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Abstract: Driver distraction is a leading factor in car 

crashes. Monitoring driver’s behavior can significantly help 

in reducing accidents caused by driver distractions. This 

study proposes a driver distraction detection system which 

identifies various types of distractions through a camera 

observing the driver through a camera and also providing 

conversational alerts to the driver if he or she is found to be 

distracted. 

In this modern age there is rapid increase in number of 

vehicles and so is the number of car theft attempts, locally 

and internationally. Real time vehicle security system based 

on computer vision provides a solution to this problem. The 

proposed vehicle security system performs image processing 

based real time user authentication using face detection 

and recognition techniques and Raspberry Pi based control 

system fixed on board with the vehicle. The face of the 

person which is classified as unknown is sent to the mobile 

of the owner as an SMS. 

Keywords: Raspberry Pi, Deep Learning, Image processing, 
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I.   INTRODUCTION 

With a goal to reduce traffic accidents and improve 

transportation safety, this study proposes a driver distraction 

detection system which identifies various types of 

distractions through a camera observing the driver. We 
collected a dataset which consists of images of the drivers in 

both normal and distracted driving postures. Different deep 

convolutional neural networks including VGG-16, AlexNet, 

GoogleNet, etc n are implemented and. In addition, we 

developed a conversational warning system that alerts the 

driver in real-time when he/she does not focus on the driving 

task. 

In this modern age there is rapid increase in number of 

vehicles and so is the number of car theft attempts, locally 

and internationally. With the invention of strong stealing 

techniques, owners are in fear of having their vehicles being 
stolen from common parking lot or from outside their home. 

Thus the protection of vehicles from theft becomes important 

due to insecure environment. Real time vehicle security 

system based on computer vision provides a solution to this 

problem. The proposed vehicle security system performs 

image processing based real time user authentication using 

face detection and recognition techniques and microprocessor 

based control system fixed on board with the vehicle. As the 

person enters the parked car a camera attached to the driver’s 

seat of the vehicle acquires images of the person and face of 

the person is detected using Viola Jones algorithm. The 

extracted face is recognized using the enhanced Linear 
Discriminant Analysis (LDA) algorithm which discriminates 

much of the features rather than looking for exact pattern  

 

based on Euclidean distance and also reliable to be used with 

large samples of data. Performing authorization involves 

setting the threshold value and comparing with that of 
Euclidean distance above which the person is not 

authenticated. The face of the person which is classified as 

unknown is sent to the mobile of the owner as an SMS. 

 

II.   PROPOSED SYSTEM 

The proposed solution for driver distraction monitoring and 

conversational alert and driver face recognition and SMS 

notification system is as follows - 

Driver distraction detection and alert: 

 The video stream of the driver is taken in real time 

using a Raspberry Pi camera module. 

 We divided the activity of the driver into 10 

categories and one of the 10 is safe driving. 

 Deep learning can be used to divide the driver 

activity into different categories like safe driving, 

 Texting-right, talking on the phone - right, texting - 

left, talking on the phone - left, operating the radio, 

drinking, reaching behind, hair and makeup and 

talking to passengers. 

 Different deep learning models have proved to 

provide good results, so we will be using them for 

the classification. The different models include - 
CNN, MobileNet, ResNet, ImageNet, Xception 

model and AlexNet. 

 Based on the result of the classification a buzzer 

does off to alert the driver. Python library 

―playsound‖ is used for it. 

Driver face recognition and SMS 

notification: 

 When image quality is taken into consideration, 

there are a plethora of factors that influence the 

system’s accuracy. It is extremely important to 

apply various image pre-processing techniques to 
standardize the images that you supply to a face 

recognition system. 

 OpenCV uses a type of face detector called a Haar 

Cascade classifier which we have chosen for our 

project. Given an image, which can come from a file 

or from live video, the face detector examines each 

image location and classifies it as "Face" or "Not 

Face." Classification assumes a fixed scale for the 

face, say 50x50 pixels. 

 The model is to be built on a custom dataset 

consisting of images of the people authorized to use 

the given vehicle. 

 A video stream of the driver is continuously 

captured and the face in the stream, if detected is 
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recognized as either one of the known faces in the 

dataset or as an ―unknown‖ person. 

 If the face is classified as ―unknown‖ an SMS 

notification is sent to the owner of the vehicle 
indicating intrusion. 

 
III.   IMPLEMENTATION 

Driver distraction detection and alert: 

Dataset- The dataset chosen for the project was Kaggle’s 

state farm dataset. StateFarm’s Distracted Driver Detection 

competition on Kaggle was the first publicly available dataset 

for distraction classification. In the competition, StateFarm 

defined ten activities to be detected: safe driving, texting 

using right hand, talking on the phone using right hand, 

texting using left hand, talking on the phone using left hand, 

operating the radio, drinking, reaching behind, doing hair and 

makeup, and talking to passenger. Our work, in this paper, is 
mainly inspired by StateFarm’s Distracted Driver’s 

competition. The train and test data are split on the drivers, 

such that one driver can only appear on either train or test set. 

