International Journal For Technological Research In Engineering

Volume 1, Issue 4, December - 2013

ISSN (Online) : 2347 - 4718

ISSUE IN CLOUD-COMPUTING

Rahul Bhatnagarl, Suyash Raizada?, Pramod Saxena

3

!Department of Computer Science and Engineering, Amity University, Noida, India.

23Department of Software Engineering, JECRC University, Jaipur, India.

Abstract: Cloud computing systems fundamentally provide

access to large amounts of data and Computational resources
through a variety of interfaces. Many extant systems have
in common the notion that resources can be acquired and re-
leased on-demand and that the user interface be kept fairly
simple. In addition, resources provided by cloud computing
systems hide a great deal of information from the user through
virtualization (physical location of the resource, precise ar-
chitectural details of the compute resources). These types of
systems offer a new programming target for scalable applica-
tion developers and have gained popularity over the past few
years. However, most cloud computing systems in operation
today are proprietary, rely upon infrastructure that is invisi-
ble to the research community or are not explicitly designed
to be instrumented and modified by systems researchers inter-
ested in cloud computing systems.
In this work, we present EUCALYPTUS - an open-source soft-
ware framework for cloud computing that implements what
is commonly referred to as Infrastructure as a Service (InaS)
systems that give users the ability to run and control entire
virtual machine instances deployed across a variety physical
resources. We outline the basic principles of the EUCALYP-
TUS design, and discuss architectural trade-offs that we have
made in order to allow Eucalyptus to be portable, modular
and simple to use on infrastructure commonly found within
academic settings.

Keywords: Treats, Cloud service uset, and Cloud service
provider.

I. INTRODUCTION

There are many ways in which computational power and data
storage facilities are provided to users, ranging from a user
accessing a single laptop to the allocation of thousands of
compute nodes distributed around the world. Users generally
locate resources based on a variety of characteristics, includ-
ing the hardware architecture, memory and storage capacity,
network connectivity and, occasionally, geographic location.
Usually this resource location process involves a mix of re-
source availability, application performance profiling, software
service requirements, and administrative connections. While
great strides have been made in the HPC and Grid Computing
communities [10, 4] toward the creation of resource provision-
ing standards [9, 11, 17, 19], this process remains somewhat
cumbersome for a user with complex resource requirements.
For example, a user that requires a large number of com-
putational resources might have to contact several different
resource providers in order to satisfy her requirements. When
the pool of resources is finally delivered, it is often heteroge-

neous, making the task of performance profiling and efficient
use of the resources difficult. While some users have the ex-
pertise required to exploit resource heterogeneity, many prefer
an environment where resource hardware, software stacks,
and programming environments are uniform. Such unifor-
mity makes the task of large-scale application development
and deployment more accessible. Recently, a number of sys-
tems have arisen that attempt to convert what is essentially a
manual large-scale resource provisioning and programming
problem into a more abstract notion commonly referred to as
elastic, utility, or cloud computing (we use the term "cloud
computing" to refer to these systems in the remainder of this
work). As the number and scale of cloud-computing system
continues to grow, significant study is required to determine
directions we can pursue toward the goal of making future
cloud computing platforms successful. Currently, most existing
cloud-computing offerings are either proprietary or depend on
software that is not amenable to experimentation or instrumen-
tation. Researchers interested in pursuing cloud-computing
infrastructure questions have few tools with which to work.
The lack of research tools is unfortunate given that even the
most fundamental questions are still unanswered: What is the
right distributed architecture for a cloud computing system
? What resource characteristics must VM instance schedulers
consider to make most efficient use of the resources ? How
do we construct VM instance networks that are flexible, well-
performing, and secure ? In addition, questions regarding the
benefits of cloud computing remain difficult to address. Which
application domains can benefit most from cloud computing
systems and what interfaces are appropriate ? What types
of service level agreements should cloud computing provide
? How can cloud-computing systems be merged with more
common resource provisioning systems already deployed ?

