
International Journal For Technological Research In Engineering

Volume 8, Issue 1, September-2020 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2020.All rights reserved. 20

VEHICLE LOGGING SYSTEM WITH AUTOMATIC NUMBER

PLATE RECOGNITION

S Manjula
1
, Amith Kumar

2
, Bebikananda Waikhom

3
, Triveni Wahengbam

4

JSS Science and Technology University (Formerly known as SJCE)

SJCE Campus, Manasa Gangotri Mysuru, Karnataka 570006, India

Abstract: With an increase in urbanization and the rise in

the number of automotive vehicles, the need for an

autonomous vehicle logging and Parking Management

System is becoming vital for the urban landscape. India is

the third-largest road network with booming megacities and

an ever-increasing amount of private automobiles. This

induces a need for efficient parking systems in urban areas.

We propose a layered solution architecture for a Parking

Management System. Our proposed solution is a cloud-

based application providing an effective user interface. It

automates the process of parking management using

machine learning techniques for real-time automated

number plate recognition, analytics, etc. The primary focus

of this project is to build modularized and layered

architecture for parking management and an Automated

Vehicle logging mechanism.

Keywords: Smart Parking, Check-in, Check-out, Real-time

database, Notification.

I. INTRODUCTION

In cities, large scale car parking areas with

hundreds/thousands of spaces are getting more and more
common with the increasing vehicle population. The existing

“pay and park” parking spaces are under-used, mismanaged

and under-developed leading to an ineffective parking

experience for the driver (parking consumer), and an

unprofitable and ineffective scheme for the parking space

owner. This deficiency in the existing parking infrastructure

leads to accidents, thefts, mismanagement, losses, reduced

transparency in the parking process, ineffective space

management, etc. People now face problems parking their

vehicles. The person parking in these parking-spaces has the

concerns regarding the security, transparency and reliability
of the existing parking infrastructure. The main idea of this

project is to create a system that effectively handles this

deficiency in the parking infrastructure by using modern

technologies like machine learning, scalable microservices,

effective android interfaces, connected devices to increase

the level of automation and efficiency.

II. BACKGROUND AND MOTIVATION

The existing methods of parking management use human

interaction in detecting and logging number plates. The

existing methods mainly depend on human interaction to

generate the bills, and it is time-consuming. They need to
maintain data of all the vehicles by physically entering the

information. This is error-prone and less effective than an

automated solution. There have been a few solutions

proposed and researched and prototyped by individuals and

companies that have explored the using ANPR in real-time

for parking management. In addition to that, there have been

some solutions being developed and tested in artificial

environments for the same. Some drawbacks are lesser

transparency in the parking system, and precious time wasted

due to the inconvenient and ineffective methods at parking

places and more consumption of fuel while idling or driving

around the parking places, users have little knowledge about

nearby parking spaces, the uncertainty due to the lack of

connected infrastructure and a platform, proves to be less
profitable to the parking space owners and the parking space

consumers. We propose a solution that is a fully automated

computer vision-based smart parking system and implement

an interface for the driver providing real-time notifications

regarding the status of his vehicle. The solution we propose

automates and guides the user in finding appropriate parking

spaces using GPS based navigation. It automates the Vehicle

entry and exit systems using machine learning techniques

like Number plate recognition. It automates the billing,

vehicle check-in and checks out processes, tracking vehicles,

etc. It provides a connected solution consisting of devices

like cameras that detect the vehicle entry and exit and send
the data to the cloud. The solution we propose is decoupled,

modularized, scalable, which improves the maintainability

and future enhancement of the solution based on changing

requirements. The automated parking management system is

made up of 2 stations. One is at entry, and the other is at the

exit at the parking places. These stations are linked to the

main processing center hosted in the cloud, which provides

the various parking management functionalities like

synchronous updates of the available slots, nearby parking

spaces, automated check-in and check-out logs, automated

billing, etc. Advantages of the proposed method include
increased transparency in the system, automated processes

reduce the latency of the parking process, if well

implemented, users can find nearby parking spaces

increasing the visibility and the profits of the parking space

owner, digitalization of the generation of parking bills and

automated billing provides a seamless, dynamic and effective

parking process, providing systematic and efficient parking

space management, additional features like space

availability, tracking of vehicles inside parking area,

analytics etc. provide extra benefits for the parking

management infrastructure.