 
Evaluation Metric- The metric that has been chosen for this 
project is Log loss which as the confidence with which we 

classify a driver’s action as distracted is very important in 

evaluating the performance of the model. 

 

Data Leakage- With the understanding of what needs to be 

achieved, we proceeded to build the CNN models from 

scratch. We added the usual suspects — convolution batch 

normalization, max pooling, and dense layers. The results — 

loss of 0.014 and accuracy of 99.6% on the validation set in 3 

epochs. 

The accuracy achieved was very high, so we tested the model 
on the test data and noticed that there was a huge difference 

in the accuracies. So we further analyzed our data to see what 

could have gone wrong. We found that our training data had 

multiple images of the same person within a class with slight 

changes of angle and/or shifts in height or width. This was 

causing a data leakage problem as the similar images were in 

validation as well, i.e. the model was trained much of the 

same information that it was trying to predict. 

To counter the issue of data leakage, we split the images 

based on the person IDs instead of using a random 80–20 

split. Now, we saw more realistic results when we fit our 
model with the modified training and validation sets. We 

achieved a loss of 1.76 and an accuracy of 38.5%. 

Transfer Learning- We used the following models for the 

classification: VGG16, Resnet50, Xception, and Mobilenet. 

 

Extra Layers - To maximize the value from transfer learning, 

we added a few extra layers to help the model adapt to our use 

case. Purpose of each layer: 

 Global average pooling layer retains only the 

average of the values in each patch 

 Dropout layers help in controlling for overfitting as 

it drops a faction of parameters(bonus tip: it’s a 
good idea to experiment with different dropout 

values) 

 Batch normalization layer normalizes the inputs to 

the next layer which allows faster and more resilient 

training 

 Dense layer is the regular fully- connected layer 
with a specific activation function 

Training- We started by using the ImageNet weights and 

trained only the new layers since the number of parameters to 

train would be lesser and the model would train faster. 

Optimizer- The most popular algorithm in the deep learning 

world is Adam which combines SGD and RMS Prop. In our 

case Adam showed an erratic pattern of descent while SGD 

was learning gradually. By doing some literature survey, we 

found that in few cases SGD is superior to Adam because 

SGD generalizes better. As SGD was giving stable results, 

we used it for all our models. 
Ensemble Models –We also tried multiple ensembling 

techniques to improve the log loss further according to some 

research papers: 

 Mean Ensembling: This is the easiest and most 

widely used ensembling method where the posterior 

probability is calculated as the mean of the 

predicted probabilities from the component models. 

 Trimmed Mean Ensembling: This is Mean 

Ensembling by excluding the maximum and 

minimum probabilities from the component models 

for each image. It helps in further smoothing our 

predictions leading to a lower log loss value. 

 KNN for Ensembling: Since the images are all 

snapped from video snippets while drivers were 

engaged in a distracting activity or were driving, 

there are a substantial number of images from the 

same class that are similar. Based on this premise, 

finding similar images and averaging the 

probabilities over these images helped us smoothen 

predicted probabilities for each class. 

 To find the 10 nearest neighbors, we used outputs 

from the penultimate layer of the VGG16 transfer 

learning model as features on the validation set. 
Based on the classification result, a buzzer goes off if the 

driver is distracted. A python library has been used for the 

alert. 

 
Figure 1: Real time driver distraction detection 

 

Driver face recognition and SMS notification: 
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Figure 2: Facial recognition flowchart 

 

We first constructed our own dataset for the system using a 

python script that uses OpenCV. 95 images were collected to 

form the training set. 

 

The training algorithm runs through the images. Faces are 

detected using CNN and HOG and bounding box rectangles 

are drawn which correspond to the location of the face.Then 

128-d encodings are calculated for each face, thereby 

quantifying the faces. 
The algorithm loops over the faces and the following are 

done in each loop: 

 Extract the person’s name from the path 

 Load and convert the image to rgb 

 Localize faces in the image 

 Compute face embeddings 

In the real time face recognition system, video streams are 

captured from the webcam and Haar cascade is used to detect 

and localize the face. 

Frames are grabbed and preprocessed. We convert the images 

into grayscale and RGB. Haar Cascades has been used to 
detect faces in the frames. Encodings are created. Then we 

look for possible matches. 

In order to send text message notifications containing images 

of an intruder to our smartphone, we used the Twilio API. 

