International Journal For Technological Research In Engineering

Volume 1, Issue 3, November - 2013

ISSN (Online) : 2347 - 4718

ADVANCED ENCRYPTION STANDARD - VHDL IMPLEMENTATION

M. Komala Subhadra!
!Department of Electronics and Communication Engineering
Sree Nidhi Institute of Science and Technology(SNIST)
Hyderabad, Andhra Pradesh, India

Abstract: The new Advanced Encryption Standard (AES)
has been recently selected by the US government for protect-
ing sensitive social information. Due to its simplicity and
elegant algebraic structure, the choice of the AES algorithmn
has motivated the study of a new approach to the analysis of
block ciphers.

The Advanced Encryption Standard can be programmed in
software or built with pure hardware. However Field Pro-
grammable Gate Arrays (FPGAs) offer a quicker, more cus-
tomizable solution. Field Programmable Gate Array (FPGA)
serves perfectly the cryptosystems in high speed communica-
tions links or servers.

This paper proposes an efficient FPGA implementation of
AES using VHDL. An AES encryptor is designed and imple-
mented in FPGA. An AES decryptor is also designed and inte-
grated with the AES encryptor to yield a full functional AES
en/decyptor. VHDL stands for Very High Speed Integrated
Circuit Hardware Description Language. Xilinx software is
used for the simulation and optimization of the synthesizable
VHDL code. All the transformations of both Encryption and
Decryption are simulated using an iterative design approach
in order to minimize the hardware consumption.

Keywords: Encryption, Key Generation, FPGA, VHDL, De-
cryption.

I. INTRODUCTION

The Advanced Encryption Standard which will be referred to
as AES is the current industrial standard and has been in vogue
since 2001. It is a specification for the encryption of electronic
data established by the U.S National Institute of Standards
and Technology (NIST) in 2001. It is based on the Rijndael
cipher developed by two Belgian cryptographers, Joan Daemen
and Vincent Rijmen, who submitted a proposal which was
evaluated by the NIST during the AES selection process

In cryptography, encryption is the process of encoding mes-
sages (or information) in such a way that hackers cannot read
it, but that authorized parties can. In an encryption scheme, the
message or information (referred to as plaintext) is encrypted
using an encryption algorithm, turning it into an unreadable
ciphertext. This is usually done with the use of an encryption
key, which specifies how the message is to be encoded. Any
adversary that can see the ciphertext should not be able to
determine anything about the original message. An authorized
party, however, is able to decode the ciphertext using a decryp-
tion algorithm, that usually requires a secret decryption key,
that adversaries do not have access to.

The AES encryption method finds extensive use in the elec-
tronic and computational industry as most of the arithmetic
operations that we generally use are not the ones used in here
rather its the ones which are highly electronic efficient and can
be implemented using shift registers and exclusive OR gates
which any processor is efficient in handling. This makes the
complicated algorithm run very quickly and using minimal
processor power and minimal hardware.

II. DESCRIPTION OF THE ALGORITHM

The AES algorithm is a symmetric-key scheme. In symmetric-
key schemes, the encryption and decryption keys are the same.
Thus communicating parties must agree on a secret key before
they wish to communicate. It is also known as private-key
scheme.

AES is a variant of Rijndael which has a fixed block size of
128 bits, and a key size of 128, 192, or 256 bits. AES operates
on a 4AU4 order matrix of bytes, termed the state, although
some versions of Rijndael have a larger block size and have
additional columns in the state.

The key size used for an AES cipher specifies the number
of repetitions of transformation rounds that convert the input,
called the plaintext, into the final output, called the ciphertext.
The number of cycles of repetition are as follows:

a) 10 cycles of repetition for 128-bit keys.
b) 12 cycles of repetition for 192-bit keys.

c) 14 cycles of repetition for 256-bit keys.

Here, The algorithm is used in encrypting data which is
stored in blocks of 128-bit (here) and is encrypted with a 128-
bit cipher key which is essential to decrypt the information
locked in the encrypted data.

The Encryption program needs two pieces of inputs one, is
the input data which is to be encrypted and the other being the
Cipher key with which the information will be locked . The
Algorithm is in turn divided into two distinct parts :

a) Encyption

b) Key Generation

We will first look into the Encryption Algorithm then Key
generation followed by the Decryption Algorithm.

