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ABSTRACT: In this paper the crack considered is
transverse open crack it has been analysed that when the
crack is present in beam the reduced stiffness matrix can be
found using Fracture mechanics theory. Due to the
importance of this problem, the FEM formulation is done
for cracked uniform and stepped beams. Analysis includes
free vibration analysis of the Cantilever Bernoulli-Euler
beam of various cross-sections. The effects of various
parameters such as natural frequencies for uniform and
stepped beams with and without cracks are presented and
convergence study is done. Comparisons of the natural
frequencies of the beams with the pervious papers in order
to understand the accuracy of present study is included.
Numerical Analysis is done considering an Aluminium
beam (cantilever beam) with transverse open crack in order
to obtain the natural frequencies of uniform beam and
stepped beams with out and with multiple cracks. The
results are obtained by using Finite Element Method
(FEM) in MATLAB environment to find out the overall
stiffness matrix, natural frequencies and non- dimensional
frequencies.

I. INTRODUCTION

Engineering structures are designed to withstand the loads
they are expected to be subject to while in service. Among
them Beams are a standout amongst the most usually utilized
structural components within various structural elements in
numerous engineering applications and experience a wide
mixed bag of static and element loads. Beams are widely
used as structural components in engineering applications
and also provide a fundamental model for many engineering
applications. Aircraft wings, helicopter rotor blades,
spacecraft antennae, and robot arms are all examples of
structures that may be modeled with beam-like elements.
Beam sort structures are being generally utilized in steel
shaped structure and manufacturing of machines.

Beams with variable cross-section and/or material properties
are frequently used in aeronautical engineering (e.g., rotor
shafts and functionally graded beams), mechanical
engineering (e.g., robot arms and crane booms), and civil
engineering (e.g., beams, columns, and steel composite floor
slabs in the single direction loading case). Stepped beam-like
structures are widely used in various engineering fields, such
as robot arm and tall building, etc.

Il. RESEARCH SIGNIFICANCE

In numerous engineering applications beams are universally
used structural elements which experience a wide variety of
static and dynamic loads. During their utilisation various
engineering structures subjected to degenerative effects, all
these are responsible for the development of cracks. The
propagation of these cracks decreases the stiffness of an
element and sometimes leads to the failure of the complete
structure. Immediate detection of these cracks is an
important task of an engineer to determine the effect of crack
on stiffness on the beam, all these beams or shafts subjected
to these conditions are modelled using either Timoshenko
beam or Euler-Bernoulli theories. The characteristic equation
involving natural frequency, the crack depth and crack
location and other properties of the beam are derived using
conventional methods like boundary conditions of the beam
along with the stress intensity factors. The change in
dynamic characteristics of multiple cracked stepped beams
with varying cross sections using FEM. This problem has
been a subject of many papers, but only a few papers have
been devoted to the changes in the dynamic characteristics of
multiple cracked stepped beams with varying cross sections
using FEM.

I1l. METHODOLOGY
Mathematical Formulation for uniform beam of rectangular
cross-section:

Considering a typical cracked uniform beam element of
rectangular cross-section of breadth ‘b’ , depth ‘h’ with a
depth of crack ‘a . The left hand side end node ‘i’ is
assumed to be fixed, while the right hand side end node
j’ is subjected to shearing force P4 and bending moment
P,. The corresponding generalized displacements are
denoted as g; and g, as shown in Figure 3.2. The equation
governed of the vibrated analysis of the uniform beam
along an open transverse crack are computed on basis of
the model proposed by Zheng D. Y. and Kessissoglou N.
J. K. (2004).

Lc¢ = Distance between the right hand side end node j and the
crack location.

Le = Length of the beam element.
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A= Cross-sectional area of the beam. overall additional flexibility matrix for a circular cross-
. sectional beam. The additional strain energy due to the
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Figure : A typical cracked beam element subjected to FLOW CHART
shearing force and bending moment of rectangular cross- INPUTDATA
section . . )
The governing equations for the vibration analysis of the Gwﬁﬁiﬁ;&ﬁif&?ﬂ:ﬂ?ﬂ DI
uniform beam with an open transverse crack are followed For Plain Stram E =E/(1.V7)
as fol onvlng n i Location of the crack =L
According to Zheng [2004], the additional strain energy due Depth of the crack ah
to existence of crack can be expressed as
m= [, GdA,

-

Where. G = the strain energy release rate and

AC = the effective cracked area .
G:l [(Z‘: x )'+(Z: K )"+(2: K ]]
_ Expression for standard procedure

n=l In
£ Element Stiffness Matrix [K.]

Mathematical Formulation for Uniform Beam of Circular
Cross-section:

Considering a typical cracked uniform beam element of
circular cross-section of diameter ‘D’ with a crack of depth
‘a’. The left hand side end node ‘i’ is assumed to be fixed,
while the right hand side end node ‘j’ is subjected to axial

@

force P1, shearing force P2 and bending moment P3 as Boundary Conditions
shvown in Figure 3.3. ) » ' (K1, [M]
j—) I =, = J \&&l
L / # 45

s
Figure 3.3: A typical cracked beam element subjected to _
shearing force and bending moment of circular cross-section. Given A

Free Vibration

The equations governed for the vibration analysis of uniform

beam along an open transverse crack are computed on basis

of the model proposed by Zheng D. Y. and Kessissoglou N. J.
K. (2004).The geometrical dimensions are as follows:

p.

