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Abstract: Quantum computing is a quickly growing field of 

research thanks to recent hardware advances. The quantum 

mechanical properties of quantum computers allow them to 

solve certain families of problems faster than classical 

computers. One such problem is the unstructured searching 

problem and this can be solved in a much better efficiency 

on a quantum machine using the well known Grover’s 

algorithm than the currently available best efficiency 

classical algorithm ie; linear search. Quantum p computing 

provides a quadratic speedup, O( N), for such a problem as 

compared to the linear efficiency provided by the classical 

algorithm, O(N), where N is the search space. Another very 

important application is the polynomial time quantum 

algorithm called Shor’s Algorithm for factoring integers 

and computing discrete logarithms. Shors algorithms were 

the first quantum algorithms that achieved an exponential 

speedup over classical algorithms, applied to problems 

outside the field of quantum mechanics, and had obvious 

applications. In particular, Shors algorithms may be used to 

break the RSA cryptosystem based on the hardness of 

factoring integers that are the product of two similarly-sized 

primes, and cryptosystems based on the discrete logarithm 

problem (DLP), such as the Diffie-Hellman key agreement 

protocol and the Digital Signature Algorithm. The most 

expensive operation performed by Shors factoring 

algorithm is a modular exponentiation. Modern classical 

com-puters can perform modular exponentiations on 

numbers with thousands of bits in under a second. These 

two facts may at first glance appear to suggest that 

factoring a thousand bit number with Shors algorithm 

should only take seconds, but unfortunately (or perhaps 

fortunately), that is not the case. The modular expo-

nentiation in Shors algorithm is performed over a 

superposition of exponents, meaning a quantum computer 

is required, and quantum hardware is expected to be many 

orders of magnitude noisier than classical hardware. This 

noise necessitates the use of error correction, which 

introduces overheads that ultimately make performing 

reliable arithmetic on a quantum computer many orders of 

magnitude more expensive than on classical computers. 

Although Shors algorithms run in polynomial time, the 

con-stant factors hidden by the asymptotic notation are 

substantial. These constant factors must be overcome, by 

heavy optimization at all levels, in order to make the 

algorithms practical. Current quantum computers are far 

from being capable of executing Shors algorithms for 

cryptographically relevant problem sizes. In this paper, an 

approach and experiment to implement Shors quantum 

factoring algorithm are proposed. The implementation is 

done using Python and a quantum computer simulation  

 

using Pyquil. 

Index Terms: quantum, entanglement, cryptography, 

encryp-tion, decryption  

 

I.   INTRODUCTION 
The basic unit of information in quantum computing is 

‟qubit‟ as opposed to the classical bits. The classical bits can 

have a value of either 1 or 0 at a time. So given N bits, we 

can perform operations on only one bit state out of the 2N 

possible states at a time. The qubits in the quantum 

computing realm on the other hand can have a value of 0 or 1 

or both at the same time. This is because of the special 

property of qubits called the superposition. Thus, given N 

qubits, we can perform operations on all 2N possible states at 

the same time. This is what makes quantum computers more 

powerful as compared to classical computers. We will make 
use of such quantum computing properties to demonstrate 

how quantum computers could potentially break RSA 

encryption and also show how they can outperform classical 

by comparing the two.  

The problem statement is as follows: Given an integer N, 

find its prime factors. On a quantum computer, to factor an 

integer N, Shor‟s algorithm runs in polynomial time (the 

time taken is polynomial in logN, the size of the integer 

given as input). Specifically, it takes quantum gates of order 

O((logN)2 (loglogN) (logloglogN)) using fast multiplication, 

thus demonstrating that the integer-factorization problem can 

be efficiently solved on a quantum computer. The efficiency 
of Shor‟s algorithm is due to the efficiency of the quantum 

Fourier transform, and modular exponentiation by repeated 

squarings. If a quantum computer with a sufficient number of 

qubitscould operate without succumbing to quantum noise 

and other quantum-decoherencephenomena, then Shor‟s 

algorithm could be used to break public-key cryptography 

schemes, such as the widely used RSA scheme. RSA is 

based on the assump-tion that factoring large integers is 

computationally intractable. As far as is known, this 

assumption is valid for classical (non-quantum) computers; 

no classical algorithm is known that can factor integers in 
polynomial time. However, Shor‟s algorithm shows that 

factoring integers is efficient on an ideal quantum computer, 

so it may be feasible to defeat RSA by constructing a large 

quantum computer. It was also a powerful motivator for the 

design and construction of quantum computers, and for the 

study of new quantum-computer algorithms. It has also 

facilitated research on new cryptosystems that are secure 

from quantum computers, collectively called post-quantum 

cryptography. 
In 2001, Shor‟s algorithm was demonstrated by a group at IBM, 
who factored into, using an NMR implementation of a quantum 
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computer with qubits[5].After IBM‟s implementa-tion, two 
independent groups implemented Shor‟s algorithm using 

photonic qubits, emphasizing that multi-qubit entangle-ment was 
observed when running the Shor‟s algorithm cir-cuits[6][7].In 

2012, the factorizationwas performed with solid-state 
qubits[8].Also, in 2012, the factorization was achieved, setting 

the record for the largest integer factored with Shor‟s 
algorithm[9]. 

