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Abstract- This paper presents a minimal training strategy 
based on genetic algorithm and reinforcement learning 

where an agent is capable of playing the Flappy Bird game 

itself using NEAT algorithm. Here artificial agents were 

trained to take the most favorable action at each game 
instant. And the machine learns to better itself at a particular 

task through repetitive iterations. NEAT Algorithm uses a 

ANN (artificial neural network) along with the fitness 

function to maximize the score of the current generation and 

replace the old population with this newly generated 

population for better performance .The idea of actual 

biological evolution is implemented here based on 

Darwinian Natural Selection which consists of three 

properties (Heredity, Variation & Selection) here some 

members of population have a chance to pass on their genetic 

information for better results. It is also referred as „survival 

of the fittest‟. Hence, using these strategies to achieve low 

complexity and better performance.  

 

Index Terms- Artificial intelligence, flappy bird, genetic 

algorithm, neuroevolution, reinforcement learning. 

 
1. INTRODUCTION 

The Neuroevolution technique is the artificial evolution of 

neural network using genetic algorithm. It is a technique to 

evolve artificial neural networks in unsupervised learning 

problems [1]. NEAT is best and optimized way compared to 

Descending Gradient algorithm like Backpropagation.It does 

not depend on the output value, which was used to generate 

error to optimize the network. Neuroevolution is used as part 

of the reinforcement learning, NEAT evolves dense neural 

network node by node, and it will change the values of 

connections and will randomly add other nodes to find 
topology for neural network that works best. The 

reinforcement learning is the training of models to make 

sequence of decisions. The agent learns to achieve the goal 

in a complex environment and the computer employs trial 

and error method to come up with a solution to the 

problem to get the machine do what the programmer 

wants. The AI gets either              reward or penalties based on the 

action it performs; the agent is trained in such a way that it 

takes the best action to maximize the total reward. [1] 

The goal of this flappy Bird game is to simply keep the bird 

alive as long as possible by passing it through the pipes 

without colliding with them and achieving the maximum 

game points. In this game we apply a Neuroevolution 

algorithm, the choice of NEAT is related to the fact that it 

starts from simpler configuration agents and complicated it 

over the generations, generally increasing the topology, so 

that the solution found is the simplest. 

The rest of the paper is structured as follows. Section II 

consists of related work based on Neuroevolution in other 

games. 

In the Methodology section we provide the details of strategy,     

tools and techniques used describing the training and 
performance  of the Reinforcement Learning based agent .The 

Result section   consists summary of the whole work. 

 
2. RELATED WORK AND BACKGROUND 

 

In this section we will discuss about the key concepts of 

reinforcement learning, genetic algorithms, neuroevolution 

giving background details of research in this area and their 

applications. 

Reinforcement Learning (RL) [2] is an area where agents take 

action in an environment in order to maximize the reward. It 

learns from interaction with the environment similar to 

human beings [2].In reinforcement learning, an artificial 

intelligence faces a game-like situation. An illustration of 

agents interacting with environment can be found below in 

Figure 1[2]..Another example of reinforcement learning is 

autonomous cars. The situation becomes ideal if the AI 

performs better with no instructions on driving the car hence 

fully automatic.[3] 

One more example can be “Learning to move”[4], which aims 
at producing complex motions, such as quick turn and walk-

to-stand transitions to make an agent learn how to walk and 

run [4] .The main challenge    in reinforcement     learning     

lies     in preparing the simulation environment, which is 

dependent on the task performed. 

 

 
 

Figure 1. The Agent and its environment 

 

https://en.wikipedia.org/wiki/Reinforcement_learning
https://en.wikipedia.org/wiki/Reinforcement_learning
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Genetic Algorithms (GA) is based on the idea of actual 

biological evolution. From a given population with certain 

characteristics, the fittest have the highest probability in 

being transferred to the next generation. In order to evolve to 
a new generation GA applies Selection, Crossover and 

Mutation[5].Neuroevolution uses this technique of a GA to 

evolve the weights         and architecture of a Neural Network.[6] 

Neuroevolution has been used in many other fields like 

designing games such as chess, checkers etc.[7] .In this paper 

Flappy Bird we focus on evolving the  new population of 

birds that is agent using GA and Multiagent Reinforcement 

Learning with variations using TanhH Function to reduce 

time [8] .NEAT algorithm is used to progressively improve the 

performance of Flappy Bird. 

 

3. METHODOLOGY 

Three components are essential to this work: fitness function 

calculation, presented in Section III-A; how to expose the 

scenario to the agent, presented in Section III- B; and 

phenotype settings, presented in Section III-C. 