Cloud computing systems provide a wide variety of inter-
faces and abstractions ranging from the ability to dynami-
cally provision entire virtual machines (i.e., Infrastructure-as-
a-Service systems such as Amazon EC2 and others [6, 7, 14, 5,
16]) to flexible access to hosted software services (i.e. Software-
as-a-Service systems such as salesforce.com and others [18, 12,
13, 15]). All, however, share the notion that delivered resources
should be well defined, provide reasonably deterministic per-
formance, and can be allocated and deallocated on demand.
We have focused our efforts on the "lowest" layer of cloud
computing systems (IaaS) because here we can provide a solid
foundation on top of which language, service, and application-
level cloud-computing systems can be explored and developed.

In this work, we present EUCALYPTUS: an open-source
cloud-computing framework that uses computational and stor-
age infrastructure commonly available to academic research

www.ijtre.com

Copyright 2013.All rights reserved.

190

International Journal For Technological Research In Engineering

Volume 1, Issue 4, December - 2013

ISSN (Online) : 2347 - 4718

etwork
1
N VAN J
Cluster A Cluster B

Figure 1: EUCALYPTUS

groups to provide a platform that is modular and open to
experimental instrumentation and study. With EUCALYPTUS,
we intend to address open questions in cloud computing while
providing a common open-source framework around which we
hope a development community will arise. EUCALYPTUS is
composed of several components that interact with one another
through well-defined interfaces, inviting researchers to replace
our implementations with their own or to modify existing
modules. Here, we address several crucial cloud computing
questions, including VM instance scheduling, cloud computing
administrative interfaces, construction of virtual networks, def-
inition and execution of service level agreements (cloud/user
and cloud/cloud), and cloud computing user interfaces. In this
work, we will discuss each of these topics in more detail and
provide a full description of our own initial implementations
of solutions within the EUCALYPTUS software framework.

II. EUCALYPTUS DESIGN

The architecture of the EUCALYPTUS system is simple, flexible
and modular with a hierarchical design reflecting common
resource environments found in many academic settings. In
essence, the system allows users to start, control, access, and ter-
minate entire virtual machines using an emulation of Amazon
EC2’s SOAP and Query interfaces.

That is, users of EUCALYPTUS interact with the system
using the exact same tools and interfaces that they use to
interact with Amazon EC2.

Currently, we support VMs reflect underlying resource
topologies that run atop the Xen[2] hyper visor, but plan to
add support for KVM/QEMU [3], VMware [21], and others in
the near future.

We have chosen to implement each high-level system compo-
nent as a standalone Web service. This has the following bene-
fits: First, each Web service exposes a well defined language-
agnostic API in the form of a WSDL document containing both
operations that the service can perform and input/output data
structures. Second, we can leverage existing Web-service fea-

Physical Resource

VM Instance

Public Interface Private Interface

To Publi
“ E?h;:n:: Public Bridge Private Bridge

From|
Remote [—
WVDE Switch

To Remote
VDE Switch

Physical Interface VDE Switch

VDE Cable

Figure 2: INSTANCE MANAGER

tures such as WS Security policies for secure communication
between components.

There are three high-level components, each with its own
Web-service interface, that comprise a UCALYPTUS installa-
tion:

1. Instance Manager controls the execution, inspection, and
terminating of VM instances on the host where it runs.

2. Group Manager gathers information about and schedules
VM execution on specific instance managers, as well as
manages virtual instance network.

3. Cloud Manager is the entry-point into the cloud for users
and administrators. It queries node managers for infor-
mation about resources, makes high-level scheduling deci-
sions, and implements them by making requests to group
managers. The relationships and deployment locations of
each component within a typical small cluster setting are
shown Figure 1. A graphical representation of knowledge
contexts.

A. Instance Manager

An Instance Manager (IM) executes on every node that is des-
ignated for hosting VM instances. An IM queries and controls
the system software on its node (i.e the host operating system
and the hyper visor) in response to queries and control requests
from its Group Manager. An IM makes queries to discover
the node’s physical resources the number of cores, the size
of memory, the available disk space as well as to learn about
the state of VM instances on the node (although an IM keeps
track of the instances that it controls, instances may be started
and stopped through mechanisms beyond IM’s control). The
information thus collected is propagated up to the Group Man-
ager in responses to describe Resource and describe - Instances
requests.