 

A. Aim/Statement of the Problem 

The main aim is to demonstrate quantum computational 

efficiency by breaking RSA encryption using the Quantum 

Algorithm of Shors. 

 
B. Objectives 

Main objectives of our project work would include the 

following: 

Setting up of an environment to be able to run RSA a custom 

web based text messaging application. 

Implementation of RSA encryption/decryption. 

Demonstration of the Shors Algorithm on a classical 

computer. 

Demonstration of the Shors Algorithm on a quantum 

computer. 

Comparison of the 2 approaches. 
Solution Methods 

Shor‟s algorithm is a quantum algorithm for finding the 

prime factors of an integer N(it should not be a 

prime/even/integer power of a prime number). For example, 

you want to hack into a crypto system and you have apriori 

knowledge of one fact concerning N(the RSA public key): 

that N has exactly 1 prime factorization. So, in order to find 

N‟s factors in order to crack the RSA encryption, you need to 

compute f(x) = (xr) mod N. Here, N is a very large number 

and it is hence not possible to just randomly guess its factors. 

We have one hint to our consideration, that is, N is one prime 

factorizable and r is periodic, i.e. f(x) = f(x + r).Shor‟s 
algorithm tackles this problem by making use of a method 

called the Quantum Discrete Fourier transform(QFT) to find 

the period ‟r‟. Now, a Discrete Fourier Transform transforms 

a set of numbers into a set of sines and cosines. A QFT 

instead generates a list of the ”probability amplitude” for the 

given list of qubit states. Since a quantum computer can 

‟exist‟ in many states simultaneously, it enables it to evaluate 

the periodic function f(x) at all points simultaneously. 

 

A QFT is computed by a quantum circuit which uses: 

Hadamard transform- a square matrix consisting of +1 and -
1, and the rows are orthogonal to each other. The Hadamard 

transformation is at most times a sort of ‟preprocessing step‟ 

in most of the quantum algorithms; it 

maps n qubits(0 or 1) to a superposition of 2n orthogonal 

states. 

Quantum Gates: Time-invertible quantum circuits operat-ing 

on a set of qubits(units of quantum computation) 

Now, for a particular ‟possible‟ value of the period ‟r‟, the 

quantum computer can exist in different states and in some 

way contribute to the value of ‟r‟. In the end, these states 

cancel out each other. However, only for the correct value of 

‟r‟ do the states add up along the same direction. 

Shor‟s algorithm is probabilistic in nature and its per-

formance improves with repetitions. Shor‟s algorithm uses 

quantum computing(faster) to find the prime factors of a 
RSA public key in order to hack into a cryptosystem. 

 

II.   LITERATURE REVIEW 

In 1994, an American applied mathematician Peter Shor, 

working at Bell Labs in Murray Hill, New Jersey, formulated 

Shors algorithm[1], a quantum algorithm for integer 

factoriza-tion. Because Shors algorithm shows that a 

quantum computer, or quantum supercomputer algorithm, 

with a sufficient number of qubits, operating without 

succumbing to noise or other quantum interference 

phenomena, could theoretically be used to break public-key 

cryptography schemes such as the widely used RSA[6] 
scheme, its formulation in 1994 was a powerful motivator for 

the design and construction of quantum comput-ers, and for 

the study of new quantum computer algorithms. The 

algorithm is significant because it implies that public key 

cryptography might be easily broken, given a sufficiently 

large quantum computer. RSA, for example, uses a public 

key N which is the product of two large prime numbers. One 

way to crack RSA encryption is by factoring N, but with 

classical algorithms, factoring becomes increasingly time 

consuming as N grows large; more specifically, no classical 

algorithm is known that can factor in time O((log N)k) for 
any k. By contrast, Shors algorithm[8] can crack RSA in 

polynomial time. It has also been extended to attack many 

other public key cryptosystems. Like all quantum computer 

algorithms, Shors algorithm is probabilistic: it gives the 

correct answer with high probability, and the probability of 

failure can be decreased by repeating the algorithm. In 

2001[4], IBM demonstrated the factorization of the number 

15 (3 x 5) using a 7 qubit quantum computer. This was based 

on NMR(Nuclear Magnetic Resonance) implementation 

which is one of the ways to build a quantum machine. It 

makes use of the spin states of the nuclei within the 
molecules as Qubits - the quantum version of bits. Since 

then, many other groups have implemented Shors Algorithm 

using various other techniques like photonic qubits, where 

the quantum machine is based on the polarization of photons. 