_ E Determine Mormalized
D‘: - r";r - arameter W,= L'-l.:':.:;a:llrlu-lr;:':.:n\:l
p=gty 5
: : A 2
Da-a’
b(a) =
h'(p)= -‘FIDE —"-1-?}'2 Determine vibration
Mode Frequency
' 2 D
alam= (p? —
’ —_U_ _ (_j__ ) IVV. RESULTS AND DISCUSSION
) ) o This part contains
where D is the diameter of the beam. A similar procedure to e Verification with past studies

the rectangular cross-sectional beam is used to derive the
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e  Results of numeric.
Comparison with Previous Studies
In order to check the accuracy of present analysis and to
understand the results of the free vibration of the Bernoulli-
Euler beam ,the effect of various parameters with multiple
cracks are presented .The natural frequencies of the beams
are compared with the pervious papers.

This includes
e Comparison of analysis of freely vibrated beam
of uniform and even stepped beam of

rectangular cross-sections with multiple cracks.

e Comparison of Free Vibrational analysis of
uniform beams of circular cross-sections with
multiple cracks.

Free Vibration Analysis of Cracked Uniform Cantilever
Beam

Case (1):- Comparison of natural frequencies for a cantilever
beam with single crack with results of Shiffrin4(41999)

¥ X L i K
) — [ d a
v $
a
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i

Figure 4 4: Sketch of Cantilever beam with single crack of rectangular cross-section
Table 1: Comparison of natural frequency of single cracked
uniform cantilever beam with F.E.M
Elastic modulus of the beam = 210MPa, Poisson’s Ratio =

0.3, Density = 7800 kg/m3, Beam

Width = 0.02m, Beam depth = 0.02 m, Beam length =
0.8m, Position of the crack from clamped end x1= 0.12m,
Crack depth a1=0.002 m.

Modes Natural frequency (Hz) | Present analysis using % Error
Shiffrin FEM

Mode 1 26.1231 26.1673 0.168

Mode 2 164.0021 164.1202 0.022

Mode 3 459. 6028 459.620 0.004

Case (2):- Comparison of natural frequencies for a
cantilever beam with double crack with results of
Shiffrin(1999)

Table 2: Comparison of natural frequency of doubled cracked
uniform cantilever beam with F.E.M

Position and crack depth of first crack: a1=0.002m; x1=0.12

m Position and crack depth of second crack: a2=0.003m;
x2=0.4m
Mode Number Natural frequency Present analysis using % Error
(Hz)Shiffrin FEM
1 26.0954 26.1539 0.223
2 164.3221 164.7585 0.266
3 459.6011 459.6173 0.003

From Table 1 and Table 2 it is, observed that natural
frequencies of Shiffrin(1999) agrees with the present
MATLAB analysis using FEM formulation in case of both
single and double cracks.

Case (3):- Comparison of uniform cantilever beam of square
cross-section with multiple cracks with results of Mostafa
Attar(2012)
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b=20 mm
Figure 4.5: Sketch of Triple cracked uniform rectangular
beam

Table 3: Comparison of Natural frequency of triple cracked
cantilever beam with TMM and FEM

Elastic modulus of the beam = 210MPa, Poisson’s Ratio =
0.3, Density = 7860 kg/m3, Beam width = 0.02m, Beam
depth = 0.02 m, Beam length = 0.5m

L= 500mmr

Case Crack Methods Natural Frequencies o; (rad’s)
Location
X O|E X ()] [0 o3 04 s 07

Presentstudy | 418.8631 | 2624.823 | 7352.854 | 14411.38 | 23780.01 | 35655.29
FEM*[19] | 416.8033 | 2612.065 | 7323.879 | 14356.68 | 23380.01 | 35603.94

1 020406 %EqorFEM | 0470 0.486 0.394 0.379 0.836 0.14
TMM*[19] | 416.9159 | 2612.213 | 7324.210 | 14357.28 | 23502.02 | 35604.06
%Error TMM | 0.464 0.480 0.389 0373 0.828 0.143
Presentstudy | 418.0152 | 2627.313 | 7351.134 | 14304.25 | 23700.05 | 35646.15

FEM* 417.0652 | 2620.375 | 7318436 [ 14299.97 | 23600.29 | 35573.62

2 02|04 (08 %EmorFEM | 0.41 0.264 044 0.654 0.797 0.203
TMM* 417.0864 | 2620455 | 7318.811 | 14301.02 | 23602.31 | 35574.00

% Error TMM | 0436 0.261 0.430 0.647 0.780 0.202

Present study | 419.0779 | 2626.284 | 7350398 | 14392.93 | 23799.17 | 35654.07

FEM* 417.6201 | 2617.683 | 7315436 | 14300.48 | 23601.47 | 35573.74

3 02|06(08 | %EmorFEM | 0345 0.327 0.475 0.642 0.830 0.225
TMM* 417.6464 | 2617.786 | 7315833 | 14301.53 | 23603.48 | 35574.12

%eError TIMM | 0341 0.323 0.470 0.635 0.822 0224

Presentstudy | 4104202 | 2624.264 | 7348.05 | 14405.60 | 23784.43 | 33633.36

FEM* 418.7431 | 2610.199 | 7311.806 | 14337.70 | 23575.09 | 35597.99
% Error FEM 0.161 0.535 0.505 0.471 0.880 0.155
TMM* 4187517 [ 2610.361 | 7311.243 [ 14338.46 | 23577.32 | 35508.16
% Error TMM 0.159 0.529 0.513 0.466 0.870 |,-0.154
In Table 3 it is observed that natural frequencies of Mostafa
Attar (2012) agrees with the present MATLAB analysis
using FEM formulation for all modes but in mode 5 we
observe more percentage error in case of both TMM
(Transfer Matrix Method) and FEM (Finite  Element
Method) compared to other modes.

