
International Journal For Technological Research In Engineering

Volume 1, Issue 4, December-2013 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2013.All rights reserved. 225

SECURE OVERLIE CLOUD STORAGE WITH ACCESS CONTROL

AND GUARANTEED REMOVAL USING FADE

R. Manikandasamy1, K. K. Kanagamathanmohan2, Dr. C. Kumar Charlie Paul3

1, 2 A.S.L Pauls College of Engineering & Technology, Coimbatore, India.
3 Department of Computer science, Anna University Chennai, India.

Abstract: Now we are using outsource data backup to

third-party cloud storage services so as to reduce data

management costs security concerns arise in terms of

ensuring the privacy and integrity of outsourced data.

Design FADE a practical implementable and readily

deployable cloud storage system that focuses on

protecting deleted data with policy based file assured

deletion. FADE is built upon standard cryptographic

techniques such that it encrypts outsourced data files to

guarantee their privacy and integrity and most

importantly assuredly deletes files to make them

unrecoverable to anyone (including those who manage the

cloud storage) upon revocations of file access policies. In

particular the design of FADE is geared toward the

objective that it acts as an overlay system that works

seamlessly atop today’s cloud storage services. To

demonstrate this objective implement a working

prototype of FADE atop Amazon S3 one of today’s cloud

storage services and empirically show that FADE

provides policy based file assured deletion with a minimal

trade off of performance overhead. Work provides

insights of how to incorporate value added security

features into current data outsourcing applications

Keywords: Fade, Decentralized Erasure Code, Proxy Re-

Encryption, Threshold Cryptography, Secure Storage

System.

I. INTRODUCTION

Cloud computing or something being in the cloud is an

appearance used to describe a variety of different types of

computing concepts that involve a large number of computers

connected through a real time communication network such

as the Internet. In knowledge cloud computing is a synonym

for distributed computing over a network and means the

ability to run a program on many connected computers at the

same time.

The expression is also more normally used to refer to

network-based services which appear to be provided by real

server hardware which in information are served up by

effective hardware simulated by software running on one or

more real machines. Such virtual servers do not physically

exist and can therefore be moved around and scaled up on the

fly without affecting the end user questionably rather like a

cloud. In this Fig 1.1 cloud also focuses on maximizing the

effectiveness of the shared resources.

Fig.1. A cloud Network

Cloud resources are usually not only shared by multiple users

but are also dynamically. Reallocated per demand. This can

work for allocating resources to users. For example

SmugMug a photo distribution website chose to host

terabytes of photos on Amazon S3 in 2006 and saved

thousands of dollars on maintaining storage devices.

In particular, with the advent of smart phones be expecting

that more people will use Dropbox like tools to move

audio/video files from their smart phones to the cloud

specified that smart phones typically have limited storage

resources. Nevertheless security concerns become relevant as

we now outsource the storage of possibly sensitive data to

third parties.

Particularly interested in two security issues Initial need to

provide guarantees of access manage in which we must

ensure that only approved parties can access the outsourced

data on the cloud. In Fig 1.2 particular must prohibit third

party cloud storage providers from mining any sensitive

information of their client’s data for their own marketing

purposes. Subsequently it is important to provide guarantees

of confident deletion meaning that outsourced data is

permanently unapproachable to anybody (including the data

owner) upon requests of deletion of data.

 Keeping data permanently is unwanted as data may be

unexpectedly disclosed in the future due to malicious attacks

on the cloud or careless management of cloud operators. The

challenge of achieving assured deletion is that we have to

trust cloud storage providers to actually delete data but they

16

Mobile
devices

Individual
users

Enterpris
es

International Journal For Technological Research In Engineering

Volume 1, Issue 4, December-2013 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2013.All rights reserved. 226

may be unwilling in doing so. Also cloud storage providers

typically keep multiple backup copies of data for fault

tolerance reasons. It is unsure from cloud client’s

perspectives whether cloud providers dependably remove all

backup copies upon requests of deletion.