Group Managers control VM instances on a node by making
run Instance and terminate Instance requests to the node’s IM.
Upon verifying the authorization e.g., only the owner of an
instance or an administrator is allowed to terminate it and after

www.ijtre.com

Copyright 2013.All rights reserved.

191

International Journal For Technological Research In Engineering

Volume 1, Issue 4, December - 2013

ISSN (Online) : 2347 - 4718

confirming resource availability, the IM executes the request
with the assistance of the hyper visor. To start an instance, the
IM makes a node-local copy of the instance image files (the
kernel, the root file system, and the ram disk image), either
from a remote image repository or from the local cache, creates
a new endpoint in the virtual network overlay, and instructs
the hyper visor to boot the instance. To stop an instance, the
IM instructs the hyper visor to terminate the VM, tears down
the virtual network endpoint, and cleans up the files associated
with the instance (the root file system is not preserved after the
instance terminates).

1. GROUP MANAGER

The Group Manager (GM) generally executes on a cluster front-
end machine, or any machine that has network connectivity
to both the nodes running IMs and to the machine running
the Cloud Manager (CM). Many of the GM’s operations are
similar to the IMs operations but are generally plural instead
of singular (e.g. run Instances, describe Instances, terminate
Instances, describe Resources).

GM has three primary functions: schedule incoming instance
run requests to specific IMs, control the instance virtual net-
work overlay, and gather/report information about a set of
IMs. When a GM receives a set of instances to run, it contacts
each IM component through its describe Resource operation
and sends the run Instances request to the first IM that has
enough free resources to host the instance. When a GM re-
ceives a describe Resources request, it also receives a list of
resource characteristics (cores, memory, and disk) describing
the resource requirements needed by an instance (termed a VM
"type"). With this information, the GM calculates how many
simultaneous instances of the specific "type" can execute on its
collection of IMs and reports that number back to the CM.

Finally, the GM is responsible for setting up and controlling
the instance virtual network over which all VM instances within
a user’s set of instances may communicate, even when those
instances may be running on physical machines distributed
over wide areas and shielded by firewalls. To implement such
a network overlay, the GM uses software from the Virtual Dis-
tributed Ethernet (VDE) project [20]. This software implements
the Ethernet protocol in software, providing virtual Ethernet
"switches" and "cables" to be run as user-space processes. Each
component (IM, GM, CM) in EUCALYPTUS runs a single VDE
switch, and VDE cables (encrypted UDP connections) are estab-
lished between as many switches as possible. As long as there
is at least one cable to each switch, the VDE network provides
a fully connected Ethernet network to which instance’s private
network interfaces are attached.

Once the GM has set up the virtual Ethernet overlay, each in-
stance is given both a "public" and "private" interface, which are
connected via software Ethernet bridges to the local Ethernet
and VDE overlay, respectively. In Figure 2, we show how each
instance is logically connected to both types of network. This
configuration allows instances within a cluster to communicate
over the "fast" local network, and also to use the empirically
slower virtual network to communicate with instances physi-

Data Resources :
1
1
IVMs)& GMs| ‘\.
Groups — i
-) i =
KeyPairs |« /| 1
/"F I‘| -
Networks 4/ :\]
Images |1 : GMN
PRS :
1
1

Figure 3: CLOUD MANAGER

cally residing in other clusters. To the owner of the instances,
the overlay provides the appearance of a flat subnet to which
all instances are connected.

IV. CLOUD MANAGER

The underlying resources that comprise a EUCALYPTUS cloud
are exposed to users, and managed by, the Cloud Manager
(CM). The CM, like the system overall, is a three-tiered design
as depicted in Figure 3. The tiers are distinct in their roles and
concomitant data statefulness/consistency requirements:

Interface Services present user-visible interfaces, handling
authentication and protocol translation, and expose system
management tools.