A. Fitness: 

To compute the fitness of the agent that is the bird Scenario 

Fitness Components (SFC) is used: 

 Distance Traveled (DT): is calculated each time an 

interaction of the agent with the environment that 

is the background of the game; 

 Score: which is calculated each time flappy bird 

passed through those pipes; 

 Y Factor (∆Y): It is calculated by the difference 

between the y coordinate of the agent and the 

midpoint of top and bottom pipe, this value is 

obtained when an agent fails in any scenario. The 

formula is defined as: 

 
∆Y = yagent – ypassage      

[9] 

The main usage of Y Factor is that it enables the penalize 

based on the performance of the agent in the fitness function 

which is calculated on the basis of fitness score that is how far 

the bird goes without hitting the obstacles. In Fig. 2 three 

Factors of Y are highlighted, ∆Y1, ∆Y2 and ∆Y3, each of them 

corresponding to a different agent of the same population 

which will create different scenarios defines as 

collision .When this occurs the interaction with the 

environment ceases and the agent‟s performance is measured. 

The Y Factor is used for fitness calculation. The goal is to 

ensure that agents closer to the middle of pipe that is the free 

space are considered better than others further away. 
 

As shown in Fig. 2, if all agents failed at same time, they will 

have the same DT and score, but the Y Factors would be 

different, such that ∆Y1 < ∆Y2 < ∆Y3, showing that agent 1 is 

closer to the pipe. Also, the value of ∆Y is absolute since it 

tries to penalize the performance of the agent based on the 

distance from the pipe, even if it was above or below the 

agent. 

 

Figure 2. Y factor shows difference between three agents 
with the same DT.[9] 

 

SFCs are combined in a single equation, known as 
scenario fitness function (SFF): 

SFF = α × DTS + β × ScoresS − γ × ∆YS      
[9] 

This equation shows that the fitness of an agent which 

is flappy bird is a linear combination of SFCs and 3 

constant weights α, β, and γ. The goal of the agent is to 

cover the maximum distance without colliding, hence 

achieving the highest score. 

The S subscript corresponds to the standardized version 

of the component: 

• DTS = DT/DTmax, where DTmax is the DT when 

covering the maximum number of pipes. 

• ScoresS     =   Scores/Scoresmax,   where   Scoresmax     is 

the maximum score obtained by agent. 

• ∆YS = ∆Y/Wh, where Wh is the height of the game 

window, which will be highest value of the y 

coordinate. 

 
Obtaining SFFs from the game and combining them 

into an agent fitness function (AFF) calculates the fitness of 

agent : 

 

 

                  ∑MS(ki X SFF i) 
                             i=1 
[9] AFF   =      ____________ 

                                    

                       ∑MS ki 

                            i=1 

Thus, it shows that the fitness of an agent in generation is 

given by a weighted average which is based on the fitness of 

each scenario. Here MS taken is the sum of number of 

scenarios, which have different aspects in the program [9]. 
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B. Scenarios 

The main objective regarding the way the scenario is exposed 

to the agent during training is to reduce the number of pipes 

while still preserving the ability of the algorithm to converge 

in a short time. Three scenarios are represented with variation 

of the gap between the pipes as shown in the Fig. 4. Hence, 

the total number of scenarios, i.e. MS is 3. 

The gaps were taken as 0 pixels, and approximately 80 pixels 

and 160 pixels. Since 0 and 160 pixels are the height of the 

screen and 80 pixels becomes the midpoint .An agent that 

performs well in these scenarios with different gaps will be 

able to handle any kind of scenario, as it has learned how to 

pass through the small, medium and large gaps [9]. 

Since the number of pipe pair i.e. top and bottom pipe 

making single pair, in each scenario is three, Scoresmax = 3 

and DTmax = 195, such that 195 is the DT for the agent that 
transposes three pairs of pipes. The reason behind three 

scenarios is supported by the fact that a second scenario 

allows a faster convergence, since, the agent is getting better 

in solving challenges. 

In the context, three pairs of pipes were chosen as shown in 

Fig. 4. (a) and (b) shows a flat gap between pipes; (c) and 

(e)shows fall gaps; (d) and (f) show climb gaps. These types 

of gaps are composed with lots of pipe pairs with different 

gaps so that AI can execute in different scenario. 

 
C. Network Phenotype, Parameters and Tools 

 

The agent‟s phenotype is represented by an ANN that has 

three input neurons, one output neuron and with an internal 

structure that will be defined after the training of network by 

the neuroevolutionary algorithm. The output is the probability 

of performing a jump by an agent. Fig. 5 shows all inputs in a 

frame, which are: 

 Ay: Agent‟s y coordinate; 

 By: Y coordinate of the tip of bottom pipe; 

 Cy: Y coordinate of the center of the free 
space between the pipe pair. 

