
International Journal For Technological Research In Engineering

Volume 7, Issue 12, August-2020 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2020.All rights reserved. 7221

REAL TIME DRIVER MONITORING SYSTEM

Meghana A Rajeev
1
, Komal R D

2
, Dr Manjula S

3

1,2
B.E. Student Dept. of C S & E, JSS S & T U, Mysuru, Mysuru

3
Assistant Professor, Dept. of C S & E, JSS S & T U

Abstract: Driver distraction is a leading factor in car

crashes. Monitoring driver’s behavior can significantly help

in reducing accidents caused by driver distractions. This

study proposes a driver distraction detection system which

identifies various types of distractions through a camera

observing the driver through a camera and also providing

conversational alerts to the driver if he or she is found to be

distracted.

In this modern age there is rapid increase in number of

vehicles and so is the number of car theft attempts, locally

and internationally. Real time vehicle security system based

on computer vision provides a solution to this problem. The

proposed vehicle security system performs image processing

based real time user authentication using face detection

and recognition techniques and Raspberry Pi based control

system fixed on board with the vehicle. The face of the

person which is classified as unknown is sent to the mobile

of the owner as an SMS.

Keywords: Raspberry Pi, Deep Learning, Image processing,

face recognition

I. INTRODUCTION

With a goal to reduce traffic accidents and improve

transportation safety, this study proposes a driver distraction

detection system which identifies various types of

distractions through a camera observing the driver. We
collected a dataset which consists of images of the drivers in

both normal and distracted driving postures. Different deep

convolutional neural networks including VGG-16, AlexNet,

GoogleNet, etc n are implemented and. In addition, we

developed a conversational warning system that alerts the

driver in real-time when he/she does not focus on the driving

task.

In this modern age there is rapid increase in number of

vehicles and so is the number of car theft attempts, locally

and internationally. With the invention of strong stealing

techniques, owners are in fear of having their vehicles being
stolen from common parking lot or from outside their home.

Thus the protection of vehicles from theft becomes important

due to insecure environment. Real time vehicle security

system based on computer vision provides a solution to this

problem. The proposed vehicle security system performs

image processing based real time user authentication using

face detection and recognition techniques and microprocessor

based control system fixed on board with the vehicle. As the

person enters the parked car a camera attached to the driver’s

seat of the vehicle acquires images of the person and face of

the person is detected using Viola Jones algorithm. The

extracted face is recognized using the enhanced Linear
Discriminant Analysis (LDA) algorithm which discriminates

much of the features rather than looking for exact pattern

based on Euclidean distance and also reliable to be used with

large samples of data. Performing authorization involves

setting the threshold value and comparing with that of
Euclidean distance above which the person is not

authenticated. The face of the person which is classified as

unknown is sent to the mobile of the owner as an SMS.

II. PROPOSED SYSTEM

The proposed solution for driver distraction monitoring and

conversational alert and driver face recognition and SMS

notification system is as follows -

Driver distraction detection and alert:

 The video stream of the driver is taken in real time

using a Raspberry Pi camera module.

 We divided the activity of the driver into 10

categories and one of the 10 is safe driving.

 Deep learning can be used to divide the driver

activity into different categories like safe driving,

 Texting-right, talking on the phone - right, texting -

left, talking on the phone - left, operating the radio,

drinking, reaching behind, hair and makeup and

talking to passengers.

 Different deep learning models have proved to

provide good results, so we will be using them for

the classification. The different models include -
CNN, MobileNet, ResNet, ImageNet, Xception

model and AlexNet.

 Based on the result of the classification a buzzer

does off to alert the driver. Python library

―playsound‖ is used for it.

Driver face recognition and SMS

notification:

 When image quality is taken into consideration,

there are a plethora of factors that influence the

system’s accuracy. It is extremely important to

apply various image pre-processing techniques to
standardize the images that you supply to a face

recognition system.

