
International Journal For Technological Research In Engineering

Volume 8, Issue 3, November-2020 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2020.All rights reserved. 47

ION - C Compiler
1
Avi Gupta,

2
Anshul Hudda,

3
Pawan Kumar Rai,

4
Shubham Jadon,

5
Mrs. Charul Dewan

1,2,3,4
 Students (B.Tech 7th SEM),

5
Professor

Department of Information Technology

 Dr. Akhilesh Das Gupta Institute of Technology & Management, New Delhi, India

Abstract- A compiler is a software or program that converts

high level language or source code to low level language or

target code through a number of stages where each stage

performs its part and makes a code or data structure along

with code to be fed to the next stage. The stages of a

compiler are usually divided into two phases: Analysis

phase and Synthesis phase. The Analysis phase takes the

source code and produces an intermediate representation.

It consists of Lexical Analyzer, Syntax Analyzer, Semantic

Analyzer and Intermediate Code Generator. Each plays a

different role like Lexical analyzer divides the program into

“tokens”, Syntax analyzer recognizes “sentences” in the

program using syntax of language and Semantic analyzer

checks static semantics of each construct and Intermediate

Code Generator generates “abstract” code. And the

synthesis phase takes intermediate code from the Analysis

phase and generates equivalent target programs. It consists

of Code Optimizer and Code Generator where Code

Optimizer optimizes the abstract code, and the final Code

Generator translates abstract intermediate code into

specific machine instructions. The main aim of this paper is

to go through all these stages and try to review the

underlying principles of these stages and to understand the

importance of these stages in building modern compilers as

we have come a long way in technological advancements

but we still use very old principles to develop a compiler.

The final result of this paper is to provide a general

knowledge about compiler designing and understanding the

development of all the stages used in compiler designing.

I. INTRODUCTION

Computers are a balanced mix of software and hardware.

Hardware is just a piece of mechanical or electrical device

which is controlled by the help of software. Hardware can

only understand data in the binary form or electronic charge,
so to instruct it we need to write code in binary form which

is very difficult and even impossible for a human

programmer to do. Which is why we have compilers, instead

of forcing users to write code in binary we make another

program that converts code written by the programmer to

some other low level language or machine code that the

machine can understand and perform the desired task? This

translation from source code to machine code requires

considerable effort and follows complex rules. The first

implemented compiler was developed by Grace Hopper, who

also coined the term “compiler” referring to her A-O system

which was not even a complete compiler.

It functioned as a loader and linker. Like any other software

the compiler also needs to be written in some language, there

are benefits from implementing a compiler in a high-level

language. Also, a compiler can be self-hosted means it is

written in the programming language it compiles. This

problem of developing a compiler in the same language it is

compiling is also called Bootstrapping problem, i.e. the first

such compiler for a language must be either handwritten

machine code or compiled by a compiler written in another
language, or compiled by running the compiler in an

interpreter. Also, different compilers traverse the source code

different times, to be able to complete its translation to the

machine code. The compiler that reads the source code only

one time is called a Single Pass Compiler while the compiler

that reads source code multiple times is called Multiple Pass

Compiler.

II. STRUCTURE OF COMPILER

A compiler can be divided broadly into two phases based on

their functioning: Analysis Phase and Synthesis Phase.

Analysis Phase: It is also known as the front-end of the

compiler. The analysis phase of the compiler reads the source

program, divides it into core parts and then checks for

lexical, grammar and syntax errors. The analysis phase of the

compiler reads the input program (of high language code)

divides it into core parts and then checks for lexemes,

grammar and syntax errors in the code. This phase produces

an intermediate representation of the high level language

code and symbol table, which is then fed to the Synthesis

phase as input. It consists of Lexical Analyzer, Syntax

Analyzer, Semantic Analyzer and Intermediate Code

Generator.

Synthesis Phase: This phase produces the target program or

representation or code with the help of intermediate source

code representation and symbol table. It constitutes a code

optimizer and code generator. It is also called the back-end of

compilers.

