
International Journal For Technological Research In Engineering

Volume 8, Issue 3, November-2020 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2020.All rights reserved. 95

FLAPPY BIRD IMPLEMENTATION USING AI

 Ayushi Singh
1
, Naman Tyagi

2
, Sahil Khunger

3
, Vipul Chaudhary

4

1, 2, 3, 4
Student

 Department of Information Technology,
1,2,3,4

Dr. Akhilesh Das Gupta Institute of Technology and Management, New Delhi

Abstract- This paper presents a minimal training strategy
based on genetic algorithm and reinforcement learning

where an agent is capable of playing the Flappy Bird game

itself using NEAT algorithm. Here artificial agents were

trained to take the most favorable action at each game
instant. And the machine learns to better itself at a particular

task through repetitive iterations. NEAT Algorithm uses a

ANN (artificial neural network) along with the fitness

function to maximize the score of the current generation and

replace the old population with this newly generated

population for better performance .The idea of actual

biological evolution is implemented here based on

Darwinian Natural Selection which consists of three

properties (Heredity, Variation & Selection) here some

members of population have a chance to pass on their genetic

information for better results. It is also referred as „survival

of the fittest‟. Hence, using these strategies to achieve low

complexity and better performance.

Index Terms- Artificial intelligence, flappy bird, genetic

algorithm, neuroevolution, reinforcement learning.

1. INTRODUCTION

The Neuroevolution technique is the artificial evolution of

neural network using genetic algorithm. It is a technique to

evolve artificial neural networks in unsupervised learning

problems [1]. NEAT is best and optimized way compared to

Descending Gradient algorithm like Backpropagation.It does

not depend on the output value, which was used to generate

error to optimize the network. Neuroevolution is used as part

of the reinforcement learning, NEAT evolves dense neural

network node by node, and it will change the values of

connections and will randomly add other nodes to find
topology for neural network that works best. The

reinforcement learning is the training of models to make

sequence of decisions. The agent learns to achieve the goal

in a complex environment and the computer employs trial

and error method to come up with a solution to the

problem to get the machine do what the programmer

wants. The AI gets either reward or penalties based on the

action it performs; the agent is trained in such a way that it

takes the best action to maximize the total reward. [1]

The goal of this flappy Bird game is to simply keep the bird

alive as long as possible by passing it through the pipes

without colliding with them and achieving the maximum

game points. In this game we apply a Neuroevolution

algorithm, the choice of NEAT is related to the fact that it

starts from simpler configuration agents and complicated it

over the generations, generally increasing the topology, so

that the solution found is the simplest.

The rest of the paper is structured as follows. Section II

consists of related work based on Neuroevolution in other

games.

In the Methodology section we provide the details of strategy,

tools and techniques used describing the training and
performance of the Reinforcement Learning based agent .The

Result section consists summary of the whole work.

2. RELATED WORK AND BACKGROUND

In this section we will discuss about the key concepts of

reinforcement learning, genetic algorithms, neuroevolution

giving background details of research in this area and their

applications.

Reinforcement Learning (RL) [2] is an area where agents take

action in an environment in order to maximize the reward. It

learns from interaction with the environment similar to

human beings [2].In reinforcement learning, an artificial

intelligence faces a game-like situation. An illustration of

agents interacting with environment can be found below in

Figure 1[2]..Another example of reinforcement learning is

autonomous cars. The situation becomes ideal if the AI

performs better with no instructions on driving the car hence

fully automatic.[3]

One more example can be “Learning to move”[4], which aims
at producing complex motions, such as quick turn and walk-

to-stand transitions to make an agent learn how to walk and

run [4] .The main challenge in reinforcement learning

lies in preparing the simulation environment, which is

dependent on the task performed.