III. LITERATURE SURVEY

We undertook a comprehensive literature survey which

covered the following papers and articles:

K.M. Sajjad[1] discusses about using real-time embedded

International Journal For Technological Research In Engineering

Volume 8, Issue 1, September-2020 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2020.All rights reserved. 21

systems for number plate detection. The author has also

emphasized on using open source software and tools like

open computer vision library for development of effective

ALPR System. The author also briefly states different
applications of such a ALPR software ranging from urban

traffic control to parking admission.

According to Sergey Zherzdev and Alexey Gruzdev[2],

Automatic License Plate Recognition is a challenging and

important task which has various applications in the field of

mobility solutions like traffic management, digital security

surveillance, vehicle recognition, parking management of big

cities. This paper tackles the License Plate Recognition

problem and introduces the LPRNet , a Deep Convolutional

Neural Network algorithm, designed to work without pre-

segmentation and the consequent recognition of characters.

The authors further discuss techniques like pruning and
quantization by which the overall efficiency and processing

can be improved.

Yann Lecun, Patrick Haffner, Leon Bottou and Yoshua

Bengio[3] gives a detailed description and implementation of

Object recognition using convolutional neural networks. It

gives a detailed analysis of topics like local receptive fields,

shared weights, spatial sub-sampling etc. The paper also

briefly discusses LeNet-5 architecture used in character

classification. It also gives a comparison between

Convolutional Neural Networks and other neural networks

like Support Vector machines etc. Their paper also gives a
detailed analysis of gradient descent-based learning in

complex systems. The paper also talks about Graph

Transformer networks and their application in object

detection.

Joseph Redmon and Ali Farhadi[4] focus on detailed analysis

on the working of the yolov3 architecture and its various

components used in object detection in their paper. It also

compares the performance of yolov3 architecture with its

predecessors, R-CNN, RetinaNet, Resnet and other

architectures. It gives a brief about the bounding box

predictions and its implementation. It also explains about
feature extraction and Prediction across scales. Also, the

advantages and disadvantages of Yolo architecture over other

architectures is mentioned.

IV. WORKING METHOD OF APPLICATION

System Requirements used for implementation are as

specified. Hardware Requirements: i3 Processor and above,

4GB minimum but 8GB RAM recommended, Hard Disk of

4GB minimum but 8GB recommended, Android Mobile,

App Version is Marshmallow and above, Google Maps to get

the real-time location. Software Requirements: Operating

System of Windows 7 or Higher, Coding Languages such as
Java, Python, TypeScript, Firebase for Back End, Java

Software of JDK 1.8 or above, tools like Android, Python3,

Google Colab, Google Cloud Platform (GCP), Raspberry-Pi,

VS Code, Android Jetpack, Git and GitHub. System design

defines the architecture, components, interfaces and data-

flow for a system which satisfies the system's requirements.

The system design for this project is aimed toward following

the microservices architecture wherein each module of the

system is loosely coupled but cohesive enough to

independently develop, test, deploy and maintain while being

scalability on changing system requirements and other

demands.

Fig-1: System architecture.

The Implementation of the System can be broken down into

4 major modules:

 Image capturing mechanism by motion detection.

 The Number Plate Recognition API.

 The Firebase Server.

 The Android Application.

Image capturing mechanism by motion detection.

We used the Raspberry Pi accompanied by its camera for

detecting motion and capturing images, which are then sent

to the number plate recognition API for Number plate

recognition.

The Motion detection code works as follows:

Each frame is pre-processed as a grayscale image having the

values of pixel intensities between 0 and 255. The frame is
then compared with the previous frame and an intermediate

image consisting of the absolute difference in corresponding

pixel intensities of the two frames is constructed. From this

image, the number of pixels for which the difference in pixel

intensities is above a predefined threshold is considered as

Pt. The original frame is sent to the Number plate

Recognition API hosted on an external server via an HTTP

request. Meanwhile, the image capturing mechanism is

temporarily paused for 10 seconds in order to avoid duplicate

requests made to the server for the same event. For every

request passed by the camera, the server processes the image,
and it returns the predicted number plate string, which is then

sent to the firebase server handling the parking

 management and other associated trigger

mechanisms.