In 2012, factorization of 21 was achieved[5]. The current 

largest number factored on a quan-tum device is 

4088459(20172027), which was achieved using IBMs 5-

qubit processor[2]. Shors Algorithm helps in finding prime 

factors of a given odd composite positive integer n. The 

problem of factoring integer n can be reduced by choosing a 

random integer in relatively prime to n and finding smallest 

positive integer P such that mP = 1 mod n[7] Shor developed 
the algorithm in polynomial time to solve the factorization 

problem. It consists of five steps. Among these steps the step 

2 requires the use of quantum computer. Remaining steps of 

the algorithm can be performed in classical computer. 

Shors algorithm is not a pure quantum algorithm, but a 

hybrid of classical and quantum processing. The quantum 

part of the algorithm determines the period of a random 

number selected in step 1 of the algorithm. Some of the 

superficial and high level questions which we are trying to 
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answer include questions like the number of qubits required 

for some n bit integer to be factorized. One paper, 

Beauregard, reports requiring only 2n + 3 qubits[9] 8195 

qubits for a 4096-bit semiprime. Another algorithm, by 
Pavlidis and Gizopoulos, requires a lot more qubits, 9n + 

3[10], but fewer gates must be executed. Breaking RSA on a 

small scale with Shors Algorithm also requires additional 

knowledge of some other algorithms like the Rabin Millers 

Primality Testing algorithm and the Euclidean algorithm to 

find the gcd of 2 numbers. Both these algorithms are classical 

and are done on a classical computer pre and post the 

quantum processing. These algorithms are essential to fulfil 

the research objectives. There are a few limitations with 

quantum computing and Shors algorithm. Shors algorithm is, 

like other quantum algorithms, probabilistic in nature. The 

best use of Shors Algorithm can be made when there is a 
powerful enough Quantum Computer with a large number of 

qubits. The largest quantum computer publicly available to 

run programs on, is the IBM-Q, which is a 53Qubit machine. 

Google has a 72 Qubit Quantum computer, but it isnt 

available for the open public. 

 

III.   SYSTEM DESIGN 

The paper includes the design of 2 algorithms. 

RSA Algorithm.  

Shors Algorithm. 

 
RSA Algorithm 

RSA algorithmis an asymmetric cryptography algorithm 

which means, there should be two keys involve while com-

municating, i.e., public key and private key. There are simple 

steps to solve problems on the RSA Algorithm. 

Generate 2 large random prime numbers of the specified bits. 

Compute n = p*q. 

Computer the Eulers Totient = (p-1) * (q-1) 

Compute the public key ‟e‟. Choose‟e‟, such that ‟e‟ should 

be co-prime. Co-prime means it should not multiply by 

factors of Eulers Totientand also not divide by Eulers 
Totient. 

Compute the private key (d). The condition is given as, 

gcd(phi, e) = phi(x) + ey = 1. 

Encryption and decryption. Encryption is given as, C = me 

mod n. Decryption is given as, m = cd mod n. 

Here are some points on RSA and how quantum can play a 

vital role in breaking RSA: 

RSA is a well known encryption/decryption algorithm. It is 

used in various applications such as emails, chat 

applications, VPNs etc. RSA relies on the fact that it is very 

hard to factorize a number, and harder to factorize into its 

prime factors. 
The only thing we know is the Public Key, and using just this 

we cannot decrypt the cipher. 

Finding the prime factors of the modulus used in RSA is a 

difficult mathematical problem. Even though there are 

algorithms available, it takes infinite time to find the prime 

factors. 

Once prime factors are known, we can build the private key 

using the known public key and the totient value. But since 

prime factors are very hard to find, we cannot break RSA 

unless we have some superpower with us. 

If the prime factors p and q of the modulus N are somehow 

found out efficiently, then we can surely break RSA. 

Quantum computing and Shors Algorithm help us in doing 
just this. 

We can do the pre and post Shors part on a classical 

computer, but the Shors Algorithm should run on a quantum 

machine. 

The concept of superposition and QFT (Quantum Fourier 

Transform) play a vital role here. 