Figure 1. The Agent and its environment

https://en.wikipedia.org/wiki/Reinforcement_learning
https://en.wikipedia.org/wiki/Reinforcement_learning

International Journal For Technological Research In Engineering

Volume 8, Issue 3, November-2020 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2020.All rights reserved. 96

Genetic Algorithms (GA) is based on the idea of actual

biological evolution. From a given population with certain

characteristics, the fittest have the highest probability in

being transferred to the next generation. In order to evolve to
a new generation GA applies Selection, Crossover and

Mutation[5].Neuroevolution uses this technique of a GA to

evolve the weights and architecture of a Neural Network.[6]

Neuroevolution has been used in many other fields like

designing games such as chess, checkers etc.[7] .In this paper

Flappy Bird we focus on evolving the new population of

birds that is agent using GA and Multiagent Reinforcement

Learning with variations using TanhH Function to reduce

time [8] .NEAT algorithm is used to progressively improve the

performance of Flappy Bird.

3. METHODOLOGY

Three components are essential to this work: fitness function

calculation, presented in Section III-A; how to expose the

scenario to the agent, presented in Section III- B; and

phenotype settings, presented in Section III-C.

A. Fitness:

To compute the fitness of the agent that is the bird Scenario

Fitness Components (SFC) is used:

 Distance Traveled (DT): is calculated each time an

interaction of the agent with the environment that

is the background of the game;

 Score: which is calculated each time flappy bird

passed through those pipes;

 Y Factor (∆Y): It is calculated by the difference

between the y coordinate of the agent and the

midpoint of top and bottom pipe, this value is

obtained when an agent fails in any scenario. The

formula is defined as:

∆Y = yagent – ypassage

[9]

The main usage of Y Factor is that it enables the penalize

based on the performance of the agent in the fitness function

which is calculated on the basis of fitness score that is how far

the bird goes without hitting the obstacles. In Fig. 2 three

Factors of Y are highlighted, ∆Y1, ∆Y2 and ∆Y3, each of them

corresponding to a different agent of the same population

which will create different scenarios defines as

collision .When this occurs the interaction with the

environment ceases and the agent‟s performance is measured.

The Y Factor is used for fitness calculation. The goal is to

ensure that agents closer to the middle of pipe that is the free

space are considered better than others further away.

As shown in Fig. 2, if all agents failed at same time, they will

have the same DT and score, but the Y Factors would be

different, such that ∆Y1 < ∆Y2 < ∆Y3, showing that agent 1 is

closer to the pipe. Also, the value of ∆Y is absolute since it

tries to penalize the performance of the agent based on the

distance from the pipe, even if it was above or below the

agent.

Figure 2. Y factor shows difference between three agents
with the same DT.[9]

SFCs are combined in a single equation, known as
scenario fitness function (SFF):

SFF = α × DTS + β × ScoresS − γ × ∆YS
[9]

This equation shows that the fitness of an agent which

is flappy bird is a linear combination of SFCs and 3

constant weights α, β, and γ. The goal of the agent is to

cover the maximum distance without colliding, hence

achieving the highest score.

The S subscript corresponds to the standardized version

of the component:

• DTS = DT/DTmax, where DTmax is the DT when

covering the maximum number of pipes.

• ScoresS = Scores/Scoresmax, where Scoresmax is

the maximum score obtained by agent.

• ∆YS = ∆Y/Wh, where Wh is the height of the game

window, which will be highest value of the y

coordinate.

Obtaining SFFs from the game and combining them

into an agent fitness function (AFF) calculates the fitness of

agent :

 ∑MS(ki X SFF i)
 i=1
[9] AFF = ____________

 ∑MS ki

 i=1

Thus, it shows that the fitness of an agent in generation is

given by a weighted average which is based on the fitness of

each scenario. Here MS taken is the sum of number of

scenarios, which have different aspects in the program [9].

International Journal For Technological Research In Engineering

Volume 8, Issue 3, November-2020 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2020.All rights reserved. 97

B. Scenarios

The main objective regarding the way the scenario is exposed

to the agent during training is to reduce the number of pipes

while still preserving the ability of the algorithm to converge

in a short time. Three scenarios are represented with variation

of the gap between the pipes as shown in the Fig. 4. Hence,

the total number of scenarios, i.e. MS is 3.

The gaps were taken as 0 pixels, and approximately 80 pixels

and 160 pixels. Since 0 and 160 pixels are the height of the

screen and 80 pixels becomes the midpoint .An agent that

performs well in these scenarios with different gaps will be

able to handle any kind of scenario, as it has learned how to

pass through the small, medium and large gaps [9].