A. Encryption Algorithm

The Encryption process contains 10 rounds and each round
contains 4 different transformations at the end of the 10 rounds
the encrypted values are produced. The Transformations are :

www.ijtre.com

Copyright 2013.All rights reserved.

132

International Journal For Technological Research In Engineering

Volume 1, Issue 3, November - 2013

ISSN (Online) : 2347 - 4718

1. Substitution Bytes
2. Shift Rows

3. Mix Columns

4. Add Round Key

Each Round need not use all the transformations. The first
round does only the 4th transformation while the last round
that is round 10 does only three transformations.

GCipher key

‘AddRoundKey

1-SubBytes

3-MixColumns Round key

T Adounaoy ® @
-

-

Round key 10

AddRoundKey &)

Ciphertext FEFH

Figure 1: AES Encryption Process

1. Substitution Bytes: This is the first transformation to be
done on the input data i.e, the input matrix.This step
is also known as SubBytes.In the SubBytes step, each
byte in the array is updated using an 8-bit substitution
box, the Rijndael S-box. This operation provides the non-
linearity in the cipher. The S-box used is derived from
the multiplicative inverse over g f (28), known to have
good non-linearity properties. To avoid attacks based on
simple algebraic properties, the S-box is constructed by
combining the inverse function with an invertible affine
transformation. The S-box is also chosen to avoid any
fixed points (and so is a derangement), and also any
opposite fixed points.

The Affine Transformation is used to generate the Sub
Box which is the lookup table from which the values are
substituted.
The procedure to be followed to substitute the bytes in the
matrix are :

a) Select any element say 19 which is in hexadecimal
notation.

b) The S-box element in the 1st row and 9th column is
to be selected and substituted in its place (i.e., d4).

c) Similarly for any element in the matrix.

2. Shift Rows: This is the Second Transformation in the
series of 4 Transformations and is extremely simple to
implement. It involves rotating the rows of the input
matrix circularly upwards.

B.

hex

0|1 (2|3 |4|5]|6|7|8 |9 a|b|lec|d]|e]f
63 |7c| 77 |Tb | f2 | 6b | 6 |c5 (30 (01|67 |2b|fe|dl|ab|76
82| [7d]fa |59 [47[f0 [ad|dd|a2 af|% [ad]|72]c0
b7 [fd (9326 |36 [3f | £7[cc |34 |a5|e5|f1 |71 |8 |31]15
04 ¢ |23 [c3|18 |96 [05(% (071280 (e2|eb|27 |b2|75
0983 |2 |la|lb|6e|5a|ald |5 |3b|d6|bl|2|ed|2f|84
53 [dl [00 [ed |20 [fc|bl|5b|6a|cb|be|39|daf[dc|58]cE
d0 |ef [aa |[fb |43 |4d | 33|85 |45 |9 (02| 7f |50 |3c|9f|ab
51| a3 |40 | Bf |92 | 9d | 38| f5 |bc | b6 |da|2l|10[ff|£3]|d2
8)cd|0c |13 ec |5 9744 |17 |cd|al|Te|[3d]|6d |5 |19]73
9(60 |81 | 4f [de|22)|2a |90 (88|46 |ce|bB |14 |de|5e |0b|db
alel |32 |3a[0a[49)06]24 5 [c2[d3|ac|62][091]9 |ed |79
blel|cB |37 |6d|8d|d5|de|ad|6c |56 |fi|ea|65]7a|ae|0B
<
d
e
f

s

Y =N P e

ba |78 [25[2% |lc|ab|bd|chb|eB|dd 74 1f |db|bd|8D]|8a
70 | 3e | b5 [66 | 48 | 03 | 6| 0e [61 | 35|57 [b9 |86 [cl|1d] %
el |f8 (98|11 |69 |d9|B |9 |9 |le|87 |ed|ce|55|28|df
Bc|al | 89 Od | bf |6 |42 |68 [4L [99 |2d | 0f | b0 |54 [bb |16

Figure 2: Substitution Box (S-Box)

3. Mix Columns: This is probably the most complicated of

the 4 Transformations in the Algorithm and involves the
Modulo Matrix Multiplication of the input matrix with
the following matrix ;

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

Each column is multiplied with the matrix and the an-
swer thus obtained will replace the input data and will go
ahead to undergo further transformations in the consecu-
tive rounds.

