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I.   INTRODUCTION 

In recent years, there have been sorrel paper written on the 

global existence and boundedness of solutions for certain 

nonlinear difference and summation difference equations of 

second order with and without delays. Ahmadand Rama 

Mohan Rao [1], Boxley [2], Byrton [3], Constantin [4] driver 
[5], Fujimotoa and yamaoka  [6],  Grace and Lalli  [7], Graef 

and tunc [8], Kalmanovskii and Myshkis [9] Krasovskii [10], 

Miller [11,12] Mustafa and Rogovchenko [13,14], Nepoles 

Valdes [15], Ogundare et al, [16], Reissing et al, [17]] 

Tidke[18], Tiryaki and Zafer [19]] Tunc [20-25]] Tunc and 

Tunc [26]] Yoshizawa [27]] wu et al. [28] Yin [29]  

It would be noted that Napoles Valdes [15] dealt  with 

ordinary summation-difference equation of second order : 

∆2𝑥 + 𝑎 𝑡 𝑓 𝑡, 𝑥, ∆𝑥 ∆𝑥 + 𝑔 𝑡, ∆𝑥 =  𝐶 𝑡, 𝜏 Δ𝑥(𝑠)

𝑡−1

𝑠=0

 

In recent paper Graef and Tunc [8] discussed the 

countinuabielity, boundedness and squore summation of 

solution to the second order functional summation – 
difference equation of second order with multiple constant 

delays. 

  

∆2𝑥 + 𝑎 𝑡 𝑓 𝑡, 𝑥, ∆𝑥 ∆𝑥 + 𝑔 𝑡, 𝑥, ∆𝑥 +  𝑕𝑖 𝑥 𝑡 − 𝑡𝑖  

𝑛

𝑖=1

=  𝐶 𝑡, 𝑠 Δ𝑥(𝑠)

𝑡−1

𝑠=0

 

The proof of result in [8] involves the definition of Lyapunov 

–Kransovkii type functional. Now we consider the following 

non linear and non autonomous summation-difference 

equation of second order with multiple constant delays. 

Δ 𝑝 𝑥 Δ𝑥 + 𝑎(𝑡)𝑓 𝑡, 𝑥, Δ𝑥 Δ𝑥 + 𝑏 𝑡 𝑔 𝑡, Δ𝑥 

+  𝐶𝑖 𝑡 𝑕𝑖(𝑥(𝑡 − 𝜏𝑖))

𝑛

𝑖=1

=  𝐶 𝑡, 𝑠 Δ𝑥(𝑠)

𝑡−1

𝑠=0

 

      (1) 

Which can be written in the system from as. 

∆𝑥 =
𝑦

𝑝(𝑥)
 

∆𝑦 =  𝐶(𝑡, 𝑥)𝑡−1
𝑠=0

𝑦(𝑠)

𝑝(𝑥(𝑠))
− 𝑎 𝑡 𝑓  𝑡, 𝑥,

𝑦

𝑝 𝑥 
 

𝑦

𝑝 𝑥 
−

𝑏 𝑡 𝑔  𝑡,
𝑦

𝑝(𝑥)
        (2) 

 

 

− 𝐶𝑖 𝑡 𝑕𝑖

𝑛

𝑖=1

 𝑥 𝑡𝑖  +  𝐶𝑖(𝑡)

𝑛

𝑖=1

 ∆𝑕1

𝑡−1

𝑠=𝑡−𝑥𝑖

 𝑥 𝑠 
𝑦(𝑠)

𝑝(𝑥 𝑠 )
  

Where  𝜏𝑖  in (i=1,2…….n) are positive constant a,b,c 

: 𝑅+ → 𝑅+, 
𝑅+ = (0,∞),  𝑓 ∶  𝑅+ × 𝑅2 → 𝑅+ and 𝑔 ∶  𝑅+ × 𝑅 → 𝑅+ are 

continuos functions, 𝑕𝑖 ∈ 𝐶1   𝑅1𝑅 , 𝑃 ∈ 𝐶1 𝑅,  0,∞  , and 

C(t,s) is continuous function for 0 ≤ 𝑡 ≤ 𝑠 ≤ ∞ 

The aim of this paper is to give some sufficient conditions to 

guarantee the global existence and boundedness of solutions 

of equation (1).This show that novelty and originality of 

present paper. This paper may also be useful for researchers 

working on the qualitative behavior of solutions of functional 

summation-difference equations. 
We assume that there are positive constants  

𝛿𝑖 , 𝛽𝑖 , 𝛾𝑖 , 𝜆𝑖 , 𝑝, 𝑚,    
𝑀, 𝑔0 , 𝑔1 , 𝐶, 𝐶𝑖 , 𝑅 and such 𝜏∗ that the following condition 

hold : 

 1 1( ) ( ) , [ ( )]
u

A p x P P u




       

 2( )0 ( ) ( ) ,A m b t a t M       

10 ( ) ,i ic c t C      1( ) 0C t   

3( )A   ( , 0 ) 0g t   and  

0 1

( , )
0 ( 0),

g t y
g g y

y
     

4( )A   (0) 0,ih 
  

0 ( 0),i i x      [ ( )]i ih x r   

5( )A  

1

0

max | ( , ) | ( , )
t

s u t

C t s C u t R
 

 

 
  

 
   

6( )A   
*

0
2 ( ( , , ) )

i

m
R f t x y g

p
    for all 

t, x and y  

 

1.2.1 Main Result  

Theorem 1.2.1 : Suppose that conditions 1 6( ) ( )A A
 

hold. Then all solution of system (2) are continuable and 

bounded. 
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Proof : We define a Lyapunov-Krasovskii functional by  

( )
( ) ( , ( ), ( ))

r t
W t W t x t y t e




     

0( , ,( ), ( ))V t x t y t     (3) 

Where   is a positive constant  

1 1

0 0

( ) | ( ) | | ( ) ( ( )) |
t t

s s

y t s x s p x s
 

 

    
 

2

1

( )

( )

| ( ( )) | | ( ( )) |
t

u t u

p x u p x u






 

     
 

 

 

 

 
 

 

 
Since all the functions appearing in the equation (1) are 

continuous it is obvious that there exist at least one solution 

of equation (1) defined on [t0, t0+ 𝛿] for some 𝛿 > 0 . Now 

we have to show that the solution extended to the entire 

interval [𝑡0 ,∞]  We assume that on contrary that there is first 

time 𝑇 < ∞ such that the solution exists on [t0,T] and 

 lim | ( ) | | ( ) |
t T

x t y t


    

Let x(t), y(t) be such a solution of system (2) with initial 

condition (x0,y0). Since Lyapunov-Krasovskii type functional 

W(t) is positive definite and decreasing,  ∆𝑊 𝑡 ≤ 0 along 
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the trajectories of the system (2), we can say that ∆𝑊 𝑡    is 

bounded [t0T] we have 

0 0 0 0( , ( ), ( )) ( , , )W T x T y T W t x y W 
 Hence it follows from (3) and (5) 

2 2 0( ) ( )
W

x T y T
D

 
 

 Where 
1

exp( ( ) )D k t 
   This inequality 

indicate that |x(t)|, |y(t)| are bounded as .t T  Therefore, 

we can conclude that t    is not possible, we must have 

T    
Example : We consider the following nonlinear summation 

difference equation of second order with two constants 

delays, 1 20, 0,  
 

 
When we compare equation (7) with equation (1), the 

existence can be seen of following estimates. 

 

 

 
Therefore, all the assumptions of the theorem hold. So we 

can conclude that all solution of (7) are continuouble and 

bounded. 
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