s
=)
=
=)
=
=
oo

Free Vibration Analysis of Uncracked Stepped Beams

In this solution it associates the computation of
frequencies occurred naturally for Uncracked Bernoulli-
Euler beam of cantilever type. The results calculated
using Finite Element Analysis in MATLAB and are
validated with the results obtained by using methods
Discrete  Singular  convolution  (DSC), Differential
Quadrature Element method (DQEM),
Method (FEM), Composite Element Method (CEM) given
by Guohui D and Xinwei W(2013). Elastic modulus =
71.7GPa, Density = 2830 kg/m3, Width b = 20mm, Depth of
the beam hi= 19.05 mm, Depth of the stepped beam ho=
5.49 mm, Length of the beam = 254 mm, Length of the
stepped beam = 140 mm

Case of- Comparison of Natural Frequencies of Twelve
Stepped Cantilever Beam

Finite Element
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Poisson’s ratio =0.3, Width b = 12 mm, Depth of the beam
h1= 20 mm, Depth of the stepped beam h2= 16 mm, Total

: length of the beam = 500mm
3 \L — ‘L CaseNo | Locationof |  Crack Natural Frequencies (Hz)
L] L] LT 1. Crack Depth 0 o 3 04
hJ ¥ (b e i e
erence .3 14 .04 210 alUE
7 T A B T I % Enror 1367 150 ol 2858
b 2 01 03 0750 | 34355 10333 | 20268
‘ — . b Reference 61370 | 35360 10241 10352
N 7 % Error 1010 2347 0,800 5012
16355 3 02 04 66456 | 375530 10330 | 19218
Reference 6150 | 38 0192 | 18550
_ ] % Ertor 1388 0.005 1335 245
Figura4.§: Sketch of a twelve stepped Cantilever beam 7 03 03 U185 | 37586 | 10301 | 20035
Reference 0652 | 37104 0055 | 19524
Table 6: Comparison of natural frequencies of a twelve % Errar 0.748 1.069 2407 3.548
; 5 04 03 6338 | 3940 | 02624 | 20016
stepped cantilever beam 3 Reference I | 355705 | 968l 10552
Elastic modulus = 60.6GPa, Density = 2664 kg/m~, Width %Eﬁrror - - 773-2;?? ;‘?-659_53 140?343 330-37924
42 . L4 ) D3, LUL) A
b =3.175 mm, Depth of the beam ha= Reference M | 30 | 1046 | 19399
12.7 mm, Depth of the stepped beam ho= 25.4 mm, Total % Error 0107 N} 182 330
length of the beam = 463.55 mm 7 055 01 7248 | 37633 10542 | 20260
Reference 38 | 3915 0365 | 18570
% Ertor 0134 1270 1678 3405
DSC [DQEM | CEM | % T, |[FEM | Esperment | %Error | Present 8 06 03 L8 | 3613 0478 | 1167.8
Error | Error Experiment | analysis Reference *71.996 360.21 1027.7 10393
DSC, | CEM using % Error 0250 o1l 1018 11011
DQEM FEM g 07 02 TAT | 35l 10473 2005
T [5449 [34695  [0.0000 | 000254795 | 54983 0.004 | 54496 Reference IAT | 36053 026 | 18573
3 |3%.793 | 344808 | 0.0052 | 0.0008 - 344 807 0.001 | 34311 % Error 0.0 ) 7358 130
4 [077740 [ 977812 [ 00170 | 0.009]- 077800 0.000 | 077.006 10 03 04 724108 | 36088 | 09257 | 18800
5 [ 1951109 | 1031400 | 0.0482 | 0.037]- 1051308 0.038 | 195214
10 | 3301 141 [ 3301630 [ 0.1008 | 0.004]- 3301.606 0.005 | 3304.77 *12383 | 36776 | 08900 | 18404
. i % Ertor 0.050 0373 0330 1674
From Table 6 it is observed that natural frequencies of 1 02 0.06 TIATS 3768 1054.1 M7
Guohui D and Xinwei W(2013) agrees with the present — [Reftmec e
MATLAB analy_5|s using FEM formulation with less o T S RO T T 50
percentage error in case of FEM, DQEM , DSC and CEM. Reference P 10344 19633
% Ertor 0.009 1147 1831 3.100

Free Vibration Analysis of Cracked Stepped Beams of
Rectangular Cross-Section

In this solution it associates the computation of frequencies
occurred naturally for cracked Bernoulli-Euler beam of
cantilever type. The results calculated using Finite Element
Analysis in MATLAB and are validated with the results
obtained by Ameneh M (2012) using a novel local flexibility-
based damage index method.

Case (1):- Comparison of Single Cracked Two Step
Cantilever Beam

g
1§ =

‘\.lJ *-.l

250 mm

5
m 12 mm

Figure 4.9: Sketch of Single Cracked Two Step Cantilever Beam

Table 7: Comparison of Single Cracked Two Step Cantilever

Beam with Novel local Flexibility-based damage index
method
Elastic modulus = 210MPa, Density = 7800 kg/m3,

In Table 7, the first six cases where crack is present in the
first half of the beam and the second six cases are where
crack is present in step of the beam we observe that natural
frequencies of Ameneh M (2012) agrees with the present
MATLAB analysis using FEM formulation. Case 5 and Case
8 show quite high percentage error.