. Add Round Key: This is the final transformation in which

the Round Key which is specific to the particular round
is added to the result of the above three transformations,
Addition in this case is again Modulo addition which
is simply the bit-wise XOR of the participating values.
Round Key in the case of the first Round is simply the
Cipher Key and in the other Rounds is the Key gener-
ated specifically for that particular round using the Key
Generation Algorithm.

The Add Round key in the current situation in which we
are only considering the first round thereby the round key
is just the cipher key.

Key Generation Algorithm

There are a set of 11 Rounds in the Encryption process counting
the initial round also, and every Round without fail follows
the Add Round Key Transformation. Hence we need a total of
10 keys which are to be generated from the single key given
as the input, generating the required keys is known as the key
schedule.

The following are the steps involved in the process of gener-

ating the Keys required

Write down the entire sequence of 11 keys we need a matrix

which has 4 rows and 44 columns wherein the Round keys
have to be calculated. Consider the Cipher key below :

www.ijtre.com Copyright 2013.All rights reserved. 133

International Journal For Technological Research In Engineering
Volume 1, Issue 3, November - 2013

ISSN (Online) : 2347 - 4718

2b
7e
15
16

28 ab 09
ae f7 cf
d2 15 4f
a6 88 3¢

The entire Sequence of keys when written out in a matrix
form with the first column numbered 0 to last column be-
ing numbered 43 can be divided into two distinct groups i.e,
multiples of 4 and non-multiples of 4.

1.

C.

Generating the columns C4m: These columns are filled
in a different way i.e, in the case of the Multiples of
The following is the algorithm
followed: Consider the Column which is to be calculated
then the ones just before it will be Cm 1 this column has
to undergo two different transformations :

a) Rotation circularly upwards
b) Substitution of bytes in the rotated column

c) ubstitution of bytes in the rotated column.The 4*10
round constant matrix happens to be :

01 02 04 08 10 20 40 80 1b 36
00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00

d) To the resulting column the column Cm 4 in the key
generating Sequence has to be added the result is
the value of the column Cm .

This completes the generation of the 4m Column.

. Generating the Columns C4m+1;4m+2;4m+3: The next

set of columns to be generated in this case are the non
multiples of 4 which are relatively simple to generate and
the process is as follows:

The column to be generated if considered Cn then select-
ing the earlier column Cn 1 and adding it to the column
Cn 4 will generate the rest of the columns.

Following the same algorithm will generate the entire Key
Sequence. Each of the key are used in the different Rounds
in the corresponding Add Round Key Transformation
in which the key will be added to the resulting matrix
and the resulting answer is used as the input to the next
Round.

Decryption Algorithm

The Decryption Algorithm follows the exact same transforma-
tions with their effect negated, the transformations are :

1.

Inverse Substitution Bytes - Inverse SubBytes is simply a
transformation in which the value in the input is looked
up at the S-Box and the corresponding Row and Column
are recorded and substituted in the place of the input
matrix to give out the result.

. Inverse Mix Columns - In this case the matrix with which

the input matrix is to be Modulo multiplied is :

14 11 13 09
09 14 11 13
13 09 14 11
11 13 09 14

I1I.

Here the elements of the matrix are all in decimal notation
and not in the traditional hexadecimal notation.

. Inverse Shift Rows - This Transformation is again simply

the inverse of its counter part where in the input matrix
was circularly rotated to the left, in this case the input
matrix’s rows are rotated to the right.

. Inverse Add Round key - The Transformation as its coun-

terpart is simply the bit wise addition of the input with
the correspondiRound Keys. The only thing that sets this
Transformation apart from its counter in Encryption pro-
cess is that, here in the first Round we add to the input the
last four Columns of the Key sequence which is different
from the Add Key in Encryption process where in the first
round would add the input to the Cipher Key. In this case
though we add the Cipher Key to the final step i.e, before
we end up getting the final decrypted value .