Since the number of pipe pair i.e. top and bottom pipe

making single pair, in each scenario is three, Scoresmax = 3

and DTmax = 195, such that 195 is the DT for the agent that
transposes three pairs of pipes. The reason behind three

scenarios is supported by the fact that a second scenario

allows a faster convergence, since, the agent is getting better

in solving challenges.

In the context, three pairs of pipes were chosen as shown in

Fig. 4. (a) and (b) shows a flat gap between pipes; (c) and

(e)shows fall gaps; (d) and (f) show climb gaps. These types

of gaps are composed with lots of pipe pairs with different

gaps so that AI can execute in different scenario.

C. Network Phenotype, Parameters and Tools

The agent‟s phenotype is represented by an ANN that has

three input neurons, one output neuron and with an internal

structure that will be defined after the training of network by

the neuroevolutionary algorithm. The output is the probability

of performing a jump by an agent. Fig. 5 shows all inputs in a

frame, which are:

 Ay: Agent‟s y coordinate;

 By: Y coordinate of the tip of bottom pipe;

 Cy: Y coordinate of the center of the free
space between the pipe pair.

Figure 3. Representation

a b c d

 e f

Figure 5. Inputs

.[9]
When the information given by the environment (Ay, By and

Cy) is received by the agent, it gets processed by the net- work,

brings about a probability of jump being executed. This

probability determines the next step to execute according to

the Algo: Action = Jump if (Out ≥b was 0.5.) else none,

where b

In the configuration of the NEAT parameters, the following

values were established, which can then be used to reproduce

this work:

Population: a population of 20 individuals is used which

enables a faster execution and is not a very big population,

and also it is large enough to allow a genomic diversity

which won‟t produce local minima which in turn would stop

the evolution.

Figure 6. Best of last population

International Journal For Technological Research In Engineering

Volume 8, Issue 3, November-2020 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2020.All rights reserved. 98

 Compatibility threshold: the value given to this

term was 3.1, which was small enough to not

completely prevent the formation of species within

the population and it was large enough to not create
many species initially. An interesting thing to note

is that intersections between species can lead to

problems in optimization when a large number of

species in a population was present; also this was

the case when the population was extremely

small.

 Elitism: an elitism of 18 individuals was chosen,

this value when compared to the previous

parameter was equal to 60% of the population.

This value allowed the preservation of innovations

and it was small enough to not incur in slump or the

absence of innovations

 Mutation rate: this parameter had a value of 0.05,

which caused the connections to not activate

immediately as the topology increased, they were

activated gradually.

 Weight and Bias: the average initial generation of
weights and bias were 0 and 0.01, respectively,

with a standard deviation of 1.3 in both. These

values allow a slightly more varied distribution

when the weights are generated, thus getting closer

to the topologies of better performance.

 Probabilities to add or remove connections: the like-

lihood of adding connections and the likelihood of

removing connections were set to 0.7 and 0.2,

Respectively. The values showed a greater fondness

for a robust topology through connection creation, a

proposal aimed at solving complex problems. If the

topology does not increase, but the optimization

finds good individuals it is because a simpler

topology was sufficient for the problem, since

NEAT starts from less complex to more complex

topologies.

 Probabilities to add or remove nodes: the

probability of adding nodes was set to 0.7 and the

probability of removing nodes was set to 0.2, as in

the above parameters, and they have a similar

explanation

The algorithm ran for 100 generations using the activation

function tanh . Given the simplicity of the agent‟s decision

and since Descending Gradient is not part of the process, this

function uses all of its logistical power without drawbacks.

In the calculations of the SFFs and the AFF the following

values were used and gave a prominent result:

SFF (α = 1.0, β = 1.0, γ = 0.08): Note that the weight of the Y

Factor is very low when compared to the others alpha and

beta. This was due to two reasons:

 The Y Factor before being normalized gets a small

value when compared to the other parameters during

the generations and when the normalization is done

this distance is lost, so a small value of γ allows a

reduction of the Delta Y magnitude; and

 At the beginning of the generations the Y Factor has very high

values, which is the opposite of its primary function of being

a differentiation of similar fitness when fine tuning the

adjustment in their scores, which can harm the convergence

speed and thus slowing the whole program.