Case (2):- Comparison of Double Cracked Two Step
Cantilever Beam

v
g g
8l /= v 15 D
R -8
. 5 250m N H
< Fd Fa ]2

Figure 4.10: Sketch of Double Cracked Two Step Cantilever Beam

Www.ijtre.com

Copyright 2020.All rights reserved.

7131



International Journal For Technological Research In Engineering

Volume 7, Issue 12, August-2020

Table 8: Comparison of Double Cracked Two Step
Cantilever Beam with Novel local Flexibility-based damage
index method

Case Simulated data
No Crack No.1 Crack No.2 Natural frequencies (Hz)
E 14 B ¥ w1 w0z w3 04
1 0.1 0.2 0.4 0.2 71.489 373.966 1047.92 1027.55
Ref[l] *70.349 367.24 1023.9 1062.0
% 1.504 1.798 2202 3.232
Error
2 0.25 0.1 0.335 03 71.385 374.457 1029.71 2021.28
Ref *70.762 369.96 1003.3 1050.9
% 0.872 1.200 2,345 3.481
Error
3 0.45 0.3 0.2 0.2 60.973 370.669 1038.89 1971.72
Ref * 70474 365.46 1021.4 10103
% 0.710 1.405 1.683 2.658
Error
4 0.35 0.3 0.7 0.4 71.486 339.83 931.30 1858.92
Ref *70.918 336.0 980.7 18355
% 0.793 0.862 5.016 1.259
Error
3 0.6 0.5 0.8 0.4 68.314 286.64 925.03 1623.97
Ref *70.833 329.65 972.81 1750.5
% 3.336 13.047 4.819 1.228
Error
6 0.75 0.4 0.6 03 71.99 355.30 973.71 1896.36
Ref *72.024 355.39 974.8 1863.6
% 0.047 0.025 0.111 1.727
Error
7 0.1 0.2 0.7 03 71.598 369.139 1029.146 2018.126
Ref *70.598 361.66 1002.9 10405
% 1.396 2.026 2.350 3.400
Error
8 0.3 0.2 0.6 0.5 68.28 205.86 1000.207 1890.88
Ref *70.148 333.62 0959 1880.2
% 2.662 11318 0.430 0.564
Error

From Table 8 it is observed that natural frequencies of
Ameneh.M (2012) agree with the present MATLAB analysis
using FEM formulation in case of double cracks. In Case 5
and Case 6 Show quite high percentage error for Mode 2.
Case (3):- Comparison of Triple Cracked Two Step
Cantilever Beam

IVERAE :
Y/ 1
| 250mm |
| | 12 mm

Figure 4.11: Sketch of Triple Cracked Two Step Cantilever Beam

Table 9: Comparison of Triple Cracked Two Step Cantilever
Beam with Novel local flexibility-based damage index

method.
Case
no. Crack no.1 2 Crack no.3 Natural Natural
Frequencies (Hz) Frequenties (Hz)
Crack Crack | Cradk Crack Crack Cak oy 2 ©3
Location | Depth | Location Depth Location Depth
1 0.135 0.3 0.3 0.45 0.7 0.35 63.272 35959 904.08
Ref *65.272 336.98 027.05
SeErmor 3.064 0.725 2.572
2 0.1 015 | 033 025 0.6 035 71.014 35822 1028.6
Ref *70.025 35222 10111
e 1.392 1.674 1.701

From Table 9, it is observed that natural frequencies of
Ameneh M,(2012) agrees with the present MATLAB
analysis using FEM formulation in case of both triple cracks.
In case 2 we observe quite high percentage error for 6th
mode.

Free Vibration Analysis of Uniform Simply Supported Shaft

ISSN (Online): 2347 - 4718

Case (1):- Comparison of Natural Frequencies of Fixed-Free
Circular beam without crack

The problem involves calculation of natural frequencies
for un-cracked Bernoulli-Euler  Cantilever beam. The
results calculated using Finite Element Analysis in
MATLAB and are validated with the results obtained by
Zheng D. Y (2004) using Finite Element Method using
Gauss quadrature.

Elastic modulus = 206 GPa, Density = 7800 kg/m3,
Poisson’s ratio =0.3, Diameter of the beam D =
0.03 m, Total length of the beam L=1.0 m

D=IR

Figure 4. 12: Sketch of Uniform Simply supported shaft

Table 10: Comparison of natural frequencies of uniform
simply supported shaft

Mode Natural Frequency Natural Frequency %Error
(Hz) (Hz)
Present Analysis (D.Y Zheng)
Model 60.539 60.543 0.006
Mode2 | 242.204 242177 0011
Moded | 344941 544.936 0.0009

Analysis of freely vibrated Cracked Beams of uniform with
Circular Cross-Section Case (1):- Free Vibration Analysis
of Uniform Simply supported shaft with single crack

In this solution it associates the computation of frequencies
occurred naturally for cracked Bernoulli-Euler beam of
cantilever type. The results calculated wusing Finite
Element Analysis in MATLAB and are validated with the
results obtained by Zheng D. Y (2004) using Finite
Element Method using Gauss quadrature.