The Twilio API is free (with some minor restrictions) and is 

very simple to use. 

Twilio and boto python packages have been used to send the 

message. 

The public server that we used is Amazon S3. 

A separate thread was created which was used to upload the 

image to S3 and then send it over the wire via the Twilio 
API. We use threading in this case, so we don’t slow down 

our main video processing pipeline due to I/O latency. The 

Thread makes a call to a _send function. We connect to 

Amazon S3 using our supplied credentials followed by 

grabbing our bucket. 

Once we created our bucket, we created a new file using the 

Key class by uploading the image to S3, making it public, 

and finally generating a URL for it. 

After the message is sent, the temporary image is deleted 

from the bucket. 

We start looping over frames from our video stream obtained 

from the camera, poll them one by one, pre-process the 
frame, and then detect faces in the image. We also draw the 

current timestamp on the frame. 

 

The detected faces are looped over, and the face ROI are 

extracted and passed over to the face identifier. 

If the consec variable is None, we initialize it as a list, 

containing the name of the face and the number of 
consecutive frames the face has appeared in. 

 

Otherwise, if the predicted face matches the name in consec, 

then we update the consecutive frame count. 

We then check if the captured face is an intruder or not. If 

the predicted face is Unknown, and has been Unknown for a 

sufficient number of frames, then an intruder has been 

detected. 

Then a bounding box + name of the face in the frame, 

followed by checking to see if: 

An intruder has been detected and 

Enough time has passed in between Twilio message sends 
Provided that we have labelled a face as an intruder, we 

handle that by sending the entire frame to our smartphone via 

Amazon S3 + the Twilio API. 

 

If an intruder has been found in more than 40 frames, the face 

of the intruder is sent as a link to the owner along with a 

message. 

 
Figure 3: Picture of the intruder sent to the owner,  

which will be encountered in more than 40 frames

 
Figure 4: Message sent to the owner when an intruder is 

detected 

https://gurus.pyimagesearch.com/lesson-sample-face-recognition-for-security/#tour_modal
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IV.   SYSTEM TESTING AND ANALYSIS 

Driver distraction detection and alert system:  

 
SGD gave us stable results for all our models when compared 

to Adam optimizer. 

 
Figure 5: Screenshot of the python kernel after 40 epochs of 

the Resnet model was completed 

 
Figure 6: Accuracies observed for Resnet for the two 

optimizers Adam and SGD 

 

Our real time system works as 5.7 FPS. The system sets off 

an alarm when the driver is distracted. 

Driver Face Recognition and SMS Notification: 

Our face recognition pipeline is running at approximately 6-7 
FPS. The vast majority of the computation is happening 

when a face is being recognized, not when it is being 

detected. Furthermore, the more faces in the dataset, the 

more comparisons are made for the voting process, resulting 

in slower facial recognition. 

Computing the full face recognition (i.e., extracting the 128-

d facial embedding) once every N frames (where N is user-

defined variable) and then applying simple tracking 

algorithms (such as centroid tracking) to track the detected 

faces will reduce the time taken. Such a process will enable 

us to reach 14-15 FPS on the Raspberry Pi for face 

recognition. We have although computed the embedding 
after each frame as 6-7 FPS is a considerable good rate. 

We have created a separate thread and used it to upload the 

image to S3 and then send it over the wire via the Twilio 

API. We use threading in this case, so we don’t slow down 

our main video processing pipeline due to I/O latency. 

 

V.   CONCLUSION AND FUTURE WORK 

Distracted driving is a major problem leading to a striking 

number of accidents worldwide. Its detection is an important 

system component in semi-autonomous cars. We presented a 

robust vision-based system that recognizes distracted driving 
postures. We collected available distracted driver dataset that 

we used to develop and test our system. Our best model 

utilizes a genetically weighted ensemble of convolutional 

neural networks to achieve a 90% classification accuracy. 

We also showed that a simpler model could operate in real-

time and still maintain a satisfactory classification accuracy. 

The futuristic scopes of this project are the following 

features: 

The following features can be included and was not included 

in the current phase as it was infeasible for us 

 Encryption between the communication mobile 
devices to Raspberry Pi 

 Motion sensing to start capturing video streams 

only when a motion is detected inside the vehicle 

 Currently we are only alerting the driver with a 

buzzer when the driver is distracted. For an 

organisation, it would be more helpful for 

concerned authorities to receive notifications when 

their drivers are distracted. There is a lot they can 

do with this information. This feature can be added 

to the project. 

 Security in terms of accessing the Raspberry Pi 
from a third-party device 

 Security in terms of communication between 

Raspberry Pi and mobile application 

 Lock mechanism to attach system to allow access 

only to authorised drivers. 
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