The Implementation of Number Plate Recognition API

comprises of 5 submodules:

 Number Plate Detection and Localization from the

given input image.

 Character Segmentation from the detected number

plate image.

 Character Recognition

International Journal For Technological Research In Engineering

Volume 8, Issue 1, September-2020 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2020.All rights reserved. 22

 Finding the closest matching number plate from a

set of registered number plates.

 The Flask Microservice

Fig-2: Block Diagram for Number Plate API

Number Plate Detection and Localization from the given

input image.
We used the darknet open-source framework and the Yolo v3

architecture to train the Number plate detection model. The

dataset we used to train our Plate detection model consisted

of about 1800 images. The dataset was split up as 1600:200

images as train and test images. We took the dataset from

various sources like Dataturks, Kaggle. We used tools like

label-img for annotating the datasets. The annotation are of

the form :

<object-class> <x> <y> <width> <height>

Example : 0 0.716797 0.395833 0.216406

0.147222

The model was trained for about 7 hours, for about 2000
epochs. The model stopped training with

-an average loss of 0.07

-0.5R of 0.96 (this corresponds to the percentage of samples

with a recall having the confidence like 50% or more)

-0.75R of 0.87 (this corresponds to the percentage of samples

with a recall having the confidence like 75% or more).

Character Segmentation from the detected number plate

image.

We experimented with the following different approaches to

accomplish this:

 Using the yoloV3 to train a single class character

detection and localization model.

 Using image processing techniques like pixel

projections.

Using image processing techniques like image filling and

contour detection

Fig-3: Plate detection Input

Fig-4: Plate detection Output

Fig-5: Character Segmentation output.

Character Recognition.

We used a Convolutional Neural Network to classify the

characters from the number into one of the 35 classes. The

35 classes correspond to the alphanumeric characters (A-Z

0-9) with the character „o‟ and the number 0 merged into

one class. The model was trained on a dataset comprising

about 60000 images (about 1800 images per class). The

model was evaluated on a test set consisting of about 2000

images. The accuracy for this model (i.e. the character
classifier) was found to be about 95.66%.

Finding the closest matching number plate from a set of

registered number plates.

In order to improve the overall accuracy of the system, we

used a string matching algorithm to find the closest number

plate id.

After the prediction module returns the predicted string, the

string is compared with a list of existing (registered) number

plate strings. We used the Levenshtein distance as a measure

to find the similarity between strings. The Levenshtein

distance between two words is the minimum number of
single-character edits (i.e. insertions, deletions or

substitutions) required to change one word into the other.

The Flask Microservice.

We combined all the existing submodules into a single class.

International Journal For Technological Research In Engineering

Volume 8, Issue 1, September-2020 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2020.All rights reserved. 23

We then coupled this with the Flask framework to create an

ANPR microservice. This microservice (API) takes the input

as an HTTP request (consisting of the image) and returns the

predicted string as the HTTP response. We hosted this
microservice in a Google Cloud Platform on a public domain

so that it could be accessed by all devices on the internet

having required authorization.

The Firebase Server.

Firebase is used as the Back-end Server to store the database.

It stores the data in JSON-like documents. We use Node.js

with Firebase CLI to develop our cloud functions to

communicate with the mobile app.

In the firebase schema, there are four tables, namely :

 The History table.

 The User table.

 The Parking table.

 The Parking Slot table.

The History table:
The history table is used to store the parking history of all the

users. It contains the user Id of the user who had parked

his/her vehicle in the parking slot previously. This helps the

app in identifying the users that have already signed in to this

app before. The users‟ previous data and records are

maintained neatly in the database ranging from the license

no, the status of the vehicle, i.e. it has parked or left the

parking slot, the time of entering and exiting the parking slot,

how long the vehicle was parked and the allocated bill for the

parked time.