—1L—

—|—a] T
O D=30
L=1000 mm~— @
4 7

Figure 4.13: Sketch of Single cracked uniform Simply-Supported beam of circular
cross-section

Table 11: Comparison of natural frequencies of single
cracked uniform cantilever beam of circular cross-section

Mode Natural Frequency (Hz) | Natural Frequency (Hz) %Error
Present Analysis (D.Y Zheng)

Model 36.008 35.02 0.157

Mode2 242.16 242.18 0.008

Mode3 306.90 506.85 0.009

Table 11 shows the percentage error graph, we observe that
natural frequencies of Zheng D.Y(2004) agrees with the
present MATLAB analysis using FEM formulation in case of
both without and with crack.

Case (2):- Single Cracked Uniform Beam of Circular cross-
section
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In this solution it associates the computation of frequencies
occurred naturally for cracked Bernoulli-Euler beam of
cantilever type. The results calculated using Finite Element
Analysis in  MATLAB and are validated with the results
obtained using numerical model by Kisa.M (2006) which
adds with finite elemental and structure synthesis mode
procedure for analysis of beams with cross section of
circular.

Material Parameters: Elastic modulus = 216 GPa Density =

7850 kg/m3 Poisson ratio =0.33

Geometric Parameters:

Total length of the beam =2.0 m

Here three different diameters are considered 1.
(D=0.2L)

2. R/L=0.06 (D=0.12L)

3. R/L=0.04 (D=0.16L)

For all the above three cases the crack is located at L1/L.=0.2

v

R/L=0.1

L,

—

; TD=2R
N

L

Figure 4.14: Sketch of Single cracked cantilever beam of circular cross-sectionCase (3):- Multi-
cracked Uniform Circular Cantilever Beam Material Parameters:

Elastic modulus = 216 GPa Density = 7850 kg/m3 Poisson
ratio =0.33 Geometric Parameters:
Total length of the beam = 2.0 m R/L ratio = 0.04 (D=0.08L)

: a, " a, ' a,
D=21.58 mm

L=500 mm

Figure 4.16: Sketch of multi-cracked beam of circular cross-section

Case 1= L1/L=0.1, L2/L=0.2, L3/L=0.3

Case 2 = L1/L=0.1, L2/L=0.5, L3/L=0.9
Case 3 = L1/L=0.4, L2/L=0.7, L3/L=0.6
Case 4 = L1/L=0.7, L2/L=0.8, L3/L=0.9
1

05

08

st Natural

07 casel
06 casel
[iA3 5 z x cased
a 04 1
= 1 et
Z 03 1
1 -
0.2
01 1
a - —
] 01 0.2 03 04 05 06

Crack-depth ratio(aD)
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—8—Ly/L=0.1, Ly/[=0.2, Ly/L=0.3
——L}/L=0.1, Lr/[=0.5, L3/L=0.9
—0—LJ/L=04, L/L=0.5, L3/L=0.6
——L}/L=0.7, Ly/[=0.8, L3/L=0.9

03 T T T T
0 0.1 02 03 0.4 0.5 0.6

Crack ratio (a/D)

Non-dimensional 2nd natural frequencies

Figure 4.18: Comparison of 2nd non- dimensional natural
frequencies of Triple cracked beam of circular cross-section
with Component mode Synthesis Method

1

T

0.4

—#—asel

W razed

Non- dimensional 3rd Natural
Frequencies
=
=

0 0.1 0.2 03 0.4 05 0.6
Crack-depth Ratio (aD)

0.6 4 —8— LI/LzlL 1, Ly/1=0.2, L3/L=0.3
e —— L /L=0.1, Ly/L=0.5, L3/L=0.9
05 —— L, /1=04, Lp/L=0.5, L3/L=0.6
= —a—L,/L=0.7, Lp/L=0.8, L3/L=0.9
04 T T T T T

0 0.1 0.2 0.3 04 05 0.6
Crack ratio (a/D)

Figure 4.19: Comparison of 3rd non- dimensional natural
frequencies of Triple cracked beam of circular cross-section
with Component mode Synthesis Method
From Figures 4.17-4.19 it is observed that irrespective of
single and multiple cracks of cantilever beam of circular
cross-section the comparison of non- dimensional natural
frequencies of present analysis using FEM agrees with
Kisa.M (2006) which used FEM and Component mode

Synthesis Method.

Non-dimensional 3rd natural frequencies

Numerical Results

Analysis of vibration subjected freely of the Euler-
Bernoulli beam of multiple fractures considering the
effect by various parameters such as crack location, crack
depth ratio, numbers of cracks are presented. The method
described has been used to analyse uniform and stepped
beams considering Aluminum as the material property of
the beam. The Normalized frequencies are found as ratio of
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frequency occurred naturally for a fractured beam /
frequency occurred naturally of the un-fractured beam. The
results are obtained by implementing the methodology given
in Chapter 3 using Finite Element Method (FEM) in the
MATLAB environment.

Following types of beams have been considered for the
analysis Material Properties:

Elastic modulus of the beam = 70 GPa Poisson’s Ratio =
0.35

Density = 2700 kg/m

Uniform Beam with Multiple Cracks

e Uniform beam of rectangular and circular cross-

sections with multiple cracks.
Stepped Beam with Multiple Cracks

e Uniform beam, Single step beam and Two step
beam with multiple cracks of rectangular cross-
sections.