Fig.2. FADE Access Diagram

Present FADE a secure overlie cloud storage system that

provides fine-grained access control and assured deletion for

outsourced data on the cloud while operational seamlessly

atop today’s cloud storage services.

In FADE lively data files that remain on the cloud are

associated with a set of user defined file access policies (e.g.,

time expiration read/write permissions of approved users)

such that data files are accessible only to users who satisfy

the file access policies. In addition FADE generalize time

based file confident deletion (i.e., data files are assuredly

deleted upon time expiration)

II. OVERVIEW OF RESEARCH WORK

Provide value added security features into today’s cloud

storage services. Introduce policy based file guaranteed

deletion scheme that reliably deletes files with regard to

revoked file access policies. In this context, we design the key

management schemes for various file treatment operations

with the emphasis on fine grained security protection.

On top of policy based file assured deletion and design and

implement two new features 1) fine grained access control

based on attribute based encryption and 2) fault tolerant key

management with a quorum of key managers based on

threshold secret sharing. Subsequently it is important to

provide guarantees of confident deletion meaning that

outsourced data is permanently unapproachable to anybody

(including the data owner) upon requests of deletion of data.

Policy-based file assured deletion scheme that reliably deletes

files with regard to revoked file access policies. In this

context design the key management schemes for various file

manipulation operations with the emphasis on fine-grained

security protection.

On top of policy-based file assured deletion design and

implement two new features 1) fine-grained access control

based on attribute-based encryption and 2) fault-tolerant key

management with a quorum of key managers based on

threshold secret sharing.

Implement a working prototype of FADE atop Amazon S3.

Implementation of FADE exports a set of APIs that can be

adapted into different data outsourcing applications.

Implement a working prototype of FADE atop Amazon

S3.completion of FADE exports a set of APIs that can be

adapted into different data outsourcing applications.

Empirically evaluate the performance overhead of FADE

atop Amazon S3. Using experiments in a realistic network

situation show the feasibility of FADE in improving the

security protection of data storage on the cloud in practice.

Also analyze the monetary cost overhead of FADE under a

practical cloud backup scenario.

III. ORGANIZATION OF THE REPORT

The rest of the thesis is organized as follows. Chapter two

describes the related work addressing code decompression for

embedded system. Chapter three analyzes about the existing

Policy based file assured Deletion Cryptographic key

techniques. Chapter 4 describes software specification.

Chapter five discuss about software organization. Chapter six

illustrates the implementation and techniques and result in

this project. Chapter seven conclude and future work.

IV. POLICY-BASED FILE ASSURED DELETION

A. Introduction

FADE seeks to achieve both access control and assured

deletion for outsourced data. The design of FADE is centered

approximately the concept of policy-based file assured

deletion. Initial review time based file assured deletion

proposed in earlier work. Then explain the more general

concept policy based file assured deletion and motivate why

it is important in certain scenarios.

Associate each file with a single atomic file access policy (or

policy for short) or more generally a Boolean combination of

atomic policies. Each (atomic) policy is associated with a

control key and all the control keys are maintained by the key

manager. Suppose now that a file is associated with a single

policy. Then similar to time based removal the file content is

encrypted with a information key and the data key is further

encrypted with the control key corresponding to the policy.

When the rule is revoked the matching control key will be

removed from the key manager. Thus when the strategy

connected with a file is revoked and no longer holds the data

key and hence the encrypted content of the file cannot be well

again with the control key of the policy.

B. Participants In The System

Our system is composed of three participants the information

owner the key manager and the storage cloud. They are

International Journal For Technological Research In Engineering

Volume 1, Issue 4, December-2013 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2013.All rights reserved. 227

described as follows. The data owner is the entity that

originates file data to be stored on the cloud. It may be a file

system of a PC a consumer stage program, a mobile machine

or even in the form of a plug-in of a client application.