The User table:
User Table is used to store the new user data and records. It

contains the user Id of the new user who has signed in to the

app. The license number of the user along with the user‟s

name and a valid password to sign in to the account is noted

in this table. This table also contains the current parking spot

id of the parking area where the user is parking his/her

vehicle. And lastly, the table collects the unique device token

generated by each mobile phone to send notifications to the

user‟s app.

The Parking table:

Parking Table is used to store the details about the parking
area. It includes the unique parking-id of the area where the

vehicle is parked. Also, the address, the area where the

parking zone is located is included. The table also contains

the title of the parking area, an image of the parking zone and

also the price allocated for parking in the parking zone.

The Parking Slot table:

Parking Slot Table indicates whether a parking spot is

available for parking or not. It contains the unique value of

the parking spot chosen by the user. If the chosen spot is

available for parking, then the user will be notified that
he/she can park the vehicle in the spot. If the chosen spot is

not available then the user will get notified that the parking

spot has been already allocated to someone.

In the Vehicle Check-In process, when a vehicle checks in to

the parking, the vehicle check-in function is called. It

receives a parking Id and license number of the vehicle. If

the parking id is not valid, then a status 204 with the message

“Parking not found” will be returned. And if the Parking Id is

valid, then using the vehicle license number, the user account
is identified from the database. If the license number does

not match with the one entered by the user, then a status 404

with User not found is returned. After this, we will check if

the user is currently in the parking. If it is true, then a status

401 with the message “User is in the parking” will be

returned. If it is false, then a new history document is created

with status PARKING and sends a notification to the user.

The current parking id in the user‟s document is updated

with the id of the created history, and a status 200 will be

returned for a success.

The specific user can be identified by the device token in the

user‟s document, which was generated by the app and a
notification is sent to the user using firebase cloud

messaging.

In the Vehicle Check-Out process, when a vehicle leaves the

parking, the vehicle check-out function is called. It receives a

parking Id and license number of the vehicle. If the parking

Id is not valid, status 204 with a message “Parking not

found” will be returned. If it is valid, then using the vehicle

license number, the user account is identified from the

database. If the license number does not match with the one
entered by the user then a status 404 with the message User

not found will be returned. Now, after the user account is

identified, we will check if the user is currently in the

parking if it is false, then a status 404 with the message

“User is not in the parking” will be returned. If it is true, then

a check-out notification is sent to the user, and the current

parking id in the user‟s document is updated to null

indicating there is no current park for the user. Then a status

200 will be returned for the success of the process.

The duration of the parking is calculated from the time the
history table document was created until this process is
called, and the price of the park is calculated using the time

duration and parking charge.

The Android Application.

The App consists of four modules:

Authentication Module:

This module consists Sign-In and Sign-Out features. These

sections take care of creating a user's account as well as

authenticating the existing user‟s account.

Map Module:

Map module takes the user‟s current device location and

shows the parking areas which are closer to the user‟s current

location. This module also shows the direction towards the

parking area on the user‟s mobile app using Google Maps.

International Journal For Technological Research In Engineering

Volume 8, Issue 1, September-2020 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2020.All rights reserved. 24

Parking Module:

This module shows details about any parking, their current

availability status of the parking slot. It gives a feature to the

user to be able to select a parking slot when they enter a

parking lot.

History Module:

This module displays all the parking history of the user. It

consists of parking details such as Price, Duration, Selected
Parking Slot etc.

IV. TESTING AND RESULTS

Testing for the Object detection module:

The object detection module was tested on 98 unseen images

for which the model returned a 0.75R of 0.79 (this

corresponds to the percentage of samples with a recall having

the confidence as 50% or more). In other words, this

indicates that for about 79 % of the test images (i.e. 78/98

images) the IOU of the predicted bounding box and the

actual bounding box was greater than 0.5.

Testing the Character classifier:
The Character classifier model tested on about 4000 images

from the same training dataset gave an avg loss of 0.058 and

accuracy of about 93.67 %.

Testing the Number plate recognition API:

The Number plate Recognition API was manually tested on

40 images containing valid image samples in different

orientations, out of those the predicted string and actual

string matched for 33 samples of distance 0 and 2 samples

with Levenshtein distance 1 and 4 samples with Levenshtein

distance greater than 2.Therefore giving an accuracy of
(34/40), i.e. 0.85 or 85%.

