SECURITY OF COMMUNICATION OF DATA USING THE MODIFIED RSA ALGORITHM

¹Sweta Ranjan, ²Dr. Sunil Gupta ¹M. Tech Scholar, ²Professor Department of Computer Science and Engineering Global Institute of Technology, Rajasthan

Abstract: This is the time of digital communication. In this era we are sending and receving our data on the internet in secret and unsecret form. When we are talking about the secret data it is not secret for all time but we need a such type of mechnasim by which we can secure that data from the attacker. Cryptography is one of the many techniques to secure data on network. It is one of the techniques that can be used to ensure information security and data privacy. It is used to secure data in rest as well as data in transit. There are two types of algorithm according to the key, one is symmetric key algorithm and the second is asymmetric key algorithm. In this paper we are concentrating on the asymmetric key algorithm RSA algorithm. As we know RSA algorithm is used in many areas as digital signature. There are some limitations of traditional RSA algorithm as it is depend on two prime numbers and in some case we can find out the prime factorization of these. So in this paper we are increasing the prime numbers in the RSA algorithm so that we can improve the RSA algorithm.

Keywords: Cipher Text, Decryption, Decryption Time, Encryption, Encryption Time, Plain Text, RSA Algorithm.

1. INTRODUCTION

Cryptography is a technique to make a readable data into unreadable data. Modern cryptography's part of mathematics and technology of computer science.[1],[2],[3]

Goals of Security (Purpose of Cryptography)

There are some specific security requirements within the context of any application-to-application communication, including these goals. [3], [4], [5]

Confidentiality: It specifies that only sender and intended recipient should able to access the contents of

Message .The attack on the availability is called interception. There are two main threats to confidentiality, snooping and traffic analysis. [3], [4], [5]

Fig. 1.Loss of Confidentiality [4]

Integrity: When sender sends a message and ensuring that the receiver receives the message as it was, wholly and error free without any changes. Attack on the integrity is called modification. [3], [4], [5]

Fig. 2.Loss of Integrity [4]

Availability: Availability is ensuring that those who have the rights to information or material have always got the access to it or resources should be available to authorized parties at all time. The attack on the availability is called interruption [3], [4], [5].

Fig. 3.Attack on Availability [4]

Authentication: It helps establish proof of identities. It ensures that the origin of a document so message is correctly identified. Suppose that third party C sends an electronic message over the internet to receiver B. However, the third-party C had posed as Sender A when C sent this document to user B. How would Receiver B know that the message has come from C.? Who is posing as Sender A.? This type of attack is called as fabrication [3],[4],[5].

Fig. 4.Absence of Authentication [4]

Non-repudiation: It is a mechanism to prove that sender really sent this message [3], [4], [5].

Types of Cryptosystem

There are two types of cryptosystem:

Symmetric Key Cryptography: If sender and receiver share the same key for encryption and decryption of message than it is called symmetric key cryptography.[7],[9]

message than it is called asymmetric key cryptography. [6], [7], [9]

Fig. 6.Public Key Cryptography RSA Cryptography is the most commonly implemented Asymmetric Key Cryptography.[7],[8],[9],[10]

PROPOSEDALGORITHM

Step1–Take the n prime numbers $(P_1, P_2, P_3, \dots, P_n)$ Instead of two prime numbers that issued in RSA Algorithm.

Step 2 – Calculate the product of these prime Numbers (N = P₁x P₂xP₃x P_n) Step3–Now, select the encryption key e, such that it is not a factor of numbers ((P₁-1),(P₂-1),(P₃-1)(P_n-1)) Step 4 – Calculate the decryption key d, such that (d x e) mod ((P₁-1), (P₂-1), (P₃-1) (P_n-1)) = 1 Step 5 – Calculate cipher text (CP) from plain text (PT) as CT = PT^e mod n Step 6 – At the receiver's end, calculate plain text (PT) as PT = CT^d mod n

FLOWCHART

Fig. 8.Flowchart of Proposed Algorithm

PROPOSEDALGORITHMIMPLEMENTATION RESULT

The proposed algorithm is implemented in C and python. We take here 4 types of examples. In these example there is plain text is same for all example that is "India is a Nation." Andthereare2, 3,4 and 5 different prime numbers are used and we calculate the value of N, encryption key value, decryption key value, Encryption time, Decryption time, cipher text and again plain text from cipher text for different combinations. We check variations in encryption and decryption time according to the prime numbers count and check the behavior of time graphs. Here the prime numbers are small for making calculations easy, but we can take large prime numbers in our practical life.

