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ABSTRACT: In order to carry out the construction of kinetic equations for unmanned ships on the water, the content of 

the article refers to the definition of the reference systems as variables of motion such as position, velocity, angular velocity 

of ships in coordinate systems.  By analyzing the movements, the position of the ship, which is concerned with the 

geometric aspect of the motion, from which the kinetic equations system for the unmanned ship on the water surface will 

be presented as a tissue model math picture. 

1. QUESTION 

Vietnam is a coastal country with the sea three times the size of the mainland. A series of companies such as wharves, drilling 

rigs, oil pipes ... All of the above tasks require a device capable of automatically performing large workloads. One solution is 

to use an unmanned ship. This widget has automatic action. In this format, we are only interested in the geometric plane and 
the motion progression in geometric form. 

2. COMBINATION SYSTEM AND MULTIPLAYER BETWEEN BRANCH SYSTEM 

 

2.1. Reference systems 

 

 

 

 

 

 

 

 
 

 

 

 

Picture 1. The velocities of the six degrees of freedom: u, v, w, p, q, r in the frame of reference 

attached to the ship ),,(}{ bbb zyxb 
 

 

 
Picture 2. The ECEF frame of reference ),,(}{ eee zyxe   

rotates with an angle e compared with the ECI frame of reference ),,(}{ iii zyxi   

For ships, the motion will have the first three coordinate variables and its time derivative, respectively, will represent position 

and movement changes in the x, y, and z axes; The last three coordinate variables and its time derivative represent the ship's 

direction and rotation, respectively (Picture 1). 
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In addition, it is possible to define the above six coordinate variables with another way called surge, sway, heave, roll, pitch, 

yaw as shown in picture 2. 

The frame of reference in which the earth is centered has two types: ECI and ECEF. 

ECI (The Earth-Centered Inertial) is the inertial reference system for navigation on the ground. The symbol is {i}. The root of 

{i} lies at the center Oi of the earth, along with the axes shown in Figure 2. 

ECEF (The Earth-Centered Earth-Fixed) is a revision of ECI. This is the frame of reference that considers the earth to be fixed 

(not rotating). The symbol is {e}. The origin of {e} is still at the center of the earth, but its axis is rotated away from the ECI 

(rotation angle e = 7.2921 x 10-5rad/s). The {e} coordinate system is commonly used in global navigation, navigation and 

control. 

Geographical reference system also has two types: NED and BODY. 

NED (North-East-Down) denotes {n} a coordinate system with center On is defined as a plane tangent to the surface of the 

earth. The position of {n} relative to {e} will be determined through the two angles l and μ representing the longitude and 

latitude respectively. 

BODY is a moving coordinate system fixed to the ship. The symbol is {b} with root Ob. The position and direction of the 

vessel are described respectively in the {e} or {n} reference systems, while the angular velocity and linear velocity of the 

vessel should be expressed in the BODY coordinate system. The base Ob is usually chosen to coincide with the midpoint of 

the boat in the floating line above the water, that point is CO in figure 3. 

Picture 3.   c  i m v  tr c trong h  t a         

Symbols in the 6th order system: 

Above, have fully defined the frames of reference, next we will define the vector symbols corresponding to the frames of 

reference: 

A vector without coordinate system when considered in the {n} coordinate system is represented: 

332211 nununuu nnn 
  

with: in


 (i = 1, 2, 3) – vector units in the {n} coordinate system 

 
nu1  – projection size of u


 on the way in


 

We will also use the standard un coordinate form of vector in {n} through the column vector form as follows: 

  3

321 ,, Ruuuu
Tnnnn   

When analyzing ship motion, it is unavoidable to avoid cases of coordinated conversion between {b}, {n}, {e} coordinate 

systems. The following symbols will then be defined to solve this problem: 

e

n

bv  – the linear velocity of the point  Ob compared with {n} represented in {e} 
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e

e

n  – the origin velocity of {n} relative to {e} shown in {b} 

n

bf  – force with line acting through point Ob represented in {n} 

n

bm  – moment of the point Ob represented in {n} 

Θnb – Corner Euler {n} and {b} 

Thus, the variable definitions are shown in Table 1. 

Table 1. Định ngh a c c bi n trong h  s u b c t  do 

Tier 

free 
Motion description 

Force and 
moment 

Linear velocity and 
angular velocity 

Location and 

corner Euler 

1 
Movement in the direction x 

(surge) 
F u x 

2 
Movement in the direction y 

(sway) 
Y v y 

3 
Movement in the direction z 

(heave) 
Z w z 

4 
Rotates around the axis x 

(roll, heel) 
K p  

5 
Rotates around the axis y 

(pitch, trim) 
M q θ 

6 
Rotates around the axis z 
(yaw) 

N r ψ 

Also need to define the following elements: 

Location ECEF: 
3R

x

y

x

p e

e

b 

















 ; Longitude and latitude: 
2S

l
en 











 