Generally, when designing a compiler all the stages of a

compiler like Lexical analysis, etc. are grouped into these

two phases for the sake of code reusability and simplicity. It

is just a way of dividing the large code base of the compiler.
So, the compiler is just a series of stages. All the stages have

their own representation of the input code or high level code,

every stage gets input code, processes it and passes to the

subsequent stage. So, now let's understand the stages of a

compiler.

International Journal For Technological Research In Engineering

Volume 8, Issue 3, November-2020 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2020.All rights reserved. 48

Stages of compiler are:

Lexical Analysis: It is the foremost phase of the

compilation. In this the source code is scanned as a stream of

characters and converted to meaningful lexemes which are

represented as tokens (<token-name, attribute-value). LEX is

a popular Lexical Analyzer used with the YACC parser.

Syntax Analysis: It is also called parsing. It takes the token

produced by lexical analysis as input and generates a parse

tree (or syntax tree). Here, token arrangements are compared

with the source code grammar, i.e. the parser verifies that the

expression made by the tokens is syntactically correct.

YACC is one of the most popular parsers used in compiler

design.

Semantic Analysis: Semantic analysis checks whether the

parse tree constructed follows the principles of language. For

example, assignment of values should be between the

compatible data types, and adding string to an integer. Also,

it keeps track of identifiers, their types and expressions like

checking if identifiers are declared before use or not etc. The

semantic analyzer gives an annotated syntax tree as an

output.

Intermediate Code Generation: Following semantic

analysis the compiler produces an intermediate code of the

input code for the target machine. It acts as a program for

some abstract machine. It is intermediate among the high-
level language and the machine language. This intermediate

code must be produced in such a way that it makes it easier

to be translated into the target machine code.

Code Optimization: The following phase optimizes the

intermediate code. Optimization can be presumed as

something that deletes unnecessary code lines, and

rearranges the sequence of statements in order to speed up

the program execution without wasting resources (CPU,

memory).

Code Generation:The code generator takes the optimized

representation of the intermediate code and portrays it to the

target machine language. The code generator translates the

intermediate code into a sequence of (generally) relocatable

machine code. Sequence of instructions of machine code

performs the task same as the intermediate code would do.

All the stages above can access a common data structure

called Symbol Table. All the identifier's names along with

their types are stored here. The symbol table makes it easier

for the compiler to quickly search the identifier record and

retrieve it. The symbol table is also used for scope
management.

III. ERROR HANDLING
Another important aspect of compiler design is Error

handling. Error can arise because of many causes like design

error in program, logic error in program, incorrect data error,

etc. The task of the error handler of the compiler is to catch

or detect the errors in the source code being compiled and

report them to the user. The compiler can only point out

errors related to syntax of language, Inconsistent data type of
variables, and other things. It cannot detect errors related to

runtime. [2] Like memory running out of space or an infinite

loop. But with modification in the technology nowadays

compilers are getting smarter and smarter and can be even

made to point out these errors to some extent too but not

completely. Generally following three types of error are

encountered during compilation:

Lexical Error: It occurs during the Lexical analysis stage of
compilation. Lexical error is a series of characters that does

not equals the pattern of any token. Lexical phase errors are

found during the execution of the code.

It can be a spelling error, exceeding length of identifier or
numeric constants, appearance of illegal characters, to

remove the character that should be present, to replace a

character with an incorrect character, transposition of two

characters.

Syntax Error: It happens during the Syntax analysis stage of

compilation. When an invalid calculation enters into a

calculator then a syntax error can also occur. This can be

caused by entering several decimal points in one number or

by opening brackets without closing them. It can also occur

because of Error in structure, Missing operators, Unbalanced
Parenthesis, etc.

Semantic Error: It happens during the Semantic analysis

stage of compilation. Scope and declaration error comes

under it. The semantic error can happen when using the

wrong variable or using the wrong operator or doing

operation in the wrong order. Some common semantic errors

are undeclared variables, not matching of actual agreement

and It occurs during the Semantic analysis stage of

compilation. Scope and declaration error comes under it. The

semantic error can happen when using the wrong variable or

using the wrong operator or doing operation in the wrong
order. Most common semantic errors are using undeclared

variables, not matching of actual agreement and wrong

operand with formal argument.