 OpenCV uses a type of face detector called a Haar

Cascade classifier which we have chosen for our

project. Given an image, which can come from a file

or from live video, the face detector examines each

image location and classifies it as "Face" or "Not

Face." Classification assumes a fixed scale for the

face, say 50x50 pixels.

 The model is to be built on a custom dataset

consisting of images of the people authorized to use

the given vehicle.

 A video stream of the driver is continuously

captured and the face in the stream, if detected is

International Journal For Technological Research In Engineering

Volume 7, Issue 12, August-2020 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2020.All rights reserved. 7222

recognized as either one of the known faces in the

dataset or as an ―unknown‖ person.

 If the face is classified as ―unknown‖ an SMS

notification is sent to the owner of the vehicle
indicating intrusion.

III. IMPLEMENTATION

Driver distraction detection and alert:

Dataset- The dataset chosen for the project was Kaggle’s

state farm dataset. StateFarm’s Distracted Driver Detection

competition on Kaggle was the first publicly available dataset

for distraction classification. In the competition, StateFarm

defined ten activities to be detected: safe driving, texting

using right hand, talking on the phone using right hand,

texting using left hand, talking on the phone using left hand,

operating the radio, drinking, reaching behind, doing hair and

makeup, and talking to passenger. Our work, in this paper, is
mainly inspired by StateFarm’s Distracted Driver’s

competition. The train and test data are split on the drivers,

such that one driver can only appear on either train or test set.

Evaluation Metric- The metric that has been chosen for this
project is Log loss which as the confidence with which we

classify a driver’s action as distracted is very important in

evaluating the performance of the model.

Data Leakage- With the understanding of what needs to be

achieved, we proceeded to build the CNN models from

scratch. We added the usual suspects — convolution batch

normalization, max pooling, and dense layers. The results —

loss of 0.014 and accuracy of 99.6% on the validation set in 3

epochs.

The accuracy achieved was very high, so we tested the model
on the test data and noticed that there was a huge difference

in the accuracies. So we further analyzed our data to see what

could have gone wrong. We found that our training data had

multiple images of the same person within a class with slight

changes of angle and/or shifts in height or width. This was

causing a data leakage problem as the similar images were in

validation as well, i.e. the model was trained much of the

same information that it was trying to predict.

To counter the issue of data leakage, we split the images

based on the person IDs instead of using a random 80–20

split. Now, we saw more realistic results when we fit our
model with the modified training and validation sets. We

achieved a loss of 1.76 and an accuracy of 38.5%.

Transfer Learning- We used the following models for the

classification: VGG16, Resnet50, Xception, and Mobilenet.

Extra Layers - To maximize the value from transfer learning,

we added a few extra layers to help the model adapt to our use

case. Purpose of each layer:

 Global average pooling layer retains only the

average of the values in each patch

 Dropout layers help in controlling for overfitting as

it drops a faction of parameters(bonus tip: it’s a
good idea to experiment with different dropout

values)

 Batch normalization layer normalizes the inputs to

the next layer which allows faster and more resilient

training

 Dense layer is the regular fully- connected layer
with a specific activation function

Training- We started by using the ImageNet weights and

trained only the new layers since the number of parameters to

train would be lesser and the model would train faster.

Optimizer- The most popular algorithm in the deep learning

world is Adam which combines SGD and RMS Prop. In our

case Adam showed an erratic pattern of descent while SGD

was learning gradually. By doing some literature survey, we

found that in few cases SGD is superior to Adam because

SGD generalizes better. As SGD was giving stable results,

we used it for all our models.
Ensemble Models –We also tried multiple ensembling

techniques to improve the log loss further according to some

research papers:

 Mean Ensembling: This is the easiest and most

widely used ensembling method where the posterior

probability is calculated as the mean of the

predicted probabilities from the component models.

 Trimmed Mean Ensembling: This is Mean

Ensembling by excluding the maximum and

minimum probabilities from the component models

for each image. It helps in further smoothing our

predictions leading to a lower log loss value.