The key manager maintains the policy-based control keys that

are used to encrypt data keys. It respond to the statistics

owner’s requests by performing encryption decryption

regeneration and revocation to the control keys.

The storage cloud is maintained by a third-party cloud

provider (e.g., Amazon S3) and keeps the data on behalf of

the data owner. Emphasize that we do not require any

protocol and implementation changes on the storage cloud to

sustain our system. Even a naive storage space service that

merely provides file upload/download operations will be

suitable.

C. Cryptographic Keys

FADE defines three types of cryptographic keys to protect

data files stored on the cloud. A data key is a random secret

that is generated and maintained by a FADE client. It is

second-hand for encrypting or decrypting data files via

symmetric key encryption (e.g., AES).

A control key is associated with a meticulous policy. It is

represented by a community private key pair and the private

control key is maintained by the quorum of key managers. It

is second-hand to encrypt/decrypt the data keys of the files

protected with the same policy. The control key forms the

foundation of rule based assured deletion.

Similar to the control key an access key is associated with a

particular policy and is represented by a public-private key

pair. Unlike the control key the private access key is

maintained by a FADE client that is authorized to access files

of the associated policy. The access key Fig 3.1 is built on

attribute based encryption and forms the basis of policy based

access control.

 File protected with data key

 Data key protected with control key

Fig.3. Key operation

When a policy is revoked the control key is uninvolved. The

encrypted figures key and consequently the encrypted file

cannot be well again

Fig.4. Control Key operation.

The file is deleted i.e., Fig 3.2 even a copy exist it is encrypted

and inaccessible by everyone.

Successfully decrypt an encrypted file stored on the cloud

requires the accurate data key control key and access key.

Devoid of any of these keys it is computationally infeasible

to recover an outsourced file being protected by FADE. The

subsequent explains how we administer such keys to achieve

our security goals.

D. Policy Revocation For File Assured Deletion

If a policy Pi is revoked then the key manager completely

removes the private key di and the secret prime numbers pi

and qi. Thus cannot recover Si from Si and hence cannot

recover K and the file F. That the file F which is tied to policy

Pi is confidently deleted. Note that the strategy revocation

operations do not involve interactions with the storage cloud.

E. Multiple Policies

In addition to one policy per file FADE supports a Boolean

combination of multiple policies. Mainly focus on two kinds

of logical connectives (i) the conjunction (AND) which

means the data is accessible only when every policy is

satisfied and (ii) the disjunction (OR) which means if any

policy is fulfilled then the data is reachable.

Suppose that F is associated with conjunctive policies P1 ∧

P2 ∧ ⋅ ⋅ ⋅ ∧ Pm. To upload F to the storage cloud, the data

owner first randomly generates a data key K, and secret keOn

the other hand, to recover F, the data owner generates a

random number R and sends (S1R)e1 , (S2R)e2 , . . .,

(SmR)em to the key manager, which then returns S1R, S2R,

.. , SmR. The data owner can then recover S1, S2, . .. , Sm

and hence K and F. Suppose that F is associated with

disjunctive policies Pi1 ∨ Pi2 ∨ ⋅ ⋅ ⋅ ∨ Pim. To upload F to the

cloud the data owner will send the Tang et al.

Following: {K}S1 , {K}S2 , . . ., {K}Sm, Se11 , Se22 , . . .,

Semm , and {F}K. Therefore, the data owner needs to

International Journal For Technological Research In Engineering

Volume 1, Issue 4, December-2013 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2013.All rights reserved. 228

compute m different encrypted copies of K. On the other hand

over to recover F can use any one of the policies to decrypt

the file, as in the above operations. To delete a file associated

with conjunctive policies simply revoke any of the policies

(say, Pj). Cannot recover Sj and hence the data key K and file

F. On the other hand, to delete a file associated with

disjunctive policies, we need to revoke all policies, so that S

ejj cannot be recovered for all j. letter that for any Boolean

grouping of policies Express it in canonical form e.g. in the

disjunction (OR) of conjunctive (AND) policies.

