab is easy to deploy,

cost effective, and scalable since it works in a completely

decentralized fashion. Cab is just one of the outdoor

distributed computing applications that we are developing on

top of mobile ad hoc networks using Smart Messages as a

common middleware architecture. The experimental results

over ad hoc networks of nodes running our prototype have

demonstrated the feasibility of Cab. The simulation results

using different scenarios show that Cab with a Probabilistic

Proactive routing yields the best response time and finds the

closest cab to the client. We are considering several
extensions to Cab as future work. In this paper, we assumed

the cabs are cooperative and willing to propagate data

between each other. We plan to investigate the performance

of Cab when it uses different classes of cabs in which

communication happens only between cabs belonging to the

same class. Cab classes model the situation of different cabs

companies, where each company is not willing to route

messages for a competing company. Another extension will

allow occupied cabs to act as free candidate cabs based on

their scheduled drop-off location and time. For example, it

would be useful to consider a cab that is scheduled to drop-

off a client a mere 10 feet from the new client within a
minute, which is far better than booking a 15 minutes away

free cab. We also plan to study the use of priorities for the

free cabs based on, for example, their distances to the client,

how long they have been idle, or the number of clients

served in the last hour. The goal of such priority system is to

guarantee fairness and optimality.

International Journal For Technological Research In Engineering

Volume 7, Issue 4, December-2019 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2019.All rights reserved. 6321

REFERENCES

[1] http://www.citycab.com.sg/services/ net/sms

booking.html.

[2] http://www.comforttransportation.com.sg/ booking
svcs.html.

[3] http://nms.lcs.mit.edu/activeware/.

[4] http://www.auriga.co.uk/.

[5] HP iPAQ. http://h71016.www7.hp.com.

[6] http://www.motorola.com.

[7] Sony Ericsson P900,

http://www.sonyericsson.com/p900/.

[8] The Monarch Group at Rice University.

http://www.monarch.cs.rice.edu/.

[9] The Network Simulator ns-2,

http://www.isi.edu/nsnam/ns/.

[10] Toshiba Pocket PC. http://www.csd.toshiba.com.
[11] D. Ashbrook and T. Starner. Using GPS to learn

significant locations and predict movement across

multiple users. Personal and Ubiquitous Computing,

7(5):275–286, October 2003.

[12] C. Borcea, C. Intanagonwiwat, A. Saxena, and L.

Iftode. Self-Routing in Pervasive Computing

[13] Environments using Smart Messages. In

Proceedings of the 1st IEEE International

Conference on Pervasive Computing and

Communications (Per Com 2003), pages 87–96,

Dallas-Fort Worth, TX, March 2003.
[14] C. Borcea, D. Iyer, P. Kang, A. Saxena, and L.

Iftode. Cooperative Computing for Distributed

Embedded Systems. In Proceedings of the 22nd

International Conference on Distributed Computing

Systems (ICDCS 2002), pages 227– 236, Vienna,

Austria, July 2002.

[15] J. Broch, D. A. Maltz, D. B. Johnson, Y.- C. Hu,

and J. Jetcheva. A performance comparison of

multi- hop wireless ad hoc network routing

protocols. In Proceedings of the 4th annual

ACM/IEEE international conference on Mobile
computing and networking, pages 85–97, ACM

Press New York, NY, USA, 1998.

[16] Z. Chen, H. Kung, and D. Vlah. Ad Hoc Relay

Wireless Networks over Moving Vehicles on

Highways. In Proceedings of the 2nd ACM

International Symposium on Mobile Ad-hoc

Networking and Computing, pages 247–250, Long

Beach, CA, Oct 2001.

[17] Chisalita and N. Shahmehri. A Peerto-Peer

Approach to Vehicular Communication for the

Support of Traffic Safety Applications. In

Proceedings of the 5th IEEE International
Conference on Intelligent Transportation Systems,

Singapore, Sept 2002.

[18] D. Wether all. Active Network Vision Reality:

Lessons from a Capsule-based System. In

Proceedings of the 17th ACM Symposium on

Operating Systems Principles (SOSP 1999), pages

64–79, Charleston, SC, December 1999. ACM

Press, New York, NY.

[19] S. Dashtinez had, T. Nadeem, B. Dorohonceanu, C.

Borcea, P. Kang, and L. I ftode. Traffic View: A

Driver Assistant Device for Traffic Monitoring

based on Carto-Car Communication. In Proceedings
of the 59th IEEE Semi annual Vehicular

Technology Conference, May 2004.

[20] R. Gray, G. Cybenko, D. Kotz, and D. Rus. Mobile

Agents: Motivations and State of the Art. In J.

Bradshaw, editor, Handbook of Agent Technology.

AAAI/MIT Press, 2002.

[21] H. Hartenstein, B. Bochow, A. Ebner, M. Lott, M.

Radimirsch, and D. Vollmer. Position-aware ad hoc

wireless networks for inter-vehicle

communications: the Fleetnet project. In

Proceedings of the 2nd ACM international

symposium on Mobile ad hoc networking &
computing, pages 259–262, Long Beach, CA, 2001.