 KNN for Ensembling: Since the images are all

snapped from video snippets while drivers were

engaged in a distracting activity or were driving,

there are a substantial number of images from the

same class that are similar. Based on this premise,

finding similar images and averaging the

probabilities over these images helped us smoothen

predicted probabilities for each class.

 To find the 10 nearest neighbors, we used outputs

from the penultimate layer of the VGG16 transfer

learning model as features on the validation set.
Based on the classification result, a buzzer goes off if the

driver is distracted. A python library has been used for the

alert.

Figure 1: Real time driver distraction detection

Driver face recognition and SMS notification:

International Journal For Technological Research In Engineering

Volume 7, Issue 12, August-2020 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2020.All rights reserved. 7223

Figure 2: Facial recognition flowchart

We first constructed our own dataset for the system using a

python script that uses OpenCV. 95 images were collected to

form the training set.

The training algorithm runs through the images. Faces are

detected using CNN and HOG and bounding box rectangles

are drawn which correspond to the location of the face.Then

128-d encodings are calculated for each face, thereby

quantifying the faces.
The algorithm loops over the faces and the following are

done in each loop:

 Extract the person’s name from the path

 Load and convert the image to rgb

 Localize faces in the image

 Compute face embeddings

In the real time face recognition system, video streams are

captured from the webcam and Haar cascade is used to detect

and localize the face.

Frames are grabbed and preprocessed. We convert the images

into grayscale and RGB. Haar Cascades has been used to
detect faces in the frames. Encodings are created. Then we

look for possible matches.

In order to send text message notifications containing images

of an intruder to our smartphone, we used the Twilio API.

The Twilio API is free (with some minor restrictions) and is

very simple to use.

Twilio and boto python packages have been used to send the

message.

The public server that we used is Amazon S3.

A separate thread was created which was used to upload the

image to S3 and then send it over the wire via the Twilio
API. We use threading in this case, so we don’t slow down

our main video processing pipeline due to I/O latency. The

Thread makes a call to a _send function. We connect to

Amazon S3 using our supplied credentials followed by

grabbing our bucket.

Once we created our bucket, we created a new file using the

Key class by uploading the image to S3, making it public,

and finally generating a URL for it.

After the message is sent, the temporary image is deleted

from the bucket.

We start looping over frames from our video stream obtained

from the camera, poll them one by one, pre-process the
frame, and then detect faces in the image. We also draw the

current timestamp on the frame.

The detected faces are looped over, and the face ROI are

extracted and passed over to the face identifier.

If the consec variable is None, we initialize it as a list,

containing the name of the face and the number of
consecutive frames the face has appeared in.

Otherwise, if the predicted face matches the name in consec,

then we update the consecutive frame count.

We then check if the captured face is an intruder or not. If

the predicted face is Unknown, and has been Unknown for a

sufficient number of frames, then an intruder has been

detected.

Then a bounding box + name of the face in the frame,

followed by checking to see if:

An intruder has been detected and

Enough time has passed in between Twilio message sends
Provided that we have labelled a face as an intruder, we

handle that by sending the entire frame to our smartphone via

Amazon S3 + the Twilio API.

If an intruder has been found in more than 40 frames, the face

of the intruder is sent as a link to the owner along with a

message.

Figure 3: Picture of the intruder sent to the owner,

which will be encountered in more than 40 frames

Figure 4: Message sent to the owner when an intruder is

detected

https://gurus.pyimagesearch.com/lesson-sample-face-recognition-for-security/#tour_modal

International Journal For Technological Research In Engineering

Volume 7, Issue 12, August-2020 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2020.All rights reserved. 7224

IV. SYSTEM TESTING AND ANALYSIS

Driver distraction detection and alert system:

SGD gave us stable results for all our models when compared

to Adam optimizer.

Figure 5: Screenshot of the python kernel after 40 epochs of

the Resnet model was completed

Figure 6: Accuracies observed for Resnet for the two

optimizers Adam and SGD

Our real time system works as 5.7 FPS. The system sets off

an alarm when the driver is distracted.