 

 
Figure 3. Representation 

a                 b                 c               d  

 

 
                    e                          f  

 

 

 

 

 

 

 

 
Figure 5. Inputs

.[9] 
When the information given by the environment (Ay, By and 

Cy) is received by the agent, it gets processed by the net- work, 

brings about a probability of jump being executed. This 

probability determines the next step to execute according to 

the Algo: Action = Jump if (Out ≥b was 0.5.) else none, 

where b 

In the configuration of the NEAT parameters, the following 

values were established, which can then be used to reproduce 

this work: 

Population: a population of 20 individuals is used which 

enables a faster execution and is not a very big population, 

and also it is large enough to allow a genomic diversity 

which won‟t produce local minima which in turn would stop 

the evolution. 

 

 
Figure 6. Best of last population 
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 Compatibility threshold: the value given to this 

term was 3.1, which was small enough to not 

completely prevent the formation of species within 

the population and it was large enough to not create 
many species initially. An interesting thing to note 

is that intersections between species can lead to 

problems in optimization when a large number of 

species in a population was present; also this was 

the case when the population was extremely 

small. 

 Elitism: an elitism of 18 individuals was chosen, 

this value when compared to the previous 

parameter was equal to 60% of the population. 

This value allowed the preservation of innovations 

and it was small enough to not incur in slump or the 

absence of innovations 

 Mutation rate: this parameter had a value of 0.05, 

which caused the connections to not activate 

immediately as the topology increased, they were 

activated gradually. 

 Weight and Bias: the average initial generation of 
weights and bias were 0 and 0.01, respectively, 

with a standard deviation of 1.3 in both. These 

values allow a slightly more varied distribution 

when the weights are generated, thus getting closer 

to the topologies of better performance. 

 Probabilities to add or remove connections: the like- 

lihood of adding connections and the likelihood of 

removing connections were set to 0.7 and 0.2,  

Respectively. The values showed a greater fondness 

for a robust topology through connection creation, a 

proposal aimed at solving complex problems. If the 

topology does not increase, but the optimization 

finds good individuals it is because a simpler 

topology was sufficient for the problem, since 

NEAT starts from less complex to more complex 

topologies. 

 Probabilities to add or remove nodes: the 

probability of adding nodes was set to 0.7 and the 

probability of removing nodes was set to 0.2, as in 

the above parameters, and they have a similar 

explanation 

The algorithm ran for 100 generations using the activation 

function tanh . Given the simplicity of the agent‟s decision 

and since Descending Gradient is not part of the process, this 

function uses all of its logistical power without drawbacks. 

In the calculations of the SFFs and the AFF the following    

values were used and gave a prominent result: 

SFF (α = 1.0, β = 1.0, γ = 0.08): Note that the weight of the Y 

Factor is very low when compared to the others alpha and 

beta. This was due to two reasons: 

 The Y Factor before being normalized gets a small 

value when compared to the other parameters during 

the generations and when the normalization is done 

this distance is lost, so a small value of γ allows a 

reduction of the Delta Y magnitude; and 

 At the beginning of the generations the Y Factor has very high 

values, which is the opposite of its primary function of being 

a differentiation of similar fitness when fine tuning the 

adjustment in their scores, which can harm the convergence 

speed and thus slowing the whole program. 

 

AFF (k1 = 1.0, k2 = 2.0, k3 = 6.0): SFFs weights were given a 

very big value for increasing the strength in a more difficult 

environment. This was the reason why Scenario 2 had a 

slightly greater weight than Scenario 1 (easy) and Scenario 3 

(hard) has a much greater weight than Scenario 2. This 

strategy allows a faster convergence of the algorithm since 

the agent finds the best performance     faster [9]. 

This work was constructed using NEAT-Python [10] and 

PyGame Learning Environment (PLE) [11] .PLE is the library 

used for the agent‟s interaction in the environment, which is 

automatically executed when there is a need to calculate its 

fitness, thus making it communicate with the environment 

through his sensors and actuators. This relationship is best 

explained by Fig. 7. 

 

 

Figure 7. Relationship between NEAT and PLE.[9] 

 

To execute the steps discussed above, some slight changes 

were made to the PLE to allow the definition of the structure 

of the scenario before the beginning of the optimization. 

These changes are thus important to build the three types of 

scenarios with different gaps between the pairs of pipes. 

 

4. RESULTS 

The results of fitness and scores are presented in Section IV-

A. The speciation chart is shown in Section IV-B. Finally, the 

final network topology is presented in Section IV-C. 