Location NED: 
3R

D

E

N

p n

n

b 

















 ; Trạng th i (góc Euler): 
3Sen 

























 

Linear velocity BODY: 
3R

w

v

u

v b

n

b 

















 ; Original velocity BODY:
3R

r

q

p
n

n

b 

















  

Force BODY: 
3R

Z

Y

X

f b

b 

















 ; Momen BODY: 
3R

N

M

K

mb

b 

















  

In which, R3 is a third Euclidean space and S2 is a quadratic torus (meaning that there are two angles defined in the interval [0; 

2π]) and S3 is a third sphere. 
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At this point, the general motion of the six-degree of freedom ship with Ob can be viewed as the origin depicted by the 

following vectors: 

3Rphayp e

n

b

n

n

b 











 x S3;  

6R

v

b

n

b

b

n

b





















 ; 

 

6R
m

f

b

b

b
b













  

Where, η denotes the location and direction vector of the train, υ denotes the linear velocity and origin 

velocity, and denotes the force and torque acting on the train. 

2.2. Rotation matrix, transition between frames of reference 

Normally, if considering Location, it is often used NED coordinate system, but when considering force, torque or speed, the 

BODY coordinate system should be used. Therefore, analyzing the transition between frames of reference is very necessary. 

One of the tools to solve this conversion problem is rotation matrix. 

The rotation matrix R between the two frames of reference a and b is denoted 
a

bR  and is a matrix belonging to a set of special 

orthogonal groups of order 3 SO (3): 

 ,{)3( 33xRRRSO   R l  tr c giao v  có }1det R  (1) 

Here, SO (3) is a subset of all 3rd order orthogonal matrices, meaning SO (3)  O (3) with: 

 },{:)3( 33 IRRRRRRRO TTx   (2) 

The rotation matrix R  SO(3) and satisfy the nature: 

1det,  RIRRRR TT
  (I is the unit matrix) 

The inverse matrix of the rotation matrix is: 
TRR 1

. From here, the symbol for converting a vector from one frame of 

reference to another is as follows: 

 
fromto

from

to vRv   (3) 

Inside, 
3Rv from   vector representation to be converted to new coordinate system is performed by rotation matrix 

to

fromR  

and the result is vector 
3Rvto  . 

3. CONSTRUCTION OF A KINEMATIC EQUATION FOR A SHIP 

Derived from Euler's theorem "Any change in relative orientation between two undistorted bodies or two frames of reference 

{A} and { } can be provided by a simple rotation of { } in {A} ”. 

Consider an internal velocity vector BODY 
b

n

bv  and an internal velocity vector NED 
n

n

bv . According to the above theorem, can 

be expressed 
n

n

bv  according to the 
b

n

bv  through a simple rotation, call  T321    is the unit vector ( 1 ) of that 

axis and β is the angle at which the NED needs to rotate. At that time, we write: 

 RRvRv n

b

b

n

b

n

b

b

n

b  :,  (4) 
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In which, the matrix R can be calculated as a rotation matrix representing an angle around the axis as follows: 

   )(cos1)(.sin 2

33  SSIR x    (5) 

Where I is the unit matrix, S(λ) is the symmetry matrix and )()(2  SS  ,  

33)( xIS
T

   because λ is the unit vector. 

Expanding (7) we have:

 























































































1

1

1

cos1

0

0

0

sin

`00

010

001

2

33231

32

2

221

3121

2

1

12

13

23

333231

232221

131211

















RRR

RRR

RRR

R  

With the elements of R : 

 

 

 

 

 

 

 

 

 

  13232

13223

23131

23113

32121

32112

2

333

2

222

2

111

sincos1

sincos1

sincos1

sincos1

sincos1

sincos1

coscos1

coscos1

coscos1





































R

R

R

R

R

R

R

R

R

 

3.1. Euler's angle variation 

The corners Euler: roll(), pitch(θ) and yaw(ψ) used for BODY velocity vector analysis 
b

n

bv  in the frame of reference NED. 

  )3(: 3 SOSR nb

n

b   denotes the Euler angular rotation matrix with the argument  Tnb  ,, . So: 

  b

n

bnb

n

b

n

n

b vRv                                                 (7) 

Considering the main rotation matrices (revolving around one axis of the coordinate system), obtained the following results: 

According to the axis x,  T001  and β = . Apply formula (6) with replacement  T001 and I =  ando: 























cossin0

sincos0

001

,xR                                  (8)

 

 

 According to the axis y,  T010  and β = θ. axis z then  T100  and β = ψ : 
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

























cos0sin

010

sin0cos

,yR

 

(9) 

                                                                    














 



100

0cossin

0sincos

, 



zR

                (10)

 

These transitions can be clearly seen in Figure 4 

 