Driver Face Recognition and SMS Notification:

Our face recognition pipeline is running at approximately 6-7
FPS. The vast majority of the computation is happening

when a face is being recognized, not when it is being

detected. Furthermore, the more faces in the dataset, the

more comparisons are made for the voting process, resulting

in slower facial recognition.

Computing the full face recognition (i.e., extracting the 128-

d facial embedding) once every N frames (where N is user-

defined variable) and then applying simple tracking

algorithms (such as centroid tracking) to track the detected

faces will reduce the time taken. Such a process will enable

us to reach 14-15 FPS on the Raspberry Pi for face

recognition. We have although computed the embedding
after each frame as 6-7 FPS is a considerable good rate.

We have created a separate thread and used it to upload the

image to S3 and then send it over the wire via the Twilio

API. We use threading in this case, so we don’t slow down

our main video processing pipeline due to I/O latency.

V. CONCLUSION AND FUTURE WORK

Distracted driving is a major problem leading to a striking

number of accidents worldwide. Its detection is an important

system component in semi-autonomous cars. We presented a

robust vision-based system that recognizes distracted driving
postures. We collected available distracted driver dataset that

we used to develop and test our system. Our best model

utilizes a genetically weighted ensemble of convolutional

neural networks to achieve a 90% classification accuracy.

We also showed that a simpler model could operate in real-

time and still maintain a satisfactory classification accuracy.

The futuristic scopes of this project are the following

features:

The following features can be included and was not included

in the current phase as it was infeasible for us

 Encryption between the communication mobile
devices to Raspberry Pi

 Motion sensing to start capturing video streams

only when a motion is detected inside the vehicle

 Currently we are only alerting the driver with a

buzzer when the driver is distracted. For an

organisation, it would be more helpful for

concerned authorities to receive notifications when

their drivers are distracted. There is a lot they can

do with this information. This feature can be added

to the project.

 Security in terms of accessing the Raspberry Pi
from a third-party device

 Security in terms of communication between

Raspberry Pi and mobile application

 Lock mechanism to attach system to allow access

only to authorised drivers.

International Journal For Technological Research In Engineering

Volume 7, Issue 12, August-2020 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2020.All rights reserved. 7225

REFERENCES

[1] C. Craye and F. Karray, ―Driver distraction

detection and recognition using RGB-D

 sensor,‖ 2015,
https://arxiv.org/abs/1502.00250.

[2] F. Coenen, B. Zhang, and C. Yan, ―Driving posture

recognition by convolutional neural networks,‖ IET

Computer Vision, vol. 10, no. 2, pp. 103–114, 2016.

[3] R. A. Berri, A. G. Silva, R. S. Parpinelli, E. Girardi,

and R. Arthur, ―A pattern recognition system for

detecting use of mobile phones while driving,‖ in

Proceedings of the 9th International

Conference on Computer Vision Theory and

Applications, VISAPP 2014, vol. 2, pp. 411– 418,

IEEE, Portugal, January 2014.

[4] T. H. Le, Y. Zheng, C. Zhu, K. Luu, and M.
Savvides, ―Multiple scale faster-rcnn approach to

driver’s cell-phone usage and hands on steering

wheel detection,‖ in Proceedings of the 2016 IEEE

Conference on Computer Vision and Pattern

Recognition Workshops (CVPRW), pp. 46–53,

IEEE, Las Vegas, Nev, USA, June 2016.

[5] https://towardsdatascience.com/distracted

-driver-detection-using-deep- learninge893715e02a4

https://arxiv.org/abs/1502.00250
https://towardsdatascience.com/distracted-driver-detection-using-deep-learninge893715e02a4
https://towardsdatascience.com/distracted-driver-detection-using-deep-learninge893715e02a4
https://towardsdatascience.com/distracted-driver-detection-using-deep-learninge893715e02a4