VHDL IMPLEMENTATION OF AES

Few topics to be known before getting into the implementation
are the following:

a)

b)

FPGA: A field-programmable gate array (FPGA) is an
integrated circuit designed to be configured by a cus-
tomer or a designer after manufacturing-hence "field- pro-
grammable". The FPGA configuration is generally speci-
fied using a hardware description language(HDL). Con-
temporary FPGAs have large resources of logic gates and
RAM blocks to implement complex digital computations.
The ability to update the functionality after shipping, par-
tial re- configuration of a portion of the design and the
low non- recurring engineering costs offer advantages for
many applications. The FPGA used here is XC7K325T.
FPGAs contain programmable logic components called
"logic blocks", and a hierarchy of reconfigurable in-
terconnects that allow the blocks to be "wired to-
gether"aATsomewhat like many (changeable) logic gates
that can be inter-wired in (many) different configurations.
Logic blocks can be configured to perform complex combi-
national functions, or merely simple logic gates like AND
and XOR. In most FPGAs, the logic blocks also include
memory elements, which may be simple flip-flops or more
complete blocks of memory.

VHDL: VHDL (VHSIC Hardware Description Language)
is a hardware description language used in electronic
design automation to describe digital and mixed-signal
systems such as field-programmable gate arrays and in-
tegrated circuits. VHDL can also be used as a general
purpose parallel programming language. VHDL is com-
monly used to write text models that describe a logic
circuit. Such a model is processed by a synthesis program,
only if it is part of the logic design. A simulation program
is used to test the logic design using simulation models
to represent the logic circuits that interface to the design.
This collection of simulation models is commonly called a
testbench. VHDL has constructs to handle the parallelism
inherent in hardware designs, VHDL is strongly typed

www.ijtre.com

Copyright 2013.All rights reserved.

134

International Journal For Technological Research In Engineering
Volume 1, Issue 3, November - 2013

ISSN (Online) : 2347 - 4718

and is not case sensitive. In order to directly represent op-
erations which are common in hardware, there are many
features of VHDL, such as an extended set of Boolean
operators including nand and nor. VHDL also allows
arrays to be indexed in either ascending or descending
direction. One can design hardware in a VHDL IDE (for
FPGA implementation such as Xilinx ISE, Altera Quartus,
Synopsys Synplify or Mentor Graphics HDL Designer) to
produce the RTL schematic of the desired circuit. After
that, the generated schematic can be verified using sim-
ulation software which shows the waveforms of inputs
and outputs of the circuit after generating the appropri-
ate testbench. To generate an appropriate testbench for
a particular circuit or VHDL code, the inputs have to be
defined correctly. For example, for clock input, a loop
process or an iterative statement is required. A final point
is that when a VHDL model is translated into the "gates
and wires" that are mapped onto a programmable logic
device such as a CPLD or FPGA, then it is the actual hard-
ware being configured, rather than the VHDL code being
"executed" as if on some form of a processor chip.

¢) Implementation: The industrial implementation of the
Encryption process and the Decryption process is done
in a FPGA and there by the code for the above process
explained is written in VHDL which can later, be burnt
onto a FPGA. I n this case there are 3 modules ,one for
the Encryption process, one for Decryption and one fi-
nal module which outputs the encrypted and decrypted
values.

A. Encryption Algorithm

InitialRound : aes_addkey
Rounds1to9 : aes_sbyte
aes_shiftrow
aes_mixclms
aes_addkey
Round10 : aes_sbyte
aes_shiftrow
aes_mixclms
The above is simply the outline and considering each transfor-
mation a function we can use for loops and if conditions to
get the work done. The output of each transformation in each
round is stored in an array and the output of the current round
is used as the input of the next round .

1. Substitution bytes:

aes sbyte: The input matrix contains elements which are
each an 8 bit number, the algorithm is to split the number
into the first four bits and the last four bits and thereby
convert the value into hexadecimal and look up the s-box
to give out the substitution value.

Hardware implementation of this transformation would
be storing the S-box in a ROM module and looking it up
whenever necessary, or generating the values dynamically.

2. Shift Rows:
aes shiftrow: This just involves moving the first row by
0 second by 1 third by 2 and fourth by 3 cells and hence

as observed every nth row is to be moved by n-1. This
transformation can be implemented using shift registers.