AFF (k1 = 1.0, k2 = 2.0, k3 = 6.0): SFFs weights were given a

very big value for increasing the strength in a more difficult

environment. This was the reason why Scenario 2 had a

slightly greater weight than Scenario 1 (easy) and Scenario 3

(hard) has a much greater weight than Scenario 2. This

strategy allows a faster convergence of the algorithm since

the agent finds the best performance faster [9].

This work was constructed using NEAT-Python [10] and

PyGame Learning Environment (PLE) [11] .PLE is the library

used for the agent‟s interaction in the environment, which is

automatically executed when there is a need to calculate its

fitness, thus making it communicate with the environment

through his sensors and actuators. This relationship is best

explained by Fig. 7.

Figure 7. Relationship between NEAT and PLE.[9]

To execute the steps discussed above, some slight changes

were made to the PLE to allow the definition of the structure

of the scenario before the beginning of the optimization.

These changes are thus important to build the three types of

scenarios with different gaps between the pairs of pipes.

4. RESULTS

The results of fitness and scores are presented in Section IV-

A. The speciation chart is shown in Section IV-B. Finally, the

final network topology is presented in Section IV-C.

A. Fitness and Scores

Fig. 8 present the fitness results. The x-axis of the chart

corresponds to generations, from the beginning going up to

100, while the y-axis corresponds to the average fitness (blue

line) and the best fitness (red line) on every generation. It can

be seen that in about generation 20 the fitness stabilizes until

the end of the tests. The algorithm is able to achieve an

optimal score since the first generations, showing the

robustness of the applied strategy.

The score chart in Fig. 9 is very similar. The red color line

is the best score achieved in every generation while the blue

International Journal For Technological Research In Engineering

Volume 8, Issue 3, November-2020 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2020.All rights reserved. 99

color line is the average score. The stabilization of the

scores occurs again around the 20th generation, agreeing

with the fitness. In both figures the mean values stabilize in

values that represent around 2/3 of the maximum values in
each chart. The maximum score is 2 in the chart, which

occurs when DT = 195, scores = 3 and ∆Y = 0. This

means that the agent was able to pass through all three

pairs of pipes and did not shock into anything. This

implies that the SFF = α + β = 1.0 + 1.0 = 2.0 leading to

AF F = [(1 . 0× 2 . 0 + 2 . 0×2 . 0+ 6 . 0×2 . 0) / (1 . 0+

2 . 0+ 6 . 0)] = (18 . 0 / 9 . 0) = 2 . 0 , s i n c e k1 = 1 . 0 ,

k2 = 2 . 0 a n d k3 = 6 . 0 . [9]

Figure 8. Agent fitness chart [9]

Figure 9. Agent fitness chart [9]

On the other hand, the maximum score possible is equal to

three, which equates to the transpose of the three pairs of

pipes. When it plays the game with random objects, an agent

transposes all pipes continuously which is clear in Figure 10

in which an agent got a score higher than thousand and is

currently playing the game. Minimal training strategy was

very successfully to generate agents with optimal behaviors

B. Speciation

Figure 11 shows the speciation chart, in which the x-axis

informs the generations and the y-axis informs the size of

the species that is at most 20. Since only a single species

was enough to converge and solve the game, only a single

color is shown.

c. Topology

The phenotype of the best agent of the last generation is

shown in Fig. 12. The phenotype is a perceptron, a very simple

model of an artificial neural network. The network weights

computed for each input are:

• W Ay: 0.6285.

Figure 10. Agent achieving a score of 1136 and still counting

Figure 11.Speciation Chart. [9]

• W By: -1.5107.

• W Cy: 1.6638.

• Bias Node: -1.0770.

Ay ensures that the agent is with a small value of

the y coordinate, i.e. the agent is far above the

passage and the tanh function may result in a very low

jump chance. This implies that the agent will tend to

go down by the action of gravity. When the agent has a

high value of the y coordinate, i.e. the agent is under

the passage, the tanh function will tend to result in a

very big jump chance, which will lead the agent goes

up.