The results are analysed in the following manner

e Comparison between uniform beam of rectangular
and circular cross-sections without crack and single
crack and multiple cracks at respective locations.

o Effect of single step and two steps present in
beams of rectangular cross-section without crack
and with single crack are compared.

e Variation of frequencies with respect to single,
double, multiple cracks in two step cantilever
beam.

4.4.1 Uniform Beam with Multiple Cracks

Case (1):- Comparison between Uniform Beam of
Rectangular and Circular cross-sections without Crack
Dimensions of the rectangular beam:

Beam width = 0.12m Beam depth = 0.22 m Beam length =
0.5m

AN\
Py

=12 jm

500 mm
Figure 4.20: Sketch of uniform cantilever beam of rectangular cross-section

Dimensions of the circular beam:
Diameter of the beam D = 0.02158 m Length of the beam =

1,k

Figure4.21: Sketch of uniform cantilever beam of circular cross-section

ANNN

21.58 mm

500 mm
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Mode Matural Frequency Matural % Errar
of Rectangular Frequency of
beam (Hz) Circular beam
(Hz)
1
59.221 61.489 3.688
2
371.135 385.338 3.685
3
1038.196 1078.564 3.685
4
2036.448 211438 3.685

Table 12: Comparison of natural frequencies of uniform beam of rectangular cross-section with
circular cross-section
Moment of inertia of the rectangular beam and circular
beam is considered equal and comparison is done. From
Table 12, it is observed that the % error is almost same for
all the modes for uniform rectangular beam and uniform
circular beam.

Case (2):- Comparison between Uniform Beam of
Rectangular and Circular cross-sections with Single Crack
Case (a):- Location of Single Crack

° Case R1 =L1/L=0.1
° Case R2 = L1/L=0.5
° Case R3 = L1/L=0.85
.(_Li_) -
Vi E .

s o

-~

- | b=12 mm

Figure 4.22: Sketch of uniform cantilever beam with single
crack of rectangular cross-section
Case (b):- Location of Single Crack

o Case C1=L1/L=0.1
. Case C2 = L1/L=0.5
. Case C3 = L1/L=0.85
L —
Vo . ;
2 =
/l | o
I 1
500 mm
Figure 4.23: Sketch of uniform cantilever beam with single crack of circular cross-section
1 W i
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0 8- CaseRl
£ 5 09 = CaseCl
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RN == CascR3
T Z . . . ‘ . S
S 0 0.1 0.2 0.3 0.4 0.5
z
Crack-depth Ratio (D)

Figure 4.24: Comparison of Normalized findamental natural frequencies of single cracked

beams of rectangular and circular cross-sections with respect to crack-depth ratio.
From Figure4.24, it is observed that in case of
rectangular cross-section the normalized fundamental
natural frequencies reduction is high than that of circular
cross-section for all the cases respectively. It also shows
that when crack is located near the fixed end of the
beam the fundamental natural frequencies reduction is
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higher and when crack is positioned at free end of beam
the fundamental natural frequencies are generally
unharmed although when the depth of crack is quite
more When crack-depth ratio is 0.5 the natural frequency
reduction of rectangular

beam is 25% more than circular beam when crack is located
near to fixed end of the beam.

1 - o

== (aseRl
0495
~8= CaseCl
i CaseRl

0g —E= Case(?

=¥ CaseR3

Frequencies

Normalized 2 Natural

075

0 ot 02 03 04 05
Crack-depth Ratio (a'D)

Figure 4.25: Comparison of normalized 2™ natural frequencies of single cracked beams of
rectangular and circular cross-sections with respect to crack-depth ratio.

In Figure4.25 it is observed that in case of rectangular

cross-section the normalized 2" natural frequencies
difference is high than that of circular cross-section for all
the cases respectively. The Figure shows when crack is

located at center of the beam the 2" natural frequencies
reduction is higher and when crack-depth ratio is 0.5 the
frequency reduction for rectangular beam in more by 15%
than circular beam. It is also observed that when crack is

located near free end of the circular beam the 2™ natural
frequencies are generally unharmed although when the
depth of crack is quite more.

1 (FW

058 - N
= —#— CaseR1
3 s A CaseCl
= . -0
E-AE CaseR2
& g ] -
= 2 o CaseC2
ER TR = Caserz
= 1 %=
2 .88 | Case C3

0.85

u 0.l [i¥} 03 04 Y
Crack-denth Ratio (a/d)
Figure 4.26: Comparison of Normalized 3* natural frequencies of single cracked beams of

rectangular and circular cross-sections with respect to crack-depth ratio.

From Figure4.26, it is observed that in case of rectangular

cross-section the Normalized 3 natural frequencies
difference is high than that of circular cross-section for all
the cases respectively. It also shows that when crack is

located at the free end of the beam the 3™ natural
frequencies reduction is higher and for crack-depth ratio
0.5 the frequency reduction is more by 10% for
rectangular beam than circular beam. When crack is located

near fixed end of the circular beam the 3™ natural
frequencies are generally unharmed although when the depth
of crack is quite more.
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Figure 4.27: Comparison of Normalized 4% patural frequencies of single cracked beams of

rectangular and circular cross-sections with respect to crack-depth ratio

In Figured.27 it is observed that in case of rectangular

cross-section the Normalized 4'[h natural frequencies
difference is high than that of circular cross-section for all
the cases respectively. It also shows that when crack is

located at center and end of the rectangular beam the 4th
natural frequencies reduction is higher, it is observed that
when crack is located at center and end of the circular

beam the 4'[h natural frequencies reduction are almost same
and when crack is

located near free end of the beams the 4th natural
frequencies are generally unharmed although

when the depth of crack is quite more.