. Mix Columns:

aes mixclms : This transformation involves the mul-
tiplication of the input with the specified matrix :
02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

And as it is known in the case of modulo multiplication,
multiplication with 3 is simply not adding the number
three times rather it is the shifting of the number once
and then adding it onto itself as;

0011 = 0010+0001
Where in multiplication with two will be shifting the
number by one cell to the left and multiplication with
one will yield the same number. The above matrix when
observed is the result of shifting the first row circularly
through the number of the row to the right. So we
can as well keep the sequence 02 03 01 01 constant
and rotate the Column under consideration. As every
number in the Column will be multiplied with 2,3,1
the procedure followed is to genrate another matrix
which contains the modulo multiplied values of the
ones under consideration. This has been done because
multiplication with 2 involves shifting(or sometimes the
mod multiplication), multiplication with 3 involves mod
multiplication with 2 and adding the number to itself,
Similarly multiplication with 1 is just the number. Hence
as it has been seen that every step involves shifting, a
separate matrix which contains the modmultiplied values
of the current values has been generated and added
when required. Hence if A contains the input then B
contains the shifted values(or in the modulo multiplied
with 2 value which need not always be the shifted value)
of every element in the same position in matrix B, then
multiplication with 2 is the value of the element in same
position in B. Multiplication with 3 is element in A + the
corresponding element in B.
The hardware implementation of the above is done using
XOR gates and the shift registers which are used in the
case of multiplication.

. Add Round Key:

aes addkey: The process is simply the XOR of the current
matrix with the corresponding Round Key. Generation of
the Round key will be dealt with in the Key generation
Section. As for now consider the key sequence has been
generated. This transformation can be implemented in
the hardware scale using only XOR gates.

Key Generation Algorithm

. Generating the columns C4m: On the hardware scale, it

can be implemented by shift registers for Rotation Word
Transformation where as the Substitution bytes transfor-
mation will be implemented by a ROM module with the
S-box as look up table and XOR gates for the addition.

www.ijtre.com Copyright 2013.All rights reserved. 135

International Journal For Technological Research In Engineering
Volume 1, Issue 3, November - 2013 ISSN (Online) : 2347 - 4718

2. Generating the Columns C4m+1;4m+2;4m+3: This on the
hardware scale can be implemented using XOR gates
alone and registers to store the values.

7a[58[73
EOEED
Jb9 80 5 |

g3 [7a e

47[1e|6d
'IS'T!".IA-
te|Te 8
3e[44[38]

cd|el ks
wlif‘ﬁ\
25(0c 0
892t

rcam

Figure 3: Complete Key Sequence

Figure 7: Encryption process (Round 0 to 5)

C. Decryption Algorithm

1ei]re aile[ioles] [aa[7e[iolas] [am[zs[33[37 [1i[ebca
e EEEC el -
The decryption algorithm and process is the inverse of its slotlssloe] [rolorlsslse] [rolsclaclzs) [salsolosles] [galsalaslea
counterpart e [0) e
17[7a[as|25] [fo[ee[a3[3E] [3E[eo[]a3| |blec|ar]es EAm
1. Inverse substitution bytes : On the hardware scale this is Aounds Elalara] Doletels| forietem i
. . : [afeclisloe| [aofaslar]es| [afsa[eclee] [eelsslealos|® [Mlnalesfsl =
implemented using a ROM module which can have the llesloe] [selooledlze] [releblenled] [enletledlen] EMIGEIEOaE)
. . caloa[es[es| [e7]e24a[s7] [e7]e2[ad]57] [a7]a0]a3[ec| [REIiB]z8[5T
lookup table and will give out Row and Column of the Rounds DISSERe feolaleclos| [eofsioals| [seeali ﬂ'—*f:
. Fol2[ad|cs| |scds|s5[a] [a6|sc]as|s5] | [Blz1]a1]ce
input which will be substituted in the place of the input. o tb] ol sdiat] erenlaclat TS
Moundro [fzelertes| [islsnfsetsel [silss[zefon EEEHT eslscles|_
2. Inverse mix columns: This can be carried out using shift e —
registers for multiplication and XOR gates for the addi- Output F"‘ s3(ip
) [alen[o7[52
tion. Giphertext
3. Inverse shift rows: This can also be implemented on the Figure 8: Encryption Process (Round 6 to 10)

hardware scale using shift registers.