A. Fitness and Scores 

Fig. 8 present the fitness results. The x-axis of the chart 

corresponds to generations, from the beginning going up to 

100, while the y-axis corresponds to the average fitness (blue 

line) and the best fitness (red line) on every generation. It can 

be seen that in about generation 20 the fitness stabilizes until 

the end of the tests. The algorithm is able to achieve an 

optimal score since the first generations, showing the 

robustness of the applied strategy. 

The score chart in Fig. 9 is very similar. The red color line 

is the best score achieved in every generation while the blue 



International Journal For Technological Research In Engineering 

Volume 8, Issue 3, November-2020                                                ISSN (Online): 2347 - 4718 

 
 

www.ijtre.com                        Copyright 2020.All rights reserved.                                                            99              

color line is the average score. The stabilization of the 

scores occurs again around the 20th generation, agreeing 

with the fitness. In both figures the mean values stabilize in 

values that represent around 2/3 of the maximum values in 
each chart. The maximum score is 2 in the chart, which 

occurs when  DT = 195, scores = 3 and ∆Y = 0. This 

means that the agent was able to pass through all three 

pairs of pipes and did not shock into anything. This 

implies that the SFF = α + β = 1.0 + 1.0 = 2.0 leading to 

AF F =  [ (1 . 0× 2 . 0  + 2 . 0×2 . 0+  6 . 0×2 . 0 ) / (  1 . 0+  

2 . 0+  6 . 0 ) ]  =  (18 . 0 / 9 . 0 )  =  2 . 0 , s i n c e  k1  =  1 . 0 ,  

k2  =  2 . 0  a n d  k3  =  6 . 0 . [9 ]  

 

 

 

 

 

 

 

 

 

 

 
Figure 8. Agent fitness chart [9] 

 

Figure 9. Agent fitness chart [9] 

 

On the other hand, the maximum score possible is equal to 

three, which equates to the transpose of the three pairs of 

pipes. When it plays the game with random objects, an agent 

transposes all pipes continuously which is clear in Figure 10 

in which an agent got      a score higher than thousand and is 

currently playing the game. Minimal training strategy was 

very successfully to generate agents with optimal behaviors 

B. Speciation 

Figure 11 shows the speciation chart, in which the x-axis 

informs the generations and the y-axis informs the size of 

the species that is at most 20. Since only a single species 

was enough to converge and solve the game, only a single 

color is shown. 

c. Topology 

The phenotype of the best agent of the last generation is 

shown in Fig. 12. The phenotype is a perceptron, a very simple 

model of an artificial neural network. The network weights 

computed for each input are: 

• W Ay: 0.6285. 

 

 
Figure 10. Agent achieving a score of 1136 and still counting 

 

Figure 11.Speciation Chart.  [9] 

 
• W By: -1.5107. 

• W Cy: 1.6638. 

• Bias Node: -1.0770. 

 

Ay ensures that the agent is with a small value of 

the y coordinate, i.e. the agent is     far above the 

passage and the tanh function may result in a very low 

jump chance. This implies that the agent will tend to 

go down by the action of gravity. When the agent has a 

high value of the y coordinate, i.e. the agent is under 

the passage, the tanh function will tend to result in a 

very big jump chance, which will lead the agent goes 

up. 
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Figure 12. Topology found by NEAT.[9] 

 

Evaluating all of the three results together it can be seen that, 

our methodology turned the game into a problem simple to 

solve by the algorithm. Those results show that training 

agents using a very restricted training environment, only three 

types of obstacles, can lead to optimal behaviors. 

 

5. CONCLUSION 

In this work, a efficient training strategy to generate agents 

capable of achieving excellent scores in the game Flappy 

Bird by  using only three different types of scenarios with 

different types of obstacles to train the agents by evolving a 

neural network to stay alive without dying in an 

environment with unlimited pair of pipes with random 

heights. The fitness calculation used ensured that the 

objective of an agent in a reduced environment represented 

its goal in a real run of the game. 

Because the obstacles used have gaps near the environment 

borders and an intermediate one, when the agent manages to 

maximize its result in these three cases it then masters all 

possible variations within these limits. Considering that 

NEAT always searches for the simplest solution to a 

problem and that the fitness presented together with the 

division into three scenarios help the NEAT find a 

perceptron network architecture using a single species, this 

solution is the simplest. The techniques discussed in this 

work helped the algorithm to find this solution in a short 

time, thus proving its effectiveness. 

Using a population of only 20 individuals, the evolution- ary 

algorithm was able to converge to an optimal behavior after 

about twenty generations. At this point, an agent is able to 

play the game indefinitely. This shows that this strategy can 

find optimal solutions in a short number of generations. As 

future works, this minimal training strategy can be tested in 

simple platform games that show some kind of action 

repetition through their stages, and also with different types 

of learning algorithms 
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