F. The Fade Architecture

Implement a working prototype of FADE JAVA and we use

the Open SSL library for the cryptographic operations. In Fig

3.3 addition use Amazon S3 as our storage cloud. This section

is to address the implementation issues of our FADE

architecture based on our experience in prototyping FADE.

Our goal is to show the practicality of FADE when it is

deployed with today’s cloud storage services. Figure shows

the FADE architecture. In the following define the metadata

of FADE attached to individual files. Then describe how we

implement the data owner and the key manager and how the

data owner interacts with the storage cloud.

Fig.5. Architecture of FADE

Policy metadata- The policy metadata includes the

specification of the Boolean combination of policies and the

corresponding encrypted cryptographic keys. Assume that

each single policy is specified by a unique 4-byte integer

identifier. To symbolize a Boolean grouping of policies, we

express it in disjunctive canonical form, i.e., the disjunction

(OR) of conjunctive policies and use the characters ‘*’ and

‘+’ to denote the AND and OR operators.

Then we upload the policy metadata as a separate file to the

storage cloud. This enables us to renew policies directly on

the policy metadata without retrieving the entire file from the

storage cloud. In our implementation individual files have

their own policy metadata although we allow multiple files to

be associated with the same policy (which is the expected

behavior of FADE). In other language for two data files that

are under the same rule they will have different policy

metadata files that specify different data keys and the data

keys are protected by the control key of the same policy. In

Section 5 we discuss how we may associate the same policy

metadata file with multiple data files so as to reduce the

metadata overhead.

G. Data Owner And Storage Cloud

Implementation of the data owner uses the following four

function calls to enable end users to interact with the storage

cloud.

Upload (file, policy): The data owner encrypts the input file

using the specified policy (or a Boolean combination of

policies). Our goal is to show the practicality of FADE when

it is deployed with today’s cloud storage services. This

enables us to renew policies directly on the policy metadata

without retrieving the entire file from the storage cloud. It

then sends the encrypted file and the metadata onto the cloud.

In our implementation the file is encrypted using the 128-bit

AES algorithm with the cipher block chaining (CBC) mode

yet we can adopt a different symmetric key encryption

algorithm depending on applications.

The data owner retrieves the file and the policy metadata from

the cloud checks the integrity of the file and decrypts the file.

The data owner tells the key manager to permanently revoke

the specified policy. All files connected with the strategy will

be assuredly deleted.

Renew (file new policy): The data owner first fetches the

policy metadata for the given file from the cloud. It then

updates the policy metadata with the new policy. Lastly it

sends the policy metadata back to the cloud.

V. MODE OF IMPLEMENTATION

Implement a working prototype of FADE using JAVA. Our

implementation is built on off-the-shelf library APIs.

Specifically use the Open SSL library for the cryptographic

operations the cpabe library for the ABE-based access control

and the ssss library for sharing control keys to a quorum of

key managers. The ssss documentation is initially calculated

as a command line utility to deal with keys in ASCII format.

Slightly modify ssss and add two functions to split and

combine keys in binary arrangement, so as to make it well-

matched with other libraries. In addition use Amazon S3 as

our cloud storage backend. In the following define the

metadata of FADE being attached to individual data files. We

then describe how implement the client and a quorum of key

managers and how the client interacts with the cloud.

A. Blinded RSA Algorithm

RSA involves a control key. The control key is used for

encrypting Data key. Data key encrypted with the control key

can only be decrypted in a reasonable amount of time using

the policy based. The keys for the RSA algorithm are

generated the following way

 Choose two distance prime numbers p and q.

International Journal For Technological Research In Engineering

Volume 1, Issue 4, December-2013 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2013.All rights reserved. 229

For security purposes the integer’s p and q should be chosen

at random and should be of similar bit-length. Prime integers

can be professionally establish using a partiality test

 Compute n = pq.



n is used as the modules for both the public and private keys.