4. Inverse add round key: This transformation can be imple-
mented by the use of XOR gates for addition.

D. Implementation Output - Inspection

vavotomi wis”

Figure 9: Simulator Screenshot for Decryption

@4 Cipher key ((2h,28,ah,09),(Te,ae,7,c0,(15,d2,15,49,(16,26,58,3c))

E4 Encrypted ((39,02,de,19),(25,dc,11,62),(54,09,85,0h),(1d,M,97,32))

BE4 Decrypted 1] ((32,88,31,20),i43,53,31,37),(f8,30,98,07),(a8,8d,a2,34)) |
4clock |

Figure 10: Decryption

Figure 4: Simulator Screenshot for Encryption

Bl Signals * values startofround after InvShiftRows after InvSubBytes RoundKey after AddRoundKey

Input ((32,86,31,20),(43,5,31,37),(16,30,38,07),(26,5d,22,34))

Cipher Key ((20,28,h,09),(78,38,17 £0),(1 5,02,15 41,(16,36,58,3c))
E4 Encrypted ((38,02,00c,19),(25,4c,11,6a),(84,09,65,00), (141,97, 32)) Input [5a[0s[a5[o8]
taleolo7[32

T

os[cb[3a[ar] [eo]cb[3a[at] [eB[59]en[i] 857 [a7]so]aslic
: . : e roun 31[52[20[05| [09]31[32[2e| [40[2e[a1les [zafax[se| _[37]as]70[o€
Figure 5: Encryption R e 33 M el e A - oo e e
[bs[72[5e[08] [72[5e[oa]bs] [1e[ealer]az] [21[6e] [sales]es]be
i round 2 Ge[4c[o0[ec| [eclee[4c[o0] [e3[45[5alo6 [ea]
‘ [36]e7[4a[cs| [dalc3[s6]er| [sc[33]o8[bo| " [EB[Bales]
[as[ec[as[os] [sc[ae[o5[a6] [fo[2d[aalcs| [2R]e2]eo]
be[di[0alda] [be[d[0a[da] [sa]19]=3]7a] [5e[ea]ee]
3o[e1fes]es }_H_’_{sx Soletfes| [a1]es]e0[se [5[a6]as|
imv.round 3 [@[z2[2c[s6] [2c[eelas]ez] [v2]dc|io[oa] " [ER[eo]at]ae]
[fe[ce[colsa] [celcoladlze] [ba[1eles]oc] [@elEalb2az]
Figure 6: Encryption bit wise Figure 11: Decryption process (Round 0 to 3)

www.ijtre.com Copyright 2013.All rights reserved. 136

International Journal For Technological Research In Engineering
Volume 1, Issue 3, November - 2013

ISSN (Online) : 2347 - 4718

#7[27[ob[54] [E7]27[9b[54

] [

i round 4 wa]aa(bs[ab| [ab[ea[a3[bs] [o
' | [z

] [

40[3d[31[a0| [31[as]a0[3d]
3£[fo|££[a3| [fo[fE[a3[3%]

ai[e[iolec] [aa[ze[iofee] [e[ei]relsa
ax[os[as[6] Tos[as| [oo[s2[cebs

3afosas2s| [as[20[3a[03] [se[ac]sn]as
(feltclaz[z3] [zcfa|z3]ze] [ss]ez]3z]oe

inv. round 5

oife[ss[o7] [ease[ss]o7] [so]eeles]es
th[ce[cc[ar| [sf[tblcsec| [s2]e3[bilbs
96[aclaz|tb| [az[eo[s6[ec| [7£[63]35]be
Sclob[bal53] [sblbal53[76] [eslcols0lor

inv. round 6

52[85e3[6| [52[es[e3]f6] [a8[67]4d]a6
aa[11[ce[s0| [so[as[11[cE| [6c|1a[es[5E

94[28[a7]07| [28[d7[07[94] [ee[od[38[e7

Figure 12: Decryption process (Round 4 to 7)

ac[ef[13]45] [ac[ef[13]45] [aal61]82[68 7a[59]73| [58[1b[db[ib]