Table- I: List of Prime Numbers Used in this Experiment

	P1	P2	P3	P4	P5
1	23	53	11	37	17
2	29	59	13	41	19
3	31	61	17	43	23
4	37	67	19	47	29
5	41	71	23	53	31
6	43	73	29	59	37
7	47	79	31	61	41
8	53	83	37	67	43
9	59	89	41	71	47
10	61	97	43	73	53

If we are using 2 prime numbers, then P1 and P2 are used.

If we are using 3 prime numbers then P1, P2 and P3areused.

If we are using 4 prime numbers then P1, P2, P3and P4 are used.

If we are using 5 prime numbers then P1, P2, P3, P4 and P5 are used.

Ente	r the me	ssage (p	lain text	;)=India	is a Na	tion.			
the the Enter 53	length of message prime No	f the pl is=India o.s p,q	ain text is a Nat :23	message= tion.	18				
Selec	t e valu	e:633							
Publi	c Key KU	= <633,	1219>						
Priva	te Key K	R = {164	1,1219>						
mess	age into	ASCII c	ode						
73	110 78	100 97	105 116	97 105	32 111	105 110	115 46	32 Ø	9
Cinhe	e Text i								
798	117	6.85	1112	596	357	1112	792	357	5
357	679	596	576	1112	352	117	1035	0	5
Ciph ▲uiXT	er text eX∏eTe≏T	in the t CX`uð	ext form	is=					
Plain	text af	ten decu	untion in	ASCIT					
73	110	100	105	97	32	105	115	32	q
32	78	97	116	105	111	110	46	ñ.	
the n	lain text	t at the	receiver	end aft	er decr	untion			
Indi	a is a N	ation.		ond ur	or door	, po zon			

Enter	the nes	sage (p]	lain text)-India	is a Mat	ion.			
the la the m Enter 53 11	ength of essage i prime No	the pla s=lndia .: p.q.r	in text is a Nat :23	nessage ion.	18				
Select	e value	:5887							
Public	Key KU	- (5887,	13489)						
Privat	e Key KR	= (1894	3,13489)						
nessa	ge into	ASCII co	de						
73 32	118 78	188 97	185 116	97 185	32 111	185 118	115 46	32 8	97
Cipher 1825 12338	Text is 8885 991	331 1851	2119 7223	1851 2119	12338 12786	2119 8085	6417 7774	12330 8	1851
Ciphe GöNG;=	r text i	n the te Géé^	xt form	is=					
Plain	text aft	er decry	ption in	ASCI1		1922	20.53	2200	222
23	118	188	185	97	32	185	115	32	92

Fig. 10. Example for Three Prime Numbers

Enter the message (plain text)=India is a Mation. the length of the plain text message=18 the message is=India is a Nation. inter prime No.s p.q.r.s :23 En 53 11 37 Select e value:267791 Public Key NJ = (267791,496133) Private Key KR = (445871,496133) message into ASCII code 115 46 185 185 32 97 185 -67441 233879 -412254 398588 168738 -123717 398588 161435 -412254 84841 168738 398588 -412254 16399 -67441 -173428 Cipher text in the text form is= Sud@identarrow.cike Plain text after decryption in 83CII -421832 99881 29284 -296231 273224 -127446 -296231 -476814 -127446 273224 -127446 -24288 273224 -281883 -296231 222451 99881 479314 8 the plain text at the receiver end after decryption India is a Mation. _

Fig. 11. Example for Four Prime Numbers

Enter the message (plain text)=India is a Nation. the length of the plain text message=18 the message is=India is a Nation. Enter prime No.s p.q.r.s.t :23 53 11 37 17 Select e value:3368249 Public Key KU = (3368249,8434261) Private Key KR = (7758889,8434261) message into ASCII code 73 118 100 185 97 32 111 185 115 97
Cipher
Text
is

-1084501
5809837
752830
164194
2386013
-7532278
164194
-5757%36

-7532278
2386013
-7532278
6844576
2386013
5122659
164194

8400443
5809837
-2386043
0
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6</t Cipher text in the text form is= álch;ià Plain text after decryption in &SCII -1954937 -4932769 2283088 6560702 3715159 -6560449 6660702 -5545882 -5560449 3715159 -6560449 780835 3715159 -415423 6560702 5808159 -4932759 -6846475 8 the plain text at the receiver end after decryption India is a Nation.

PERFORMANCE ANALYSIS OFPROPOSED ALGORITHM

10 sets for 2, 3, 4 and 5 prime numbers have been taken. Tables II, III, IV and V shows the values obtained during the use of two, three, four and five prime numbers.