Apart from these some compilers are made such that they

only give error when the whole execution of program is

broken else if there is some error that does not break

execution of program then compiler ignores it and places it

under warning and notifies user about it.

IV. COMPILER REQUIREMENTS

Compiler Requirements are the requirements that a compiler

needs to satisfy to be considered as a compiler. There are

many factors that are taken into consideration to decide

whether a compiler is fit for the job of compilation or not.

Some most common factors are as follows:

International Journal For Technological Research In Engineering

Volume 8, Issue 3, November-2020 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2020.All rights reserved. 49

Correctness: It is the most important requirement. A buggy

compiler is useless. There is no formal way to prove that a

compiler is buggy. So, we use exhaustive testing to find

bugs. Apart from the correct output of the program it is also
tested that the compiler is able to identify errors in the

program as desired. Stress on correctness means that we

carefully define the semantics of the source language. The

target language semantics is produced by the GNU assembler

on the lab machines together with the actual machine

semantics.

Efficiency: Efficiency of the generated code and also

efficiency of the compiler itself are important considerations.

As if a compiler takes too much time to compile code then it

is also useless. Practically the main aim of software is to

finish their tasks in the smallest of time so that the CPU can

be free for other tasks. That's why efficiency is at the heart of

compiler design.

Interoperability: Programs don't run in isolation, but are

linked with library code before they're executed, or are going

to be called as a library from other code. This puts additional

responsibility on the compiler, which must respect certain

interface specifications.

Usability: It also plays a very important role in compiler
design as a compiler interacts with the programmer primarily

when there are errors in the program. As such, it should give

helpful error messages. Compilers should also be directed to

generate debug information with executable code in order to

help users debug runtime errors in their program.

V. CONCLUSION

The designing of a compiler is a complex task but it can be

achieved if one starts by developing individual stages that are

defined to make compiler design easier. The huge use of high

level languages tells the story of success of compilers. But

with the advancements in technology like multiprocessor

CPU, there is a need of improving efficiency of compilers
even more so that they can also leverage the power of

multiprocessing and multithreading also compiler

optimization must bridge this widening gap. Compiler

fundamentals are well understood now, but deciding where to

use what optimization has become very difficult over the past

few decades.

Even though the compiler field has changed the environment

of computing, major compilation problems remain, whilst

new challenges (such as multi-core programming) have

emerged. The unresolved compiler challenges (such as the
method to increase the abstraction level of parallel

programming, develop robust and secure software, and verify

the software stack) are of great practical importance and rank

among the foremost intellectually challenging problems in

computing today.

To solve problems like these, the compiler field must

develop the technologies that enable more of the

development in this field compared to the past 50 years.

Computer science instructors must attract a number of the

good students to the compiler field by showing them its deep

intellectual foundations, highlighting the broad applicability
of compiler technology to several areas of computing and

giving them a chance to create some change in the world.

Some challenges in this field (like lack of powerful and

flexible compiler infrastructures) can be solved only through

effort of complete community. Funding organizations and

industry must be made aware of the significance and

complexity of the challenges so that they can willingly invest

long-term financial and human resources toward finding

solutions.

REFERENCES

[1]. Mary Hall, David Padua, Keshav Pingali. Compiler

Research: The Next 50 Years. Communications of the
ACM,Vol. 52 No. 2 (February 2009)

[2]. Aastha Singh, Sonam Sinha , Archana Priyadarshi.

Compiler Construction. International Journal of Scientific

and Research Publications, Volume 3, Issue 4, (April 2013)

[3]. Ch. Raju , Thirupathi Marupaka , Arvind Tudigani.

Analysis of Parsing Techniques & Survey on Compiler

Applications. International Journal of Computer Science and

Mobile Computing Vol.2 Issue. 10, October- 2013