Shor‟s Algorithm 

The following steps are involved in Shors Algorithm: 

Step 1: Pick a random number a such that 1 < a < N and 

gcd(a, N) = 1. 

Step 2: Compute the period r of (a mod N). 

Step 3: Check the following conditions: 
is ‟r‟ even? 

Is (ar=2) + 1modN! = 0. 

Step 4: If both conditions are true, then we can derive that 

p = gcd((ar=2) + 1; N) 

& 

q = gcd((ar=2) 1; N) 

Step 5: else go to step 1 and start over with a different ‟a‟. 

Here, the crux of this algorithm lies in step 2 of period 

finding. Finding the period of (a mod N) on a classical 

computer would take a very long time, longer than the use 

time of the keys used in RSA. But we know that quantum 
computers have the ability to work on 2n states 

simultaneously, Shors Algorithm makes use of this very fact 

to brilliantly find the period. Thus Shors Algorithm is a 

hybrid algorithm which involves both classical and quantum 

parts. All classical parts can surely be done on a classical 

computer and the period finding can be done on a quantum 

computer. 

Shor‟s algorithm uses a method called the Quantum Discrete 

Fourier transform(QFT) to find the period „r‟. Now, a 

Discrete Fourier Transform transforms a set of numbers into 

a set of sines and cosines. A QFT instead generates a list of 
the “probability amplitude” for the given list of qubit states. 

A Quantum computer fits this task perfectly for the 

following reason: A quantum computer can „exist‟ in many 

states simultaneously, which enables it to evaluate the 

periodic function f(x) at all points simultaneously. 

 
A QFT is computed by a quantum circuit which uses: 

 Hadamard Transform - A square matrix consisting 

of +1 and -1, and the rows are orthogonal to each 

other. The Hadamard transformation is at most 

times a sort of ‟preprocessing step‟ in most of the 

quantum algorithms; it maps n qubits(0 or 1) to a 
superposition of 2n orthogonal states. 

 Quantum Gate - Time-invertible quantum circuits 

oper-ating on a set of qubits(units of quantum 

computation). 

Now, for a particular ‟possible‟ value of the period ‟r‟, the 

quantum computer can exist in different states and in some 

way contribute to the value of ‟r‟. In the end, these states 

cancel out each other. However, only for the correct value of 

‟r‟ do the states add up along the same direction. Shor‟s 
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algorithm is probabilistic in nature and its performance 

improves with repetitions. 

All that Shors Algorithm does is that it tries to estimate the 

phases of p and q, and gives the result if the phases of both p 
and q turns out to be 0 at the point N. The below given 

quantum circuit is used to perform phase estimations. 

 
Fig. 1.  Quantum Circuit performing phase estimations. 

 

The step 2 of Shors Algorithm, which is Period finding, can 

be done only on a quantum machine. We have algorithms 

which can find the period even on a classical machine, but 

this would take years of computation time to get the period. 

We will discuss both the algorithms below. 

Period finding on a Classical machine: Suppose the number 
to be factorized is N=21, and the random number x we chose 

is 2, then we would have to go through each power until we 

find that the values repeat. In classical computers we have to 

go through all powers to find the period of the function f = 

XamodN. This is done by the following steps: 

2 mod 21 = 2 4 mod 21 = 4 8 mod 21 = 8 16 mod 21 = 16 32 

mod 21 = 11 64 mod 21 = 1 

128 mod 21 = 2 (values repeat here). 256 mod 21 = 4 

Thus, the period is „r‟=6. 

If we take a bit larger number, say 221 and the random 

number=5, then the number of steps in this case would be 

very huge, as given below: 
5 mod 221 = 5 

25 mod 221 = 25 

125 mod 221 = 125 625 mod 221 = 183 3125 mod 221 = 31 

15625 mod 221 = 155 78125 mod 221 = 112 .............. 

152587890625 mod 221 = 1 

Thus we can infer that classical computers are no good for 

breaking RSA. So we need some superpower that can do all 

these computations in a single shot and give us the results. 

This is where quantum computing comes to play. 

Period finding on a Quantum machine: The algorithm for 

period finding with a Quantum machine is given by the 
following steps: 

Step 1: Choose a random integer „x such that 1 < x < N and 

gcd(x,N)=1. 

Step 2: Find „q such that q = 2l and N2 <= q < 2N2. 

Step 3: Initialize 2 quantum registers r1 and r2 of length l 

each. Initialize both the quantum registers to j0 > state. 

Step 4: Initialize r1 with a superposition of all qubits (H). 