Table- II: List of Values obtained using Two Prime Numbers

$\mathbf{P_1}$	\mathbf{P}_2	n	е	d	encryption	decryption
					time (in sec)	time (in sec)
23	53	121	633	164	0.0000629000	0.00006199999
		9		1	00003197	99997844
29	59	171	429	167	0.0000574000	0.00006370000
		1		7	00002872	00054400
31	61	189	799	139	0.0000690999	0.00007320000
		1		9	99997491	00027710
37	67	247	779	231	0.00005889999	0.00006529999
		9		5	99999085	99957160
41	71	291	277	401	0.0000555999	0.000074499999
		1		3	99996048	99966467
43	73	313	319	209	0.0000582999	0.00006660000
		9		5	99999178	00038025
47	79	371	511	293	0.0000606999	0.00011930000
		3		5	99998803	00014880
53	83	439	126	271	0.000690000	0.00006820000
		9	3	1	00003427	00011840
59	89	525	109	368	0.0000748000	0.00007870000
		1	5	7	00000153	00030957
61	97	591	556	318	0.0000911999	0.00007850000
		7	3	7	99999958	00007585

Table- III: List of Values obtained using Three Prime Numbers

P ₁	P ₂	P ₃	N	е	d	encryption	decryption
						time (in sec)	time (in sec)
2	5	1	1340	508	109	0.000092100	0.000094500
3	3	1	9	7	43	0000033700	0000029950
2	5	1	2224	1195	134	0.000084999	0.000077599
9	9	3	3	7	69	9999985585	9999973465
3	6	1	3214	2740	216	0.000090099	0.000086400
1	1	7	7	3	67	9999942087	0000007081
3	6	1	4710	868	255	0.000084700	0.000089500
7	7	9	1	9	85	0000021580	0000014079
4	7	2	6695	4581	720	0.000106799	0.000108400
1	1	3	3	1	91	9999975200	0000020070
4	7	2	9103	1874	123	0.000097400	0.000103600
3	3	9	1	9	989	0000013575	0000027570
4	7	3	1151	5209	612	0.000109699	0.000101899
7	9	1	03	3	37	9999958820	9999899960
5	8	3	1627	1048	126	0.000114199	0.000105800
3	3	7	63	61	005	9999987320	000000450
5	8	4	2152	1339	205	0.000119699	0.000109199
9	9	1	91	99	839	9999990570	9999971450
6	9	4	2544	428	186	0.000084899	0.000145799
1	7	3	31	3	227	9999902844	9999985300

Table- IV: List of Values obtained using Four Prime
Numbers

P ₁	P ₂	P ₃	P4	N	е	d	encryption	decryption
							time (in sec)	time (in sec)
23	53	11	37	49613	25779	43251	0.0001244000	0.0001199999
				3	1	1	000042430	999954570
29	59	13	41	91196	61799	11264	0.0001297000	0.0001265999
				3	3	57	000022310	999873200
31	61	17	43	13823	67558	12717	0.0001284000	0.0001371999
				21	7	23	000083550	999975060
37	67	19	47	22137	14030	14298	0.0001374999	0.0001302000
				47	35	43	999939060	000009680
41	71	23	53	35485	16705	31667	0.0001431000	0.0001338000
				09	97	33	000025050	000004060
43	73	29	59	53708	42269	54909	0.0002096000	0.0001463999
				29	41	01	000051390	999913310
47	79	31	61	70212	28681	79468	0.0001446999	0.0001470999
				83	37	73	999927810	999924060
53	83	37	67	10905	15429	11135	0.0001385000	0.0001543000
				121	43	071	000198030	000197030
59	89	41	71	15285	12370	93667	0.0001847000	0.0001547999
				661	703	67	000054780	999900190
61	97	43	73	18573	69196	23585	0.0001405000	0.0001477999
				463	81	281	000431760	999792700