Its span typically spoken in bits, is the key length.

 Compute φ(n) = φ(p)φ(q) = (p − 1)(q − 1), where φ

is Euler’s totient function.

 Choose an integer e such that 1 < e < φ(n) and gcd(e,

φ(n)) = 1; i.e. e and φ(n) are cop rime.

 e is released as the public key exponent.

 e having a short bit-length and small hamming

weight results in more efficient encryption – most

commonly 216 + 1 = 65,537. However, much smaller

values of e (such as 3) have been shown to be less

secure in some settings.

 Determine d as d−1 ≡ e (mod φ(n)), i.e., d is the of e

Multiplicative opposite(modulo φ(n)).

 This is more evidently stated as: solve for d known

d⋅e ≡ 1 (mod φ(n))

This is often computed by means of the comprehensive

Euclidean algorithms is kept as the control key exponent.

VI. RESULT

Assured deletion discuss time based deletion in and which we

generalize into policy based removal. There are more than a

few related systems on assured deletion which come after our

conference version of the paper. Keypad protects data in

theft-prone devices.

Maintaining keys in an independent centralized key server

similar to FADE. It removes all statistics of a protected tool

upon requests of deletion and does not consider fine grained

deletion as in FADE.

Policy-based deletion follows the similar notion of ABE in

which data can be accessed only if the corresponding

attributes (i.e., atomic policies in our case) are satisfied.

Policy based deletion has a different design objective from

ABE. Policy-based deletion focuses on how to delete data

while ABE focuses on how to access data based on attributes.

A major characteristic of ABE is to subject users the

decryption keys of the associated attributes so that they can

access files that satisfy the attributes and hence obtainable

study of ABE look for to ensure that no two users can collude

if they are tied with different sets of attributes. The thought

of guaranteed removal to cloud backup systems with version

control, but the work does not consider access control and the

use of multiple key managers for key management.

VII. CONCLUSION AND FUTURE WORK

Design and implement FADE a secure overlay cloud storage

system that achieves fine-grained policy-based access control

and file guaranteed removal. It acquaintances outsourced files

with file access policies and assuredly deletes files to make

them unrecoverable to anyone upon revocations of file access

policies.

Associate files with file access policies that control how files

can be access. Then present policy based file guaranteed

removal in which files are assuredly deleted and made

unrecoverable by anyone when their associated file access

policies are revoked. We describe the essential operations on

cryptographic keys so as to achieve access control and certain

deletion. FADE also leverages accessible cryptographic

techniques including attribute-based encryption and a

quorum of key managers based on threshold secret sharing.

UIM table contains the information about the past successful

file downloading results. It contains name of the service

provider address resource name and count of the search. UIM

table will update every possible downloading result. It also

has the other sharing resource names.

It could help for future reference and it leads the dynamic

search. The search based on the user’s common interest. It

gives the priority for the user’s interest resources. It maintain

the details about the meticulous resource in the memory in

certain time. Key is deleted in UIM table at the certain time

period users files are delete.

REFERENCES

[1] M. Nabeel and E. Bertino, “Privacy preserving delegated

access control in the storage as a service model,” in EEE

International Conference on Information Reuse and

Integration (IRI), 2012.

[2] E. Bertino and E. Ferrari, “Secure and selective

dissemination of XML documents,” ACM Trans. Inf.

Syst. Secur., vol. 5, no. 3, pp. 290–331, 2002

[3] G. Miklau and D. Suciu, “Controlling access to

published data using cryptography,” in VLDB ‟2003:

Proceedings of the 29th international conference on Very

large data bases. VLDB Endowment, 2003, pp. 898–909.

[4] N. Shang, M. Nabeel, F. Paci, and E. Bertino, “A privacy-

preserving approach to policy-based content

dissemination,” in ICDE ‟10: Proceedings of the 2010

IEEE 26th International Conference on Data

Engineering, 2010.