The average response time for the API was calculated to be

about 4.8 seconds. This time is inclusive of the time taken for

image upload, processing image and returning the number

plate string to the client.

Note: The Levenshtein distance is the minimum number of

single-character edits required to change one string into the

other.

The following gives a summarization of the various test

cases that were passed.

 Test case: To check user creation with empty
mandatory fields

 Test case: To check unmatched password on user

creation

 Test case: To check conflict on vehicle license

number

 Test case: To check user sign-in with empty

mandatory fields

 Test case: To identify an unknown user

 Test case: To verify a user

 Test case: To check runtime permission request

 Test case: To show nearby parking in the map
interface

 Test case: To check parking details and availability

 Test case: To check unavailability of a parking

 Test case: To display parking direction

 Test case: To open the side navigation drawer

 Test case: To check navigation clicks

 Test case: To see more content of a history

 Test case: To show check-in notification

 Test case: To display parking slot selection screen

 Test case: To select a parking spot

 Test case: To show check-out notification

 Test case: To logout current user

Result analysis:

The Number plate recognition API performs as expected but

lacks the accuracy due to the quality of the available datasets

used. The Number plate recognition API performs below par

in unnatural or custom lighting conditions, unconventional

number plate fonts, misplaced orientations. The accuracy of

the Number plate recognition API can be vastly improved by

improving the quality of the dataset and quantity of samples
in the dataset. The microservice can be further scaled up in

order to increase the response time and parallelize the

processing of the image.

V. CONCLUSION AND FUTURE WORK

The paper presents the vehicle logging system with

automatic number plate recognition. It studies the license

plate recognition of the vehicles based on Machine learning.

The key elements of the system are successfully designed

and implemented. The proposed system recognizes the

license plate and generates the parking bills along with its

entry-time and exit-time of the vehicles.
The Smart Parking system based on Number plate

recognition of the vehicles is designed and implemented. The

proposed system comprising various technologies is

designed, implemented and tested. The various findings

(advantages and shortcomings) of the technologies and the

system were found and documented in the paper. The

process of Parking of the vehicle becomes transparent,

automated and efficient.

International Journal For Technological Research In Engineering

Volume 8, Issue 1, September-2020 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2020.All rights reserved. 25

The scope of future work includes:

Increasing the efficiency and accuracy of the Number Plate

Recognition API. This could be accomplished using better

quality datasets, using ensemble techniques to improve
efficiency, etc. Improving the Parking Management System

with features like analytics, an improved portal for the

System administrator, improved concurrency in the slot

distribution mechanism, etc.

REFERENCES

[1] "Automatic License Plate Recognition using Python

and OpenCV" Author: K.M. Sajjad.

[2] "LPRNet: License Plate Recognition via Deep

Neural Networks" Author: Sergey Zherzdev, Alexey

Gruzdev.

[3] "Object Recognition with gradient-based learning"
Author: Yann Lecun, Patrick Haffner, Leon Bottou

and Yoshua Bengio.

[4] "YoloV3: an incremental approach" Author: Joseph

Redmon and Ali Farhadi.

[5] "Information Push Technology and Its Application

in Network Control System" Author: Junman Sun,

Huajing Fang, Ganyi Wang, Zhendong He.

[6] "License Plate Recognition Using Convolutional

Neural Network" Author: Shrutika Saunshi, Vishal

Sahani, Juhi Patil, Abhishek Yadav, Dr Sheetal

Rathi.
[7] "Proposal for Automatic License and Number Plate

Recognition System for Vehicle Identification"

Author: Hamed Saghaei.

[8] "License Plate Detection and Recognition in

Unconstrained Scenarios" Author: Sergio

Montazzolli Silva and Cl ́audio Rosito Jung.

[9] "Automatic Number Plate Recognition System"

Author: Amr Badr, Mohamed M. Abdelwahab,

Ahmed M. Thabet, and Ahmed M. Abdelsadek.

[10] "Automatic Number Plate Recognition System:

Machine Learning Approach" Author: Mrs J. V.
Bagade, MSukanya Kamble, Kushal Pardeshi,

Bhushan Punjabi, Rajpratap Singh.