Table- V: List of Values obtained using Five Prime Numbers

\mathbf{P}_1	P ₂	P ₃	P ₄	P5	N	e	d	encryption	decryption
								time (in sec)	time (in sec)
2	5	1	3	1	8434	3368	77580	0.000145800	0.000140500
3	3	1	7	7	261	249	89	0000056360	0000005430
2	5	1	4	1	1732	5298	12062	0.000150000	0.000153400
9	9	3	1	9	7297	563	507	0000049800	0000020800
3	6	1	4	2	3179	21087	18400	0.000155399	0.000147999
1	1	7	3	3	3383	041	961	9999828190	9999958180
3	6	1	4	2	6419	36667	28792	0.000172599	0.000163799
7	7	9	7	9	8663	549	117	9999848680	9999957170
4	7	2	5	3	1.1E+	51873	87112	0.000175999	0.000173000
1	1	3	3	1	08	697	033	9998967030	0000179640
4	7	2	5	3	1.99E	1.49E	22726	0.000188600	0.000174600
3	3	9	9	7	+08	+08	7713	0000013150	0000366620
4	7	3	6	4	2.88E	64729	18422	0.000173800	0.000187799
7	9	1	1	1	+08	411	7691	0000841570	9998214360
5	8	3	6	4	4.69E	3.05E	39402	0.000196599	0.000186199
3	3	7	7	3	+08	+08	3173	9999811170	9999164250
5	8	4	7	4	7.18E	2.64E	51368	0.000269699	0.000226499
9	9	1	1	7	+08	+08	3237	9999898250	9993712990
6	9	4	7	5	9.84E	1.03E	46548	0.000301099	0.000197299
1	7	3	3	3	+08	+08	3839	9989783160	9998542950

Fig13. Surface graph for 3 prime numbers

Fig 14. Encryption time for 3 prime numbers

Fig 15. Decryption time for 3 prime numbers 4 prime

Enter the Message (Plain Text): India is a nation.

The Length of Plain Text Message: 18

The Message is: India is a nation.

Fig 16. Surface graph for 4 prime numbers

Fig 17. Encryption time for 4 prime numbers

Fig 18. Decryption time for 4 prime numbers 5 prime Enter the Message (Plain Text): India is a nation. The Length of Plain Text Message: 18 The Message is: India is a nation.

Fig 19. Surface graph for 5 prime numbers

Fig 20. Encryption time for 5 prime numbers

Fig 21. Decryption time for 5 prime numbers

By analysis of these graphs we can say that if we increase the prime number then encryption and decryption time will be increased in terms of e^x .

ADVANTAGES OF PROPOSEDALGORITHM

It is very hard to find out the factors of N. In this case $((P_1-1), (P_2-1), (P_3-1) \dots (P_n-1))$ because when we

increase number of prime numbers then its product is also a big number.

The security aspects are not compromised here like confidentiality, availability, integrity, Authentication.

CONCLUSION

At the end by comparing and checking all the parameters of proposed algorithm with existing algorithm, we can say that when we increase the number of prime numbers in RSA algorithm then its security also improves because it's hard to find the factor of N, while there are more than two prime numbers.

Encryption and Decryption time is depends on the value of e(encryption key) and d(decryption key) and here value of e is smaller because we are using more than 2 prime numbers so due to this the value of d is also not so big and by this process the encryption and decryption time is less.

REFERENCES

[1] RSA algorithm using modified sub setsum cryptosystem, Sonal Sharma, Computer and Communication Technology (ICCCT), pp-457-461, IEEE 2011

[2] The large prime numbers based on genetic algorithm, hang Qing, (ICISIE) pp-434-437, IEEE 2011..

[3] An advanced secure (t, n) threshold proxy signature scheme based on RSA crypto system for known signers, Kumar, R, Dept. of Computer Sci. and Eng, pp 293-298, IEEE2010.

[4] An efficient decryption method for RSA cryptosystem, Ren-Junn Hwang, Dept. of Compute. Sci. and Inf. Eng, pp-585-590, IEEE2005.

[5] A new RSA cryptosystem hardware design based on Montgomery's algorithm, Ching Chao Yang, Dept. of Electron. Eng, pp- 908-913, IEEE 1998.

[6] A systolic RSA public key cryptosystem, Po – Song Chen, Dept. of Electron. Eng, pp 408-411, IEEE1996.

[7] "Secure Key Exchange using RSA in Extended Playfair Cipher Technique" Surendra Singh Chauhan, International Journal of Computer Applications (0975 – 8887) Volume 104 – No 15, October 2014.

[8] Blocking method for RSA cryptosystem without expanding cipher length, NEC Corp, Kanagawa, Japan, pp 773-774, IEEE1989.

[9] A method or obtaining digital signatures and public key cryptosystems, R.Rivest, A.Shamir and L.Adleman "communication of the association for computing machinery" 1978, pp120-126.

[10] "A modified RSA cryptosystem based on 'n' prime numbers", B.Persis UrbanaIvy, Purshotam Mandiwa. Mukesh Kumar, International Journal Of Engineering And Computer Science ISSN:2319-7242 Volume1 Issue 2 Nov 2012 Page No.63-66