Case (3):- Comparison between Uniform Beam of
Rectangular and Circular cross-sections with Multiple
Cracks

dizz mm

L=500 mm b=12 mm

Figure 4.28: Sketch of multiple cracked uniform cantilever beam of rectangular cross-section
Location of Cracks for both rectangular (R) and circular
beams (C):

Case 1: L1/L=0.1, L2/L=0.2, L3/L=0.3
Case 2: L1/L=0.6, L2/L=0.7, L3/L=0.85
Case 3: L1/L=0.25, L2/L=0.50, L3/L=0.75
For all the cases: a1/d =0.2

a2/d =0.3

L
_ﬂl : $ﬂ3

L=500 mm

1\
D=122mm

Figure 4.29: Sketch of multiple cracked uniform cantilever beam of circular cross-sectio
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Figure 4.30: Comparison of normalized fundamental natural frequencies of multiple
cracked beams of rectangular and circular cross-sections with respect to
crack-depth ratio.
From Fig4.30, it is observed that when cracks are located
near the fixed end of the beam the normalized fundamental
natural frequencies of multiple cracked beams of both
rectangular and circular cross-sections are high to that of
cracks located at center and at free end of the beam. When
fractures are positioned at free end of the beam the
fundamental natural frequencies are generally unharmed
although when the depth of crack is quite more as in case of
single cracked beams. It is also observed that in case of
rectangular cross-section the fundamental normalized
natural frequencies reduction is less than that of circular
cross-section for all the cases respectively except when
crack is located near the fixed end, crack depth ratio is 0.5
where the difference in frequency reduction is 10

beams, when crack- depth ratio is 0.5 the frequency
reduction of rectangular beam is more by 8% than circular
beam. When crack is located near free end fixed end of the
beams they show similar pattern of variation In Figure4.32 it

is observed that in case of rectangular cross-section the 3"
natural frequencies difference is high than that of circular
cross-section for all the cases respectively. When crack is
located at near fixed end or at center or near free end of the
beam the rectangular beam will show more variation than
circular beam for all the crack positions.

1

=
b

Frequendies

== {aseRl

=3

== CaseCl
A (aseRd
~%=(asel3

= CaseR2

=Normalized 4 Natural ¢

bl

01 02 03 04 05
Crack-depth Ratio (aD)

=)

Figure 4.33: Comparison of normalized 4 patural frequencies of multiple cracked beams of

rectangular and circular cross-sections with respect to crack-depth ratio.

From Figure4.33, it is observed that for crack locations at

center and near free end of the beam the 4'[h natural
frequency reduction is higher for rectangular section than
circular section when the crack depth ratio is 0.5. However
we find changes in the frequency reduction when crack-
depth ratio is 0.4.

STEPPED BEAM WITH MULTIPLE CRACKS

Case (1):- Effect of Step present in Uniform, Single
stepped and Two stepped beams of Rectangular cross-
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Figure 4.34: Sketch of Two stepped cantilever beam

= uniform
[ ]
single stepped

Matural Frequency (Hz)
£
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Figure 4.35: Plot of fundamental natural frequency (Hz) variation of uniform. single
stepped and two stepped beams with respect to Model

From Figure4.35, it is observed that there is step wise
increase in the fundamental frequency variation for
uniform, single stepped and two stepped beams by 17.08%
and 23.97% for single stepped and two stepped beams with
respect to uniform beam respectively.

420 -
410 A
T
400 |
S 390 - B uniform
B .
= 380 single step
= | . :
5 s 1
Z 360

Mode 2

Figure 4.36: Plot of 2" natural frequency (Hz) variation of
uniform, single stepped and two stepped beams with respect

to Mode 2 In Figure4.36 it is observed that the 2"
natural frequency for single stepped beam is increased
by very less percentage 0.014% whereas for two stepped
beam the increase is 9.41% when compared to uniform
beam respectively.

1040
1038
1036
1034 M uniform
1032 " single stepped

1nn

Natural frequency (1)

1028

1026

Mede 3

Figure 4 37: Plot of 3% narural frequency variation (Hz) of uniform, single stepped and two stepped
heams with respect to Mode 3

From Figure4.37, it is observed of 3rd natural frequency is
high for uniform beam and the difference with respect to
single stepped beam is reduced by 0.067%. For two stepped
beam frequency reduction is 0.73% compared to uniform
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Figure 4.38: Plot of 4% patural frequency (Hz) variation of uniform, single stepped and two stepped
beams.

In Figure4.38 it is observed that there is step wise decrease

in the 4™ natural frequency for uniform, single stepped and
two stepped beams. There is decrease by 1.90% and 2.81%
for single stepped and two stepped beams with respect to
uniform beam respectively.