Step 5: Initialize r2 with a superposition of XamodN(Ua). 

Step 6: Apply QFT on r1 (entangled with r2). 

Step 7: Measure r1 - gives some superposed state j > of some 

base state jk > such that k is the power of x mod N. Let the 
result be „c‟. 

 

Step 8: Apply continued fractions of c/q until we get some r 

such that c/q=d/r(even approximation will do). 

Step 9: Check neighborhood of r to confirm the period, if 

trivial - repeat. 
In this period finding algorithm,it can be seen that there is 

the usage of a special function which is QFT. We will 

compare DFT with QFT first, so that it is easy to understand 

QFTs. 

 
QFT does the following transformation when applied on jx 

>: 

jx > > (1=pq)  qa=0
1ja > !x:a where ! = e2  ixa=q. 

We will try to break RSA with the same modulus N=21 but 

this time, we will demonstrate Shors algorithm by using 

Quantum machine 

Pre-Quantum Steps - On a Classical Machine 

Step 1: Choose a random integer „x such that 1 < x < N and 
gcd(x,N)=1. 

x = 11  > 1 < 11 < 21 and gcd(11,21)=1. 

Step 2: Find q such that q = 2l and N2 <= q < 2N2 q = 512 = 

29 

l = 9 

441 <= 512 < 882 

Quantum Steps - On a Quantum Machine 

Step 3: Initialize 2 quantum registers „r1 and „r2 of length „l 

each. Initialize both the quantum registers to j0 > state. 

Initializing r1 and r2 with 9 qubits each. 

Step 4: Initialize r1 with a superposition of all qubits (H). 

 

 
Step 7: Measure r1  gives some superposed state j s > of 

some base state jk > such that k is a power of x mod 
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N. Let result be „c‟ 

Assuming the superposed qubits collapse to jc >= 427 

Step 8: Apply continued fractions of c/q until we get some „r 

such that c/q=d/r(or approximately equal). 
d0 = a0; d1 = a0a1 + 1; dn = andn  1 + dn  2 

r0 = 1; r1 = 1; rn = anrn 1 + rn 2 On solving, we get, 

c=q = 427=512 < > d=r = 11=6 

Step 9: Check neighborhood of „r to confirm the period, if 

trivial - repeat 

– Checking multiples of r=6. 

– For mr=6*1, check if xxmodN = xx+mrmodN, if so return 

„mr‟ as period. 

xxmodN = 1111mod21 = 2 

xx+mrmodN = 1111+6mod21 = 2 

Since 2=2, returning mr=6*1=6 as the period 

– Therefore, PERIOD = 6. 
Post-Quantum Steps - On a Classical Machine 

Step 10: Check if „r is even, if not - go to Step 1 and repeat. 

r=6(even) 

Step 11: Check if xr=2 + 1(modN)! = 0, if not go to step1 and 

repeat. 

113 + 1(mod21) = 1331 + 1(mod21) = 1332(mod21) = 9!=0 

Step 12: Prime factors are: 

p = gcd(xr=2 + 1; N) = gcd(113 + 1; 21) = gcd(1332; 21) = 3 

q = gcd(xr=2 1; N) = gcd(113 1; 21) = gcd(1330; 21) = 7 

Now that we have successfully found the values of p and q, it 

is very easy to decipher the RSA encrypted messages. 
 

IV.   CONCLUSION 

We successfully built Shors algorithm and tested it on both 

the classical as well as the quantum machines. As it is 

evident from the System Design part of this paper, using a 

classical machine could takes years to find the prime factors 

of a number of length sizing up to 2048 bits and beyond. 

Nevertheless, with quantum computers, we perform all these 

operations on all the possible states at the same time. This 

helps us achieve tremendous speed up in terms of finding the 

prime factors even of numbers as large as 2048 bits and 
beyond. The only downside with quantum computing is that 

we dont have quantum machines of such a high capacity. 

When time comes, and when we have quantum machines 

with huge number of qubits, we will be able to easily break 

RSA and the entire security system of chatting applications, 

VPNs, emails, etc would fail. 

 

Is RSA dead then? 

As of now, RSA uses 2048 bit keys majorly. But the largest 

quantum machine we have is of around 100 qubits. 

To be able to break RSA which uses such long keys, we have 

a long road ahead. The latest rigetti forest (Aspen-7) provides 
28 qubit quantum machine.(This is for us to work on our 

project). 

Thus, we can still rest assured that our RSA encryption is 

safe, but there is a tremendous amount of research and 

investment being done on quantum computing and with this, 

there is a nearing possibility that we might reach a day when 

it is possible to break RSA. 
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