 
Picture 4. Euler's angle rotation order (zyx convention) of a submarine 

rotated from {n} to {b} using key rotations 

Continue, denoting  nb

n

bR 
 
as key rotation matrices. We have NED and BODY as two independent separate frames of 

reference, starting here to perform a rotation for the NED coordinate system with Rz,, Then we continue to do one rotation 

Ry, and finally the rotation Rx,. The results we obtained: 

    ,,, xyznb

n

b RRRR   (11) 

The order of performing the above rotations according to the zyx convention. In navigation, positioning and control, the zyx 

convention from {n} to {b} is often used. In addition, thanks to property 1 of rotation matrix, it is easy to define rotation matrix 

from {b} to {n} as follows:       T

z

T

y

T

x

T

nb

n

bnb

n

bnb

b

n RRRRRR  ,,,

1



 (12) 

To better understand this problem, study Figure 4 with the following assumptions: 

For x3y3z3 is the coordinate system obtained after shifting the coordinate systems NED xnynzn  parallel to itself until its original 

coincides with the BODY coordinate system. Coordinates x3y3z3 will rotate a yaw angle (ψ) around the axis z3 to create a new 

coordinate system x2y2z2. Then the coordinate system x2y2z2 continue to rotate a pitch angle (θ) around y2 to create a new 

coordinate x1y1z1. Finally, the x1y1z1 coordinate system rotates at an angle roll () x1 to finally coincide with the coordinate 

system BODY xbybzb. 
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Expansion (11) obtains the matrix  nb

n

bR 
 
The elements are calculated according to the desired coordinate variables , θ, 

ψ, in the end we have: 

 






























coscossincossin

cossinsinsincossinsinsincoscoscossin

sincoscossinsinsinsincoscossincoscos

nb

n

bR  (13)  

   

The velocity vector can now be represented 
b

n

bv  in {n} is as follows: 

   b

n

bnb

n

b

n

n

b

n

n

b vRvp   (14) 

Expansion (14) yields: 

    sincoscossinsinsinsincoscossincoscos  wvuN

    cossinsinsincossinsinsincoscoscossin  wvuE

  sincossincossin wvuD    (15) 

From (14) it is easy to infer: 

     n

n

b

T

nb
n
b

n

n

bnb
n
b

b

n

b pRpRv  
1

 (16) 

3.2. Angular velocity variation 

Call the angular velocity vector conversion matrix BODY  Tb

n

b rqp ,,

 

and derivative state vector  Tnb   ,,

là  nbT   
with the following transformation formula: 

   b

n

bnbnb T  
 (17) 

Now, will find a way to calculate  nbT  . 
b

n

b  it is not possible to integrate directly to obtain the actual coordinate angles. 

However, it is possible to turn to vector analysis  Tnb  ,,  with the attention that these angles do not represent a 

general coordinate system (since they are Euler angles), we will calculate  nbT   through  nbT 



1
 instead of 

calculating directly by considering in many cases the following: 

   nbnb

T

y

T

x

T

x

b

n

b TRRR 





















































 










1

,,, 0

0

0

0

0

0







   (18) 

Split case and compute  nbT 



1
 will be visualized more easily through figure 5 
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Picture 5. Angles representations Euler (α, β, γ) between the two coordinate systems xyz and XYZ have the same origin O 

In Figure 5, ON is the intersection of the two planes xOy and ZOY and OM is the intersection of xOy and XOY. Then, 

considering the correlation, XYZ is BODY and xyz is NED. Rotate the xyz around z at an angle yaw ψ (then the new 

coordinate system has the y axis coinciding with ON. Then, rotate around this  N axis an angle θ. At this point, the x-axis of 

system coinciding with XYZ. Clearly we see  , θ, ψ do not belong to the same general coordinate system. Through the above 

rotation we see that angle θ will be considered after the rotation Rx,. Therefore, it is possible to switch corners θ about the 

same coordinate system as   by 
T

xx RR  ,

1

, 
. The argument is similar to angle ψ We will obtain the above formula. 

Expansion (18), get the end result for  nbT  : 

  



































cos

cos

cos

sin
0

sincos0

tancostansin1

nbT  (19) 

Obviously with the calculation as above we see, will not exist  nbT   with angle pitch  = ±900 and at the same time 

 nbT   also does not satisfy the properties of the rotation matrix ie    nb

T

nb TT  





1
. 

 nbT  , (17) deployment obtained: 

 

90,
cos

cos

cos

sin

sincos

tancostansin





















rq

rq

rqp







 (20) 

Combining (15) and (20) to form the hexagonal kinetic equation for ships, we have: 

 
 

  






























b

n

b

b

n

b

nbx

xnb

b

nn

n

b
TO

OR
p





33

33  (21) 
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4. CONCLUDE 

Thus, a system of six-fold kinetic equations for unmanned ships on water has been built. Next, will build a dynamic equation 

for the train to know how the impact of forces and torque on the train will affect the speed and acceleration of the train. These 

results will help in the design and simulation of controls and navigation for unmanned ships on water. 
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