[5] M. Nabeel, E. Bertino, M. Kantarcioglu, and B. M.

Thuraisingham, “Towards privacy preserving access

control in the cloud,” in Proceedings of the 7th

International Conference on Collaborative Computing:

Networking, Applications and Work sharing, ser.

Collaborate Com ‟11, 2011, pp. 172–180.

[6] M.Nabeel, N.Shang,andE. Bertino, “Privacy preserving

policy based content sharing in public clouds,” IEEE

Transactions on Knowledge and Data Engineering, 2012.

[7] S. D. C. di Vimercati, S. Foresti, S. Jajodia, S.

Paraboschi, and P. Samarati, “Over-encryption:

Management of access control evolution on outsourced

data,” in Proceedings of the

International Journal For Technological Research In Engineering

Volume 1, Issue 4, December-2013 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2013.All rights reserved. 230

33rdInternationalConferenceonVeryLarge DataBases,

ser.VLDB ‟07. VLDB Endowment, 2007, pp. 123–

134.

[8] M. Nabeel and E. Bertino, “Towards attribute based

group key management,” in Proceedings of the 18th

ACM conference on Computer and communications

security, Chicago, Illinois, USA, 2011.

[9] A.Fiat and M. Naor, “Broadcast encryption,” in

Proceedings of the 13th Annual International

Cryptology Conference on Advances in Cryptology,

ser. CRYPTO ‟93. London, UK:Springer-Verlag, 1994,

pp. 480–491.

[10] D. Naor, M. Naor, and J. B. Lotspiech, “Revocation and

tracing schemes for stateless receivers,” in Proceedings

of the 21st Annual International Cryptology Conference

on Advances in Cryptology, ser. CRYPTO ‟01. London,

UK: Springer-Verlag, 2001, pp. 41–62.

[11] J. Li and N. Li, “OACerts: Oblivious attribute

certificates,” IEEE Transactions on Dependable and

Secure Computing, vol. 3, no. 4, pp. 340–352, 2006.

[12] T.Pedersen,“Non-interactive and information-theoretic

secure verifiable secret sharing,” in CRYPTO 91:

Proceedings of the 11th Annual International Cryptology

Conference on Advances in Cryptology. London, UK:

Springer-Verlag, 1992, pp. 129–140.

[13] M.Nabeeland E. Bertino, “Attribute based group key

management,” IEEE Transactions on Dependable and

Secure Computing, 2012.

[14] A.Shamir, “How to share a secret,” The Communication

of ACM, vol. 22, pp. 612–613, November 1979.

[15] V.Shoup, “NTL library for doing number theory,”

http://www.shoup.net/ntl/.

[16] “Open SSL the open source toolkit for SSL/TLS,”

http://www.openssl.org/.

[17] “bool stuff a boolean expression tree

toolkit,”http://sarrazip.com/dev/boolstuff.html.

[18] A. Schaad, J. Moffett, and J. Jacob, “The role-based

access control system of a european bank: a case study

and discussion,” in Proceedings of the sixth ACM

symposium on Access control models and technologies,

ser. SACMAT ‟01. New York, NY, USA: ACM, 2001,

R.Manikandasamy received the B.Tech

degree(first-class) in Information

Technology from the Anna University

Chennai 2011.currently doing the ME

degree in Computer Science at Anna

University Chennai/A.S.L Pauls College of

Engineering & Technology ,Coimbatore

.His research interest include

reliability/security of cloud computing and storage,

distributed systems and networks.

K.K.Kanagamathanmohan received the

ME degree in computer Science at Anna

University Chennai 2012.currently

working assistant professor at the A.S.L

Pauls College of Engineering &

Technology ,Coimbatore .His research

interest include reliability/security of

cloud computing and storage ,distributed

systems and Networks.