1. Data Services govern persistent user and system data.

2. Resource Services arbitrate allocation and monitoring of
resources and active VM allocations.

Our implementation supports extension and modification
at granularity ranging from complete service replacement to
fine-grained tuning (e.g., of user interfaces or allocation policy)
through well-defined message and language interfaces, respec-
tively. System-enforced separation between interface and inter-
nal message protocol insulates service implementations from
user protocol details. Similarly, configurable service-ensemble
organization decouples individual service implementations
from run time coordination dependencies. The Interface’s WS
service advertises a single multi- protocol endpoint for authen-
ticating and consuming user requests while also translating the
request to an internal protocol. Users can make requests using
either the EC2 SOAP or EC2 "Query" protocols [1] (which, addi-
tionally, require incompatible authentication mechanisms: X509
and HMAC signatures, respectively). This duality has been
achieved through the introduction and utilization of pluggable
request handling interfaces in the supporting Web services
stack software. The key function of the Interface service is
the mapping of requests from these disparate protocols to an
independent system-internal protocol.

Consequently, internal services are unconcerned with details
of the outward-facing interfaces utilized by users while benefit-
ing from enforcement of message validation requirements.In

www.ijtre.com

Copyright 2013.All rights reserved.

192

International Journal For Technological Research In Engineering

Volume 1, Issue 4, December - 2013

ISSN (Online) : 2347 - 4718

addition to the programmatic interfaces (SOAP and "Query"),
the Interface tier also offers a Web interface for cloud users and
administrators. Using a Web browser, users can sign up for
cloud access, download the cryptography credentials needed
for the programmatic interface, and query the system, e.g.,
about available disk images.The administrators can, addition-
ally, manage user accounts: approve, disable, and delete them.
Currently, images can be added to the system by the adminis-
trator only with a command-line tool, but we expect the Web
interface to support complete administrative functionality in
the future.

The middle tier of Data Services handle the creation, modifi-
cation, interrogation, and storage of stateful system and user
data. Users can query these services to discover available
resource information (images and clusters) and manipulate
abstract parameters (key pairs, security groups, and network
definitions) applicable to virtual machine and network alloca-
tions. Conversely, the VM service resolves references to these
resources when realizing user requests. The Resource services
process user virtual machine control requests and interact with
the GMs to effect the allocation and deallocation of resources.
A simple representation of the system’s physical resource state
(PRS) is maintained through communication with the GMs and
used in evaluating the realization of user requests (vis a vis
service-level agreements, or SLAs). VM control requests are
handled asynchronously with respect to the user and, therefore,
transactions delimit changes to the PRS.

For example, VM creation consists of reservation of the
resources in the PRS, downstream request for VM creation,
followed by commitment of the resources in the PRS on success,
or rollback in case of errors.

PRS information is then exploited by an event-based SLA
scheme to evaluate the satisfiability of user requests and en-
force system policy. Application of an SLA is triggered by a
corresponding event (e.g., VM allocation request, expiry of a
timer) and can evaluate and modify the request (e.g., reject the
request if it is unsatisfiable) or enact changes to the system
state (e.g., time-limited allocations).While the system’s repre-
sentation in the PRS may not always reflect the actual resources,
notably, the likelihood and nature of the inaccuracies can be
quantified and considered when formulating and applying
SLAs.

A concrete example from our implementation allows users
to control the cluster to be used for the VM allocations by
specifying the "zone" (as termed by Amazon). Further, we have
extended the notion of zone to meta-zones which advertise
abstract allocation policies.For example, the "any" meta-zone
will allocate the user specified number of VMs to the emptiest
cluster, but, in the face of resource shortages, overflow the
allocation to multiple clusters.

V. DISCUSSION

The EUCALYPTUS system is built to allow administrator and
researchers the ability to deploy an infrastructure for user-
controlled virtual machine creation and control atop existing
resources. Its hierarchical design targets resource architectures

commonly found within academic and laboratory settings, in-
cluding but not limited to small and medium-sized Linux clus-
ters, workstation pools, and server farms. We use software that
provides a virtual Ethernet overlay to connect VM instances
that execute in isolated networks, providing users a view of the
network that is simple and flat. The system is highly modular,
with each module represented by a well-defined API, enabling
researchers to replace components for experimentation with
new cloud-computing solutions.

Finally, the system exposes its feature set through a common
user interface currently defined by Amazon EC2. This allows
users who are familiar with EC2 to transition seamlessly to a
EUCALYPTUS installation by, in most cases, a simple addition
of a command-line argument or environment variable, instruct-
ing the client application where to send its messages. In sum,
this work aims to illustrate the fact that the EUCALYPTUS
system has filled an important niche in the cloud-computing
design space by providing a system that is easy to deploy atop
existing resources, that lends itself to experimentation by being
modular and open source, and that provides powerful features
out-of-the-box through an interface compatible with Amazon
EC2.