From Figure 4.35, 4.36 for Model and Mode 2 the natural
frequency increases as step is present in the beam whereas
from Figure 4.37, 4.38 for Mode3 and Mode 4 the natural

frequency decreases.
Case (2):- Effect of Step present in Single Cracked Beam of Rectangular cross-section

500 mm

NN

Figure 4.39: Sketch of Uniform cantilever beam with single crack of rectangular cross-section

1 v
— x

Figure 4.40: Sketch of single step cantilever beam of rectangular cross-section

20 mm
16 mm

I

| 250 mm |

[
=

12 mm

] 0 e T

250 mm 125 mm

125 mm
Figure 4.41: Sketch of two stepped cantilever beam of rectangular cross-section with single crack

Case (a): La/1=0.2; Crackis located near the free end ofthe beams

== uniform

single step

Normalized Fundamental Natural
Frequencies

0 01 01 03 04 03
Crack-depth Ratio(a/d)

Figure 4.42(a): Comparison of normalized fundamental natural frequencies of uniform, single
stepped and two stepped rectangular beams of single crack with respect to crack-depth ratio
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From Figure4.42(a) it is observed that there is no much
variation in normalized fundamental natural frequencies for
uniform, single stepped and double stepped rectangular
beams with single crack where all the beams exhibit the
same pattern.

1 f—=—m
E oo
;\l = 058 == uniform
=4 .

é :? == single step
TE = 0,585 double step
z

058 T T T T 1

o 01 0.2 03 0.4 05
Crack-depth Ratio (a'd)

Figure 4.43(a): Comparison of normalized 2* natural frequencies of uniform, single stepped and
two stepped rectangular beams with single crack.

From Figure 4.43(a) it is observed that uniform, single
stepped and double stepped rectangular beams with single
crack follow ascending pattern however the frequency
reduction of normalized 2nd natural frequencies is less for all
the beams. The frequency reduction of two stepped beam is
more by 1.7% to that of uniform beam.

13 Natural
noies

== unifrom

single step

=

] 01 02 03 04 05
Crack-depth Rtio (D)

Figure 4.44(a): Comparison of normalized 3™ natural frequencies of uniform, single
stepped and double stepped rectangular beams with single

crack.

From Figure 4.44(a) it is observed that normalized 3"
natural frequencies of uniform, single stepped and double
stepped rectangular beams with single crack follow
descending pattern but the variation between uniform and
stepped beams is high. The frequency reduction of two
stepped beam is less by 5% to that of uniform beam

IV. CONCLUSIONS
The presence of number of cracks, crack location, crack-
depth ratio the analysis of dynamic properties of the beam
is done by finding the natural frequencies. The following
conclusions are drawn from the present investigation of the
uniform and stepped beams subjected to vibrate freely with
multiple cracks using finite element analysis by using
Finite Element Method (FEM) in MATLAB environment.

e A detailed formulation is presented for free
vibration of uniform and stepped beam with
multiple transverse open cracks.

e The frequency reduction increases as the crack-
depth ratio increases for all the modes irrespective
of uniform beam or stepped beam.

e Crack located closer of the fixed end of the
beams in all cases frequency reduction variation
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is significant than crack closer to the free end of
the beam even when the crack-depth ratio is
relatively high.

e Crack located closer of the free end of the beams in

all cases will have higher effect on the 4th natural-
frequencies than crack closer to the fixed end of the
beam.

e Crack located at the center of the uniform beam

will have higher 3rd natural frequency reduction.

e For all the beams either uniform beams or
stepped beams irrespective of number of steps as
the number of cracks present in the beam enhances,
frequency occurred naturally of the beams reduces
for extact crack-depth ratio due to reduction of
stiffness.

e The frequency reduction is higher for uniform
rectangular beam than uniform circular beam for
both beams having same moment of inertia.

e When crack is located at near fixed end or at center
or near free end of the beam i.e., for any crack

location along the length of the beam the 3rd
natural frequency reduction for rectangular beam is
more than circular beam.

e lrrespective of number of cracks present in the
beam the uniform beams show similar pattern of
variation for all the normalized frequencies.

e Positions of cracks present along the length of the
beam across uniform, single step, two stepped
beams the major variation in the frequency
reduction starts when crack-depth ratio is 0.3 and
increases up to crack-depth ratio 0.5.

e For uniform beam or stepped beam with single or
multiple cracks when located near the free end of
the beam the fundamental frequency reduction is
highest.

From the above discussions, it is clear that cracks cause the
reduction of natural frequency. The presence of multiple
cracks weakens the beam from the point of view of
reduction in natural frequency. So cracks play a critical role
on the vibration behaviour of the structures. The vibration
behaviour of cracked circular and rectangular uniform as
well as stepped beams is influenced by the geometry,
material, location and size of cracks. The figures dealing
with variation of the frequencies are recommended for
identification of crack location and intensity for uniform
and stepped beams. The above recommendations for
design of beams are valid within the range of geometry
and material considered in this study. So the designer has
to be careful while dealing with structures subjected to
cracks. This can be used to the advantage of design of
stepped beams. The vibration characteristics of the
cracked beams can be used as a tool for structural health
monitoring, identification of crack location and extend of
damage in beams and also helps in assessment of
structural integrity of the structures.
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SCOPE FOR FUTURE STUDY

e The complete analysis of the current work is carried
out based on the Bernoulli-Euler beam structure
and it can be extended for Timoshenko beam
based structure for hygrothermal effects.

e Comparison of the analytical results of present
analysis can be done with experimental results
using FFT Analyser.

e The present study can be extended to study the
effects of various parameters such as natural
frequencies and bending modes for multi-cracked
stepped beams of circular cross-sections.

e The study of free vibrational analysis of beams
presently done can be extended by studying the
buckling analysis of stepped beams.

e This study can be extended to study the
variations in the dynamics parameters of the
composite stepped beams with multiple cracks.
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