. [c1]bs[23]73] [73[c1|bs[23| [ef[dd[d2[32 96[35[59] [4d[4b]e7]6b)|

inv.round 8 ... — -

7 [as]salef]11] [c£[11]d6]5a| [sfe3[sa]46] bo[80[£6| [ca[s5a[ca[b0
b8|7b|df|b5| |[7b|df|b5|b8| [03]ef|d2|9al 43[7a]7g] [£1]ac(agles
49[4s[7£]77] [49]45]7¢[77] [a4[ee]eb]o2 88[23]2a| [04]e04e]28

v round 6 ... |aB[39[02[de| [dedbl39]02| [sc[9f[sbl6a 54[a3]6c| [66|cb|z8[06
< [#7]53[d2]96| [d2[96|87[53| [7£]35eal50|™ 2c[39]76] ~ [81]19]d3]26
3p[e9[f1|1a] [89]f1[1a[3b] [£2]2b[a3[a9 b1[39]05| [e5[9a|7alac

d4]eo[b8[1e]| [d4]eo0]be[te] [19]a0[9a[ed

. [bf[ba[a1]27| [27|bf|ba[41| [3d[f4]ce[fs|

inv. round 10%) =

7 [sq]s2[11]98| [12]98]sd|s2| [e3[e2[sa[48

30[ae[f1]es| [ae|f1[e5[30| [be[2b[2a[08

32[88[31]e0
output ... [43]58[31]37

 [£6]30] 98] 07
a8 ed[a2|34

plaintext

Figure 13: Decryption process (Round 8 to 10)

IV. ConcrusionN

Security is no longer an afterthought in anyone’s software de-
sign and development process. AES is an important advance
and using and understanding it will greatly increase the re-
liability and safety of your software systems. Because of the
advantages of FPGA like the ability to update the functional-
ity after shipping, partial re-configuration of a portion of the
design and the low non-recurring engineering costs make it
convenient to be used for the following application.

REFERENCES

[1] len.wikipedia.org/wiki/Advanced_Encryption_
Standard_process.

[2] lcsrc.nist.gov/publications/fips/fips/197/
fips—-197.pdf.

[3] len.wikipedia.org/wiki/Cryptanalysis.
[4] www.formaestudio.com/rijndaelinspector/.

[5] blog.ultrassecreto.com/wpcontent/uploads/
2009/06/projectofinal.html.

[6] www.x—n2o.com/aes—-explained/.

[7] www.ensilica.com/pfs/A_study_of_aes_and_
its_efficient_implementation_on_eSi_RISC_
r1.0.pdfl

[8] msdn.microsoft.com/en—us/magazine/ccl64055.
aspx#S9.

www.ijtre.com Copyright 2013.All rights reserved.

137

en.wikipedia.org/wiki/Advanced_Encryption_Standard_process
en.wikipedia.org/wiki/Advanced_Encryption_Standard_process
csrc.nist.gov/publications/fips/fips/197/fips-197.pdf
csrc.nist.gov/publications/fips/fips/197/fips-197.pdf
en.wikipedia.org/wiki/Cryptanalysis
www.formaestudio.com/rijndaelinspector/
blog.ultrassecreto.com/wpcontent/uploads/2009/06/projectofinal.html
blog.ultrassecreto.com/wpcontent/uploads/2009/06/projectofinal.html
www.x-n2o.com/aes-explained/
www.ensilica.com/pfs/A_study_of_aes_and_its_efficient_implementation_on_eSi_RISC_r1.0.pdf
www.ensilica.com/pfs/A_study_of_aes_and_its_efficient_implementation_on_eSi_RISC_r1.0.pdf
www.ensilica.com/pfs/A_study_of_aes_and_its_efficient_implementation_on_eSi_RISC_r1.0.pdf
msdn.microsoft.com/en-us/magazine/cc164055.aspx#S9
msdn.microsoft.com/en-us/magazine/cc164055.aspx#S9

	INTRODUCTION
	DESCRIPTION OF THE ALGORITHM
	Encryption Algorithm
	Key Generation Algorithm
	Decryption Algorithm

	VHDL IMPLEMENTATION OF AES
	Encryption Algorithm
	Key Generation Algorithm
	Decryption Algorithm
	Implementation Output - Inspection

	Conclusion