VI. CONCLUSION

In this work, we present EUCALYPTUS: an open-source im-
plementation of an IaaS system. Presently, we and our users
have successfully deployed the complete system on resources
ranging from a single laptop (EC2 on a laptop) to small Linux
clusters (48 to 64 nodes). The system is being used to exper-
iment with HPC and cloud computing by trying to combine
cloud computing systems like EUCALYPTUS and EC2 with
the Teragrid, as a platform to compare cloud computing sys-
tems performance, and by many users who are interested in
experimenting with a cloud computing system on their own
resources. In addition, we made have a EUCALYPTUS instal-
lation available to all who wish to try out the system without
installing any software [8]. Our experience so far has been
extremely positive, leading us to the conclusion that EUCA-
LYPTUS is helping to provide the research community with a
much needed, open-source software framework around which
a user-base of cloud-computing researchers can be developed.

REFERENCES

[1] http://www.aws.amazon.com/ec2/.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A.
Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen. The
art of virtualization. ACM symposium on operating systems
principles, pages 164-167, 2003.

[3] F Bellard. Qemu : A fast and portable dynamic transla-
tor. Proceedings of the USENIX Annual Technical Conference,
FREENIX, pages 41-46, 2005.

[4] F. Berman, G. Fox, and T. Hey. Grid computing. Global
Infrastructure, 2003.

www.ijtre.com

Copyright 2013.All rights reserved.

193

http://www.aws.amazon.com/ec2/

International Journal For Technological Research In Engineering

Volume 1, Issue 4, December - 2013

ISSN (Online) : 2347 - 4718

5]

[20]

J. Chase, D. Irwin, L. Grit, J]. Moore, and S. Sprenkle.
Dynamic virtual clusters in a grid site manager. IEEE
International Symposium, pages 90-100, 2003.

http://www.aws.amazon.com/ec?2.
http://www.aws.amazon.com/ec?2.
http://www.enomaly.com,

http://www.eucalyptus.cs.ucsb.edu/wiki/
EucalyptusPublicCloud/.

http://www.teragrid.org/.
http://www..salesforce.com.
http://www..vmware.com,

I. Foster and C. Kesselman. A metacomputing infrastruc-
ture toolkit. International Journal of Supercomputer Applica-
tions, 1997.

D. Gannon. Programming the grid. Distributed software
components, 2002.

D. Greschler and T. Mangan. Networking lessons in de-
livering software as a service. International Journal of Net-
working, pages 317-321, 2002.

D. Greschler and T. Mangan. Networking lessons in de-
livering software as a service. International Journal of Net-
working, pages 339-345, 2002.

K. Keahey, I. Foster, T. Freeman, and X. Zhang. Virtual
workspaces. Achieving quality of service and quality of life in
the grid, pages 265-275, 2005.

P. Laplante, J. Zhang, and J. Voas. What is a name? distin-
guising between saas and soa. IT Professional, 2008.

M. McNett, D. Gupta, A. Vahdat, and G. M. Voelker. An
extensible framework for managing clusters of virtual
machines. 21st Large Installation System Administration
Conference (LISA), 2007.

T. Tannenbaum and M. Litzkow. The condor distributed
processing system. Dr. Dobbs Journal, 1995.

www.ijtre.com

Copyright 2013.All rights reserved.

194

http://www.aws.amazon.com/ec2
http://www.aws.amazon.com/ec2
http://www.enomaly.com
http://www.eucalyptus.cs.ucsb.edu/wiki/EucalyptusPublicCloud/
http://www.eucalyptus.cs.ucsb.edu/wiki/EucalyptusPublicCloud/
http://www.teragrid.org/
http://www..salesforce.com
http://www..vmware.com

	INTRODUCTION
	EUCALYPTUS DESIGN
	Instance Manager

	GROUP MANAGER
	CLOUD MANAGER
	DISCUSSION
	CONCLUSION