International Journal For Technological Research In Engineering

Volume 8, Issue 3, November-2020 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2020.All rights reserved. 100

Figure 12. Topology found by NEAT.[9]

Evaluating all of the three results together it can be seen that,

our methodology turned the game into a problem simple to

solve by the algorithm. Those results show that training

agents using a very restricted training environment, only three

types of obstacles, can lead to optimal behaviors.

5. CONCLUSION

In this work, a efficient training strategy to generate agents

capable of achieving excellent scores in the game Flappy

Bird by using only three different types of scenarios with

different types of obstacles to train the agents by evolving a

neural network to stay alive without dying in an

environment with unlimited pair of pipes with random

heights. The fitness calculation used ensured that the

objective of an agent in a reduced environment represented

its goal in a real run of the game.

Because the obstacles used have gaps near the environment

borders and an intermediate one, when the agent manages to

maximize its result in these three cases it then masters all

possible variations within these limits. Considering that

NEAT always searches for the simplest solution to a

problem and that the fitness presented together with the

division into three scenarios help the NEAT find a

perceptron network architecture using a single species, this

solution is the simplest. The techniques discussed in this

work helped the algorithm to find this solution in a short

time, thus proving its effectiveness.

Using a population of only 20 individuals, the evolution- ary

algorithm was able to converge to an optimal behavior after

about twenty generations. At this point, an agent is able to

play the game indefinitely. This shows that this strategy can

find optimal solutions in a short number of generations. As

future works, this minimal training strategy can be tested in

simple platform games that show some kind of action

repetition through their stages, and also with different types

of learning algorithms

REFERENCES

[1] K. O. Stanley and R. Miikkulainen, “Evolving neural
networks through augmenting topologies,” Evolutionary

Computation, vol. 10, no. 2, pp. 99–127, 2002. [Online]

Available: http://nn.cs.utexas.edu/?stanley:ec02

[2] R. S. Sutton and A. G. Barto, Introduction to Reinfor-
cement Learning, 1st ed. Cambridge, MA, USA: MIT Press

, 1998.

[3] Sallab, Ahmad & Abdou, Mohammed & Perot, Etienne &

Yogamani, Senthil. (2017). Deep Reinforcement Learning

framework for Autonomous Driving. Electronic Imaging.

2017. 70-76. 10.2352/ISSN.2470-1173.2017.19.AVM-023.

[4] Song, Seungmoon & Kidziński, Łukasz & Peng, Xue &

Ong, Carmichael & Hicks, Jennifer & Levine, Serge &

Atkeson, Christopher & Delp, Scot. (2020). Deep

reinforcement learning for modeling human locomotion

control in neuromechanical simulation.

10.1101/2020.08.11.246801.

[5] Lingaraj, Haldurai. (2016). A Study on Genetic

Algorithm and its Applications. International Journal of
Computer Sciences and Engineering. 4. 139-143.

[6] Felipe Petroski Such, Vashisht Madhavan, Edoardo

Conti Joel Lehman Kenneth O. Stanley, Jeff Clune(20 April

2018) ,”Deep Neuroevolution: Genetic Algorithms are a

Competitive Alternative for Training Deep Neural Networks

for Reinforcement Learning”, arXiv:1712.06567v3

[7] Joel Lehman and Risto Miikkulainen (2013) Neuro-

evolution. Scholarpedia, 8(6):30977.

[8] C. Rosset, C. Cevallos, and I. Mukherjee, “Cooperative

multi-agent reinforcement learning for flappy bird *,”

Semantic Scholar, 2016.

[9] M. G. Cordeiro, P. B. S. Serafim, Y. L. B. Nogueira,C.

A. Vidal and J. B. Cavalcante Neto, "A Minimal Training

Strategy to Play Flappy Bird Indefinitely with NEAT," 2019
18th Brazilian Symposium on Computer Games and Digital

Entertainment (SBGames), Rio de Janeiro, Brazil, 2019, pp.

21-28, doi:10.1109/SBGames.2019.00014

[10] A. McIntyre, M. Kallada, C. G. Miguel, and C. F. da

Silva, “neat-python,” https://github.com/CodeReclaimers/

neat-python.

[11] N. Tasfi, “Pygame learning environment,”

https://github.com/ ntasfi/PyGame-Learning-Environment,

2016

